Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Photoacoustics ; 31: 100505, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37214427

RESUMEN

Photoacoustic mesoscopy visualises vascular architecture at high-resolution up to ~3 mm depth. Despite promise in preclinical and clinical imaging studies, with applications in oncology and dermatology, the accuracy and precision of photoacoustic mesoscopy is not well established. Here, we evaluate a commercial photoacoustic mesoscopy system for imaging vascular structures. Typical artefact types are first highlighted and limitations due to non-isotropic illumination and detection are evaluated with respect to rotation, angularity, and depth of the target. Then, using tailored phantoms and mouse models, we investigate system precision, showing coefficients of variation (COV) between repeated scans [short term (1 h): COV= 1.2%; long term (25 days): COV= 9.6%], from target repositioning (without: COV=1.2%, with: COV=4.1%), or from varying in vivo user experience (experienced: COV=15.9%, unexperienced: COV=20.2%). Our findings show robustness of the technique, but also underscore general challenges of limited-view photoacoustic systems in accurately imaging vessel-like structures, thereby guiding users when interpreting biologically-relevant information.

2.
Mol Cell Pediatr ; 9(1): 13, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35788444

RESUMEN

BACKGROUND: Chronic kidney disease (CKD) is a global burden affecting both children and adults. Novel imaging modalities hold great promise to visualize and quantify structural, functional, and molecular organ damage. The aim of the study was to visualize and quantify murine renal vasculature using label-free raster scanning optoacoustic mesoscopy (RSOM) in explanted organs from mice with renal injury. MATERIAL AND METHODS: For the experiments, freshly bisected kidneys of alpha 8 integrin knock-out (KO) and wildtype mice (WT) were used. A total of n=7 female (n=4 KO, n=3 WT) and n=6 male animals (n=2 KO, n=4 WT) aged 6 weeks were examined with RSOM optoacoustic imaging systems (RSOM Explorer P50 at SWL 532nm and/or ms-P50 imaging system at 532 nm, 555 nm, 579 nm, and 606 nm). Images were reconstructed using a dedicated software, analyzed for size and vascular area and compared to standard histologic sections. RESULTS: RSOM enabled mapping of murine kidney size and vascular area, revealing differences between kidney sizes of male (m) and female (f) mice (merged frequencies (MF) f vs. m: 52.42±6.24 mm2 vs. 69.18±15.96 mm2, p=0.0156) and absolute vascular area (MF f vs. m: 35.67±4.22 mm2 vs. 49.07±13.48 mm2, p=0.0036). Without respect to sex, the absolute kidney area was found to be smaller in knock-out (KO) than in wildtype (WT) mice (WT vs. KO: MF: p=0.0255) and showed a similar trend for the relative vessel area (WT vs. KO: MF p=0.0031). Also the absolute vessel areas of KO compared to WT were found significantly different (MF p=0.0089). A significant decrease in absolute vessel area was found in KO compared to WT male mice (MF WT vs. KO: 54.37±9.35 mm2 vs. 34.93±13.82 mm2, p=0.0232). In addition, multispectral RSOM allowed visualization of oxygenated and deoxygenated parenchymal regions by spectral unmixing. CONCLUSION: This study demonstrates the capability of RSOM for label-free visualization of differences in vascular morphology in ex vivo murine renal tissue at high resolution. Due to its scalability optoacoustic imaging provides an emerging modality with potential for further preclinical and clinical imaging applications.

3.
Mater Sci Eng C Mater Biol Appl ; 120: 111736, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33545879

RESUMEN

There has been growing interest in recent years in developing multifunctional materials for studying the structure interface in biological systems. In this regard, the multimodal systems, which possess activity in the near-infrared (NIR) region, become even more critical for the possibility of improving examined biotissue depth and, eventually, data analysis. Herein, we engineered bi-modal contrast agents by integrating carbon nanotubes (CNT) and gold nanoparticles (AuNP) around silica microspheres using the Layer-by-Layer self-assembly method. The experimental studies revealed that microspheres with CNT sandwiched between AuNP exhibit strong absorption in the visible and NIR regions and high optoacoustic contrast (OA, also called photoacoustics) and Raman scattering when illuminated with 532 nm and 785 nm lasers, respectively. The developed microspheres demonstrated amplification of the signal in the OA flow cytometry at the laser wavelength of 1064 nm. This finding was further validated with ex vivo brain tissue using a portable Raman spectrometer and imaging with the Raster-scanning OA mesoscopy technique. The obtained data suggest that the developed contrast agents can be promising in applications of localization OA tomography (LOT), OA flow cytometry, and multiplex SERS detection.


Asunto(s)
Nanopartículas del Metal , Nanotubos de Carbono , Oro , Microesferas , Dióxido de Silicio , Espectrometría Raman
4.
Photodiagnosis Photodyn Ther ; 33: 102095, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33188938

RESUMEN

BACKGROUND: Photoacoustic tomography (PAT) is an emerging noninvasive imaging technique combining high sensitivity optical absorption contrast, such as melanin, with high-resolution ultrasound for deep tissue imaging. The ability of PAT to provide real-time images of skin structures at depth has been studied for diagnosis of primary and metastatic malignant melanoma (MM). OBJECTIVE: To provide an overview of the rapidly expanding clinical use of PAT for determination of melanoma thickness and architecture, visualization of metastases in lymph nodes and detection of circulating melanoma cells. METHODS: Medline, PubMed, EMBASE, Web of Science, Google Scholar, and Cochrane Library were searched for papers using PAT to assess cutaneous malignant melanoma and melanoma metastases in humans or human specimens. RESULTS: The research resulted in 14 articles which met the search criteria. CONCLUSIONS: Results from current studies suggest that PAT is a promising tool for assessing both primary and metastatic malignant melanoma in the clinic. The potential of PAT to noninvasively visualize tumour boundaries, as well as assist in the evaluation of metastatic status, could facilitate more effective treatment, resulting in better clearance and reducing the need for additional biopsies. However, larger and methodologically sound studies are warranted.


Asunto(s)
Melanoma , Fotoquimioterapia , Neoplasias Cutáneas , Humanos , Melanoma/diagnóstico por imagen , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes , Neoplasias Cutáneas/diagnóstico por imagen , Tomografía Computarizada por Rayos X
5.
Photoacoustics ; 16: 100144, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31871888

RESUMEN

Photoacoustic imaging (or optoacoustic imaging) is an upcoming biomedical imaging modality availing the benefits of optical resolution and acoustic depth of penetration. With its capacity to offer structural, functional, molecular and kinetic information making use of either endogenous contrast agents like hemoglobin, lipid, melanin and water or a variety of exogenous contrast agents or both, PAI has demonstrated promising potential in a wide range of preclinical and clinical applications. This review provides an overview of the rapidly expanding clinical applications of photoacoustic imaging including breast imaging, dermatologic imaging, vascular imaging, carotid artery imaging, musculoskeletal imaging, gastrointestinal imaging and adipose tissue imaging and the future directives utilizing different configurations of photoacoustic imaging. Particular emphasis is placed on investigations performed on human or human specimens.

6.
J Biophotonics ; 12(9): e201800442, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31012286

RESUMEN

Raster Scanning Optoacoustic Mesoscopy (RSOM) is a novel optoacoustic imaging modality that offers non-invasive, label-free, high resolution (~7 µm axial, ~30 µm lateral) imaging up to 1 to 2 mm below the skin, providing novel quantitative insights into skin pathophysiology. As the RSOM image contrast mechanism is based on light absorption, it is expected that the amount of melanin present in the skin will affect RSOM images. However, the effect of skin tone in the performance of RSOM has not been addressed so far. Herein, we present the efficiency of RSOM for in vivo skin imaging of human subjects with Fitzpatrick (FP) skin types between II to V. RSOM images acquired from the volar forearms of the subjects were used to derive metrics used in RSOM studies, such as total blood volume, vessel diameter and melanin signal intensity. Our study shows that the melanin signal intensity derived from the RSOM images exhibited an excellent correlation with that obtained from a clinical colorimeter for the subjects of varying FP skin types. We could successfully estimate the vessel diameter at different depths of the dermis. Furthermore, our study shows that there is a need to compensate for total blood volume calculated for subjects with higher FP skin types due to the lower signal-to-noise ratio in dermis, owing to strong absorption of light by melanin. This study sheds light into how RSOM can be used for studying various skin conditions in populations with different skin phenotypes.


Asunto(s)
Acústica , Colorimetría , Óptica y Fotónica , Fotoquímica , Piel/patología , Algoritmos , Medios de Contraste/farmacología , Dermis/patología , Voluntarios Sanos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Melaninas/biosíntesis , Proyectos Piloto , Relación Señal-Ruido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA