Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 11(7): 7431-7440, 2019 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-30699291

RESUMEN

Water-droplet adhesions of the coatings constructed by all-polymer multiscale hierarchical particles (MHPs) were finely adjusted within the range from highly adhesive to self-cleanable. The MHPs were synthesized via thermal-induced polymerization of the reactants absorbed into self-made hollow reactors and in situ capping of nanocomplexes onto the reactors' shell simultaneously. The dynamic wettability of the prepared MHPs was tuned between water-droplet sliding and water-droplet adhering by simply controlling the type of capped nanocomplexes. Water-adhesive force changed in the range from 31.28 to 89.34 µN. In addition, the raspberry-like particles (MHPs without nanocomplex capping) were used to construct superhydrophobic rose-petal-like surface with a high water-adhesive force, which can be applied in microdroplet transportation without loss. The MHPs with appropriate nanocomplex capping were used to fabricate superhydrophobic lotus-leaf-like fabric, exhibiting excellent antifouling property and superior mechanical stability. We believe that the prepared superhydrophobic MHPs with diverse water-adhesive forces are promising in potential academic research and industrial applications.


Asunto(s)
Materiales Biomiméticos/química , Flores , Lotus , Hojas de la Planta , Rosa , Agua/química , Humectabilidad
2.
Colloids Surf B Biointerfaces ; 170: 578-587, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-29975906

RESUMEN

Composite particles with two individual hydrophilic parts were synthesized via seeded emulsion polymerization. As first part, nearly-monodisperse ethylene glycol dimethacrylate (EGDMA)-crosslinked poly(acrylic acid) (PAA) particles were synthesized by distillation precipitation polymerization (DPP). These particles were used as seeds in emulsion polymerization of 2-(dimethylamino)ethyl methacrylate (DMAEMA). Effects of type of surfactant, monomers/seed weight ratio and amount of shell crosslinker on the synthesized composite particles' morphology were studied. Different morphologies consisting of core-shell, Janus type, raspberry-like and porous core-shell structures were investigated by variations of polymerization parameters. Different structures were chosen as drug carriers and subjected to DOX loading and release system. Results showed that amount of drug loading and extent of release were strongly dependent on the structure of carriers whereas for all carriers, DOX was released more rapid. Kinetics of release was evaluated by different mathematical models to investigate the release mechanism through composite particles. Results showed that only Korsmeyer-Peppas model fitted the drug release data and other ones were inappropriate in this field.


Asunto(s)
Doxorrubicina/análisis , Doxorrubicina/química , Portadores de Fármacos/química , Liberación de Fármacos , Tensoactivos/química , Resinas Acrílicas/síntesis química , Resinas Acrílicas/química , Cinética , Tamaño de la Partícula , Propiedades de Superficie
3.
J Colloid Interface Sci ; 512: 600-608, 2018 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-29101901

RESUMEN

Nonspherical colloidal particles with various geometries and different compositions have attracted tremendous attention and been widely researched. The preparation of polymer colloidal particles with controlled shapes by seeded polymerization is recognized as the most promising technique owing to the precise control of various morphologies and using non-cross-linked seed particles are of particular interest. Seeds particles derived from natural biopolymers are seldom applied. Hence, non-cross-linked starch-based seed could be used to fabricate the anisotropic particles by soap-free seed polymerization. Non-cross-linked starch-based seed particles were prepared by a nanoprecipitation method. Starch/polystyrene composite colloidal particles with shape-tunable were fabricated by soap-free seeded polymerization using starch-based seed. The effect of the polymerization time, monomer feed ratio and seed type were investigated. The seed particles with a single- or multi-hole structure were obtained after swelling with styrene. The resulting particles including golf-like, raspberry-like, octahedron-like and snowman-like structures, was fabricated on the polymerization process. This study firstly reports that the morphology of composite particles from golf-like to snowman-like at high monomer feed ratio using starch-based seed. At low monomer feed ratio, raspberry-like particles were obtained by surface nucleation increasing process. In addition, seed type also effect the morphology of composite particles.

4.
J Colloid Interface Sci ; 505: 605-614, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28651200

RESUMEN

Surface modified superparamagnetic iron oxide nanoparticles are assembled into nanostructured micro-raspberry particles via spray drying. The micro-raspberry powder is readily redispersed to individual nanoparticles or nanostructured sub-units, depending on the initially adjusted nanoparticle modification. In this work, it is demonstrated how the technique of magnetic zero-field-cooled/field-cooled (ZFC/FC) measurements can be used to judge the degree of agglomeration, i.e. the extent of hard-agglomerates and soft-agglomerates in a system and predict the redispersibility of the powder particles. Furthermore, the uniformity of surface modification of the individual nanoparticles can be judged via this method. In addition, the technique can be applied to characterise complex nanostructured particle systems composed of iron oxide nanoparticles mixed with another type of nanoparticulate building-block. Thus, this work shows that magnetic measurement techniques are a promising approach to characterise agglomeration states of nanoparticles, their degree of surface modification and their distribution in complex particle and composite systems.

5.
Acta Biomater ; 58: 67-79, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28579541

RESUMEN

Multicompartment particles, which are particles composed of smaller building units, have gained considerable interest during the past decade to facilitate simultaneous and differential delivery of several biomolecules in various applications. Supercritical carbon dioxide (CO2) processing is an industrial technology widely used for large-scale synthesis and processing of materials. However, the application of this technology for production of multicompartment particles from colloidal particles has not yet been explored. Here, we report the formation of raspberry-like gelatin (RLG) microparticles composed of gelatin nanoparticles as colloidal building blocks through supercritical CO2 processing. We show that these RLG microparticles exhibit a high stability upon dispersion in aqueous media without requiring chemical cross-linking. We further demonstrate that these microparticles are cytocompatible and facilitate differential release of two different model compounds. The strategy presented here can be utilized as a cost-effective route for production of various types of multicompartment particles using colloidal particles with suitable interparticle interactions. STATEMENT OF SIGNIFICANCE: Multicompartment particles have gained considerable interest during the past decade to facilitate simultaneous and differential delivery of multiple biomolecules in various biomedical applications. Nevertheless, common methods employed for the production of such particles are often complex and only offer small-scale production. Here, we report the formation of raspberry-like gelatin (RLG) microparticles composed of gelatin nanoparticles as colloidal building blocks through supercritical CO2 processing. We show that these microparticles are cytocompatible and facilitate differential release of two model compounds with different molecular sizes, promising successful applications in various biomedical areas. Summarizing, this paper presents a novel strategy that can be utilized as a cost-effective route for production of various types of multicompartment particles using a wide range of colloidal building blocks.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Gelatina , Microesferas , Nanopartículas/química , Animales , Dióxido de Carbono/química , Gelatina/química , Gelatina/farmacología , Humanos , Ratones , Células 3T3 NIH
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA