Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Biol Chem ; 299(12): 105426, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37926281

RESUMEN

S-palmitoylation is a reversible lipid modification catalyzed by 23 S-acyltransferases with a conserved zinc finger aspartate-histidine-histidine-cysteine (zDHHC) domain that facilitates targeting of proteins to specific intracellular membranes. Here we performed a gain-of-function screen in the mouse and identified the Golgi-localized enzymes zDHHC3 and zDHHC7 as regulators of cardiac hypertrophy. Cardiomyocyte-specific transgenic mice overexpressing zDHHC3 show cardiac disease, and S-acyl proteomics identified the small GTPase Rac1 as a novel substrate of zDHHC3. Notably, cardiomyopathy and congestive heart failure in zDHHC3 transgenic mice is preceded by enhanced Rac1 S-palmitoylation, membrane localization, activity, downstream hypertrophic signaling, and concomitant induction of all Rho family small GTPases whereas mice overexpressing an enzymatically dead zDHHC3 mutant show no discernible effect. However, loss of Rac1 or other identified zDHHC3 targets Gαq/11 or galectin-1 does not diminish zDHHC3-induced cardiomyopathy, suggesting multiple effectors and pathways promoting decompensation with sustained zDHHC3 activity. Genetic deletion of Zdhhc3 in combination with Zdhhc7 reduces cardiac hypertrophy during the early response to pressure overload stimulation but not over longer time periods. Indeed, cardiac hypertrophy in response to 2 weeks of angiotensin-II infusion is not diminished by Zdhhc3/7 deletion, again suggesting other S-acyltransferases or signaling mechanisms compensate to promote hypertrophic signaling. Taken together, these data indicate that the activity of zDHHC3 and zDHHC7 at the cardiomyocyte Golgi promote Rac1 signaling and maladaptive cardiac remodeling, but redundant signaling effectors compensate to maintain cardiac hypertrophy with sustained pathological stimulation in the absence of zDHHC3/7.


Asunto(s)
Cardiomiopatías , Miocitos Cardíacos , Animales , Ratones , Aciltransferasas/genética , Aciltransferasas/metabolismo , Cardiomegalia/metabolismo , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Histidina/metabolismo , Lipoilación , Ratones Transgénicos , Miocitos Cardíacos/metabolismo
2.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-953917

RESUMEN

ObjectiveTo explore the intervention mechanism of Xiangsha Liujunzi Tang in rats with functional dyspepsia (FD) based on the Ras homolog gene family member A (RhoA)/Rho-associated coiled-coil containing protein kinase 2 (ROCK2)/Myosin phosphatase target Subunit 1 (MYPT1) pathway. MethodSixty male SD suckling rats in SPF grades were randomly divided into blank group (n=10) and model group (n=50). The comprehensive modeling method (gavage administration of iodoacetamide+exhaustion of swimming+disturbance of hunger and satiety) was used to replicate the rat model of FD. After successful replication of the model, the rats in the model group were randomly divided into model group, mosapride group, and high, middle, and low-dose Xiangsha Liujunzi Tang groups, with 10 rats in each group. Rats in the blank group and model group were given 10 mL kg-1·d-1 normal saline, those in the mosapride group were given 1.35 mg·kg-1·d-1 mosapride, and those in the high, middle, and low-dose Xiangsha Liujunzi Tang groups were given 12, 6, and 3 g·kg-1·d-1 Xiangsha Liujunzi Tang, respectively. The intervention lasted 14 days. The general living conditions of rats were observed before and after modeling and administration, and the 3-hour food intake and body mass of rats were measured. After intervention, the intestinal propulsion rate of rats was measured, and the pathological changes in the gastric tissue were observed by hematoxylin-eosin (HE) staining. The content of choline acetyl transferase (ChAT) and vasoactive intestinal peptide (VIP) in the medulla oblongata and gastric tissue homogenate was determined by enzyme-linked immunosorbent assay (ELISA), the distribution of adenosine triphosphate (ATP) enzyme in gastric antrum smooth muscle was observed by frozen section staining, and the protein expression levels of RhoA, ROCK2, and phosphorylated-myosin phosphatase target subunit 1 (p-MYPT1) in the gastric tissue were detected by Western blot. ResultCompared with the blank group, the model group had withered hair, lazy movement, slow action, poor general living condition, lower 3-hour food intake, body mass, and lower intestinal propulsion rate (P<0.05), whereas no obvious abnormality in gastric histopathology. In the model group, the content of ChAT in the medulla oblongata and gastric tissue decreased, the content of VIP in gastric tissue increased, the distribution of ATP enzyme in gastric antrum smooth muscle decreased significantly, and the protein expression levels of RhoA, ROCK2, and p-MYPT1 in the gastric tissue decreased significantly (P<0.05). As compared with the model group, the general living condition of rats in each intervention group was significantly improved, and the 3-hour food intake, body mass, and intestinal propulsion rate were significantly increased (P<0.05). There was no significant difference in gastric pathology in the intervention groups. The content of ChAT in the medulla oblongata and gastric tissue increased significantly, the content of VIP in the gastric tissue decreased, the distribution of ATP enzyme in gastric antrum smooth muscle increased significantly, and the protein expression levels of RhoA, ROCK2, and p-MYPT1 in the gastric tissue increased significantly (P<0.05). The intervention effect of Xiangsha Liujunzi Tang group on the above indexes was dose-dependent. ConclusionXiangsha Liujunzi Tang can effectively improve the general living condition and gastric motility of rats with FD, and its specific mechanism may be related to the activation of the RhoA/ROCK2/MYPT1 pathway in the gastric tissue to regulate smooth muscle relaxation and contraction and promote gastric motility.

3.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-969605

RESUMEN

ObjectiveTo investigate the effects of Yishen Daluo prescription (YSDL) on Ras homolog(Rho)/Rho-associated coiled-coil containing protein kinase(ROCK)signaling pathway in mice with experimental autoimmune encephalomyelitis (EAE) based on the silencing of β-arrestin1 gene. MethodSixty C57BL/6 female mice were randomly divided into a blank group, a model group, a virus group, a YSDL group, a virus + YSDL group, and a prednisone acetate group (hormone group). The EAE model was induced in mice except for those in the normal group. Adeno-associated virus(AAV)solution (150 μL, 1×1011 vg·mL-1) was injected into the tail vein of each mouse in the virus group and the virus + YSDL group on the 4th day of immunization. Drugs were administered on the 8th day of modeling. Specifically, normal saline was given to the mice in the normal group,the model group,and the virus group at 10 mL∙kg-1, prednisone acetate suspension to those in the hormone group at 3.9 g∙kg-1,and YSDL to those in other groups at 20 g∙kg-1 for 14 consecutive days. The mice were weighed and scored every day. The neurological function scores of mice in each group were recorded every day after immunization. Hematoxylin-eosin (HE) staining was used to determine the inflammatory response and lesion location in the brain tissues and spinal cord tissues of mice. The protein expression of β-arrestin1,Ras homolog gene family member A(RhoA), and Rho-associated coiled-coil forming protein kinase Ⅰ(ROCK Ⅰ) in spinal cord and brain tissues of EAE mice was determined by Western blot. ResultCompared with the model group, the virus group and the virus + YSDL group showed decreased neurological function scores (P<0.01),and the YSDL group also showed decreased neurological function scores(P<0.05). HE results showed that there was obvious inflammatory reaction in the central nervous system (CNS) of the model group, which was alleviated to varying degrees in other groups compared with the model group. Western blot results showed that compared with the blank group, the model group showed increased protein expression levels of β-arrestin1, RhoA, and ROCK Ⅰ in the spinal cord tissues (P<0.01). Compared with the model group, the virus group, the YSDL group, the virus + YSDL group, and the hormone group showed decreased protein expression levels of β-arrestin1, RhoA, and ROCKⅠ in the spinal cord tissues (P<0.01). Compared with the blank group, the model group showed increased protein expression levels of β-arrestin1, RhoA, and ROCK Ⅰ in the brain tissues (P<0.01). Compared with the model group, the virus group, the YSDL group, the virus + YSDL group, and the hormone group showed decreased protein expression level of β-arrestin1 in the brain tissues (P<0.01), and the virus group and the YSDL group showed decreased protein expression levels of RhoA, and ROCKⅠ in the brain tissues (P<0.05). Additionally, the virus + YSDL group and the hormone group showed decreased protein expression levels of RhoA and ROCKⅠ in the brain tissues (P<0.01). ConclusionYSDL can improve the clinical symptoms of EAE mice and improve the inflammatory response of CNS. The mechanism is presumably attributed to the fact that YSDL inhibits the expression of β-arrestin1 in CNS,thereby reducing the expression of Rho/ROCK signaling pathway. Furthermore, YSDL may have a synergistic effect with the inhibition of β-arrestin1 gene expression.

4.
Cells ; 11(9)2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35563826

RESUMEN

Ras homolog gene family member A (RhoA) is a small GTPase of the Rho family involved in regulating multiple signal transduction pathways that influence a diverse range of cellular functions. RhoA and many of its downstream effector proteins are highly expressed in the nervous system, implying an important role for RhoA signaling in neurons and glial cells. Indeed, emerging evidence points toward a role of aberrant RhoA signaling in neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and amyotrophic lateral sclerosis. In this review, we summarize the current knowledge of RhoA regulation and downstream cellular functions with an emphasis on the role of RhoA signaling in neurodegenerative diseases and the therapeutic potential of RhoA inhibition in neurodegeneration.


Asunto(s)
Enfermedad de Huntington , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Enfermedad de Huntington/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo , Enfermedad de Parkinson/metabolismo , Transducción de Señal/fisiología , Proteína de Unión al GTP rhoA/metabolismo
5.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-943083

RESUMEN

ObjectiveTo investigate the protective effect and mechanism of Achyranthis Bidentatae Radix-Paeoniae Radix Alba on dopaminergic neurons in Parkinson's disease mouse model with the syndrome of ascendant hyperactivity of liver Yang. MethodThe C57BL/6 mice were randomly assigned into normal group, a model group, low-, medium, and high-dose (3.25, 6.5, 13 g·kg-1) Achyranthis Bidentatae Radix-Paeoniae Radix Alba groups, and a selegiline group (0.01 g·kg-1). The mouse model of Parkinson's disease with the syndrome of ascendant hyperactivity of liver yang was established by intragastric administration of Fuzitang combined with intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The behavioral changes were evaluated by rotarod test and pole test. The protein levels of Ras homolog gene family member A (RhoA), Rho-associated coiled-coil containing protein kinase 2 (ROCK2), myosin light chain 1 (MLC1), and α-synuclein in the substantia nigra were determined by Western blot. Real-time fluorescence quantitative PCR (Real-time PCR) was employed to determine the mRNA levels of RhoA, ROCK2, and MLC1 in the substantia nigra. Enzyme-linked immunosorbent assay (ELISA) was used to measure the levels of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). The ultrastructural changes of mouse neurons were observed under a transmission electron microscope. ResultCompared with the normal group, the modeling shortened the latency to fall, increased the average total time in the pole test (P<0.01), and up-regulated the levels of RhoA, ROCK2, MLC1, TNF-α, α-synuclein, and IL-1β in the substantia nigra (P<0.05). Compared with the model group, different doses of Achyranthis Bidentatae Radix-Paeoniae Radix Alba and selegiline prolonged the latency to fall, shortened the average total time in the pole test (P<0.05, P<0.01), and down-regulated the levels of ROCK2, MLC1, α-synuclein, TNF-α, and IL-1β in a dose-dependent manner (P<0.05). Further, the modeling decreased the number of cytoplasmic organelles and caused mitochondrial swelling and abnormal shape of endoplasmic reticulum compared with the normal group. The neurons in high-dose Achyranthis Bidentatae Radix-Paeoniae Radix Alba and selegiline groups showed intact nuclei, clear cell boundary, and normal endoplasmic reticulum shape. ConclusionThe combination of Achyranthis Bidentatae Radix and Paeoniae Radix Alba may improve the motor coordination ability of Parkinson's disease mouse model with the syndrome of ascendant hyperactivity of liver yang by inhibiting the neuroinflammation mediated by the RhoA/ROCK2 signaling pathway in the brain.

6.
J Biol Chem ; 295(2): 645-656, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31806702

RESUMEN

Deleted-in-liver cancer 1 (DLC1) exerts its tumor suppressive function mainly through the Rho-GTPase-activating protein (RhoGAP) domain. When activated, the domain promotes the hydrolysis of RhoA-GTP, leading to reduced cell migration. DLC1 is kept in an inactive state by an intramolecular interaction between its RhoGAP domain and the DLC1 sterile α motif (SAM) domain. We have shown previously that this autoinhibited state of DLC1 may be alleviated by tensin-3 (TNS3) or PTEN. We show here that the TNS3/PTEN-DLC1 interactions are mediated by the C2 domains of the former and the SAM domain of the latter. Intriguingly, the DLC1 SAM domain was capable of binding to specific peptide motifs within the C2 domains. Indeed, peptides containing the binding motifs were highly effective in blocking the C2-SAM domain-domain interaction. Importantly, when fused to the tat protein-transduction sequence and subsequently introduced into cells, the C2 peptides potently promoted the RhoGAP function in DLC1, leading to decreased RhoA activation and reduced tumor cell growth in soft agar and migration in response to growth factor stimulation. To facilitate the development of the C2 peptides as potential therapeutic agents, we created a cyclic version of the TNS3 C2 domain-derived peptide and showed that this peptide readily entered the MDA-MB-231 breast cancer cells and effectively inhibited their migration. Our work shows, for the first time, that the SAM domain is a peptide-binding module and establishes the framework on which to explore DLC1 SAM domain-binding peptides as potential therapeutic agents for cancer treatment.


Asunto(s)
Neoplasias de la Mama/metabolismo , Proliferación Celular , Proteínas Activadoras de GTPasa/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular , Femenino , Proteínas Activadoras de GTPasa/química , Células HEK293 , Humanos , Modelos Moleculares , Fosfohidrolasa PTEN/química , Fosfohidrolasa PTEN/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Mapas de Interacción de Proteínas , Motivo alfa Estéril , Tensinas/química , Tensinas/metabolismo , Proteínas Supresoras de Tumor/química , Proteína de Unión al GTP rhoA/química
7.
J Biol Chem ; 294(48): 18192-18206, 2019 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-31636124

RESUMEN

GNA13, the α subunit of a heterotrimeric G protein, mediates signaling through G-protein-coupled receptors (GPCRs). GNA13 is up-regulated in many solid tumors, including prostate cancer, where it contributes to tumor initiation, drug resistance, and metastasis. To better understand how GNA13 contributes to tumorigenesis and tumor progression, we compared the entire transcriptome of PC3 prostate cancer cells with those cells in which GNA13 expression had been silenced. This analysis revealed that GNA13 levels affected multiple CXC-family chemokines. Further investigation in three different prostate cancer cell lines singled out pro-tumorigenic CXC motif chemokine ligand 5 (CXCL5) as a target of GNA13 signaling. Elevation of GNA13 levels consistently induced CXCL5 RNA and protein expression in all three cell lines. Analysis of the CXCL5 promoter revealed that the -505/+62 region was both highly active and influenced by GNA13, and a single NF-κB site within this region of the promoter was critical for GNA13-dependent promoter activity. ChIP experiments revealed that, upon induction of GNA13 expression, occupancy at the CXCL5 promoter was significantly enriched for the p65 component of NF-κB. GNA13 knockdown suppressed both p65 phosphorylation and the activity of a specific NF-κB reporter, and p65 silencing impaired the GNA13-enhanced expression of CXCL5. Finally, blockade of Rho GTPase activity eliminated the impact of GNA13 on NF-κB transcriptional activity and CXCL5 expression. Together, these findings suggest that GNA13 drives CXCL5 expression by transactivating NF-κB in a Rho-dependent manner in prostate cancer cells.


Asunto(s)
Quimiocina CXCL5/metabolismo , Subunidades alfa de la Proteína de Unión al GTP G12-G13/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteínas de Neoplasias/metabolismo , Neoplasias de la Próstata/metabolismo , Transducción de Señal , Factor de Transcripción ReIA/metabolismo , Activación Transcripcional , Quimiocina CXCL5/genética , Subunidades alfa de la Proteína de Unión al GTP G12-G13/genética , Humanos , Masculino , Proteínas de Neoplasias/genética , Células PC-3 , Neoplasias de la Próstata/genética , Factor de Transcripción ReIA/genética
8.
J Biol Chem ; 294(42): 15446-15465, 2019 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-31481470

RESUMEN

The tight junctional pore-forming protein claudin-2 (CLDN-2) mediates paracellular Na+ and water transport in leaky epithelia and alters cancer cell proliferation. Previously, we reported that tumor necrosis factor-α time-dependently alters CLDN-2 expression in tubular epithelial cells. Here, we found a similar expression pattern in a mouse kidney injury model (unilateral ureteral obstruction), consisting of an initial increase followed by a drop in CLDN-2 protein expression. CLDN-2 silencing in LLC-PK1 tubular cells induced activation and phosphorylation of guanine nucleotide exchange factor H1 (GEF-H1), leading to Ras homolog family member A (RHOA) activation. Silencing of other claudins had no such effects, and re-expression of an siRNA-resistant CLDN-2 prevented RHOA activation, indicating specific effects of CLDN-2 on RHOA. Moreover, kidneys from CLDN-2 knockout mice had elevated levels of active RHOA. Of note, CLDN-2 silencing reduced LLC-PK1 cell proliferation and elevated expression of cyclin-dependent kinase inhibitor P27 (P27KIP1) in a GEF-H1/RHOA-dependent manner. P27KIP1 silencing abrogated the effects of CLDN-2 depletion on proliferation. CLDN-2 loss also activated myocardin-related transcription factor (MRTF), a fibrogenic RHOA effector, and elevated expression of connective tissue growth factor and smooth muscle actin. Finally, CLDN-2 down-regulation contributed to RHOA activation and smooth muscle actin expression induced by prolonged tumor necrosis factor-α treatment, because they were mitigated by re-expression of CLDN-2. Our results indicate that CLDN-2 suppresses GEF-H1/RHOA. CLDN-2 down-regulation, for example, by inflammation, can reduce proliferation and promote MRTF activation through RHOA. These findings suggest that the initial CLDN-2 elevation might aid epithelial regeneration, and CLDN-2 loss could contribute to fibrotic reprogramming.


Asunto(s)
Claudinas/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Transactivadores/metabolismo , Obstrucción Ureteral/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Animales , Claudinas/genética , Femenino , Humanos , Túbulos Renales/metabolismo , Células LLC-PK1 , Masculino , Ratones , Ratones Endogámicos C57BL , Fenotipo , Factores de Intercambio de Guanina Nucleótido Rho/genética , Porcinos , Transactivadores/genética , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Obstrucción Ureteral/genética , Proteína de Unión al GTP rhoA/genética
9.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-802003

RESUMEN

Objective: To investigate the correlation between Ras homolog gene family member A (RhoA) gene in Wnt/PCP signaling pathway and acute exacerbation chronic obstructive pulmonary disease (AECOPD) traditional Chinese medicine(TCM)syndrome, attempting to provide an objective standard for the diagnosis of AECOPD TCM syndrome. Method: The 100 AECOPD patients were collected and divided into 5 groups:phlegm turbid obstructing lung syndrome,, phlegm-heat obstructing lung syndrome, syndrome of orifices confused by phlegm, deficiency of pulmonary and renal Qi, and edema due to yang deficiency, with 20 people in each group. 15 normal people were selected as a normal control group. All patients received fasting hemospasia, using a kit to extract blood total RibonucleicA(RNA) according to instructions. Real-time quantitative polymerase chain reaction (Real-time PCR) was adopted to detect the mRNA expression of RhoA gene in blood of patients with AECOPD TCM syndrome, and to explore the correlation. Result: There was no difference between phlegm-heat obstructing lung syndrome group and syndrome of orifices confused by phlegm group. The mRNA expression of RhoA gene in phlegm turbid obstructing lung syndrome group, phlegm-heat obstructing lung syndrome group, syndrome of orifices confused by phlegm group, deficiency of pulmonary and renal Qi group, and edema due to Yang deficiency group were significantly higher than that in normal group (PConclusion: The significant difference in mRNA relative expression of RhoA gene in Wnt/PCP signaling pathway among the five AECOPD TCM syndrome groups may provide some objective diagnostic criteria for AECOPD TCM syndromes and reveal their disease severity.

10.
J Biol Chem ; 293(23): 9064-9077, 2018 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-29695506

RESUMEN

The GTPase RhoA is a major player in many different regulatory pathways. RhoA catalyzes GTP hydrolysis, and its catalysis is accelerated when RhoA forms heterodimers with proteins of the guanine nucleotide exchange factor (GEF) family. Neuroepithelial cell transforming gene 1 (Net1) is a RhoA-interacting GEF implicated in cancer, but the structural features supporting the RhoA/Net1 interaction are unknown. Taking advantage of a simple production and purification process, here we solved the structure of a RhoA/Net1 heterodimer with X-ray crystallography at 2-Å resolution. Using a panel of several techniques, including molecular dynamics simulations, we characterized the RhoA/Net1 interface. Moreover, deploying an extremely simple peptide-based scanning approach, we found that short peptides (penta- to nonapeptides) derived from the protein/protein interaction region of RhoA could disrupt the RhoA/Net1 interaction and thereby diminish the rate of nucleotide exchange. The most inhibitory peptide, EVKHF, spanning residues 102-106 in the RhoA sequence, displayed an IC50 of ∼100 µm without further modifications. The peptides identified here could be useful in further investigations of the RhoA/Net1 interaction region. We propose that our structural and functional insights might inform chemical approaches for transforming the pentapeptide into an optimized pseudopeptide that antagonizes Net1-mediated RhoA activation with therapeutic anticancer potential.


Asunto(s)
Proteínas Oncogénicas/química , Proteína de Unión al GTP rhoA/química , Secuencia de Aminoácidos , Antineoplásicos/química , Antineoplásicos/farmacología , Cristalografía por Rayos X , Descubrimiento de Drogas , Humanos , Simulación de Dinámica Molecular , Terapia Molecular Dirigida , Proteínas Oncogénicas/metabolismo , Péptidos/química , Péptidos/farmacología , Conformación Proteica/efectos de los fármacos , Mapas de Interacción de Proteínas/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos , Alineación de Secuencia , Proteína de Unión al GTP rhoA/metabolismo
11.
Oncotarget ; 8(21): 34586-34600, 2017 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-28410221

RESUMEN

Aberrant activation of Rho GTPase Rac1 has been observed in various tumor types, including pancreatic cancer. Rac1 activates multiple signaling pathways that lead to uncontrolled proliferation, invasion and metastasis. Thus, inhibition of Rac1 activity is a viable therapeutic strategy for proliferative disorders such as cancer. Here we identified small molecule inhibitors that target the nucleotide-binding site of Rac1 through in silico screening. Follow up in vitro studies demonstrated that two compounds blocked active Rac1 from binding to its effector PAK1. Fluorescence polarization studies indicate that these compounds target the nucleotide-binding site of Rac1. In cells, both compounds blocked Rac1 binding to its effector PAK1 following EGF-induced Rac1 activation in a dose-dependent manner, while showing no inhibition of the closely related Cdc42 and RhoA activity. Furthermore, functional studies indicate that both compounds reduced cell proliferation and migration in a dose-dependent manner in multiple pancreatic cancer cell lines. Additionally, the two compounds suppressed the clonogenic survival of pancreatic cancer cells, while they had no effect on the survival of normal pancreatic ductal cells. These compounds do not share the core structure of the known Rac1 inhibitors and could serve as additional lead compounds to target pancreatic cancers with high Rac1 activity.


Asunto(s)
Neoplasias Pancreáticas/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Quinasas p21 Activadas/metabolismo , Proteína de Unión al GTP rac1/antagonistas & inhibidores , Sitios de Unión/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Neoplasias Pancreáticas/tratamiento farmacológico , Unión Proteica/efectos de los fármacos , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rac1/química , Proteína de Unión al GTP rhoA/metabolismo
12.
J Mol Cell Cardiol ; 103: 1-10, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28017639

RESUMEN

Sphingosine-1-phosphate (S1P), a bioactive lysophospholipid, is generated and released at sites of tissue injury in the heart and can act on S1P1, S1P2, and S1P3 receptor subtypes to affect cardiovascular responses. We established that S1P causes little phosphoinositide hydrolysis and does not induce hypertrophy indicating that it does not cause receptor coupling to Gq. We previously demonstrated that S1P confers cardioprotection against ischemia/reperfusion by activating RhoA and its downstream effector PKD. The S1P receptor subtypes and G proteins that regulate RhoA activation and downstream responses in the heart have not been determined. Using siRNA or pertussis toxin to inhibit different G proteins in NRVMs we established that S1P regulates RhoA activation through Gα13 but not Gα12, Gαq, or Gαi. Knockdown of the three major S1P receptors using siRNA demonstrated a requirement for S1P3 in RhoA activation and subsequent phosphorylation of PKD, and this was confirmed in studies using isolated hearts from S1P3 knockout (KO) mice. S1P treatment reduced infarct size induced by ischemia/reperfusion in Langendorff perfused wild-type (WT) hearts and this protection was abolished in the S1P3 KO mouse heart. CYM-51736, an S1P3-specific agonist, also decreased infarct size after ischemia/reperfusion to a degree similar to that achieved by S1P. The finding that S1P3 receptor- and Gα13-mediated RhoA activation is responsible for protection against ischemia/reperfusion suggests that selective targeting of S1P3 receptors could provide therapeutic benefits in ischemic heart disease.


Asunto(s)
Miocitos Cardíacos/metabolismo , Proproteína Convertasas/metabolismo , Receptores de Lisoesfingolípidos/metabolismo , Serina Endopeptidasas/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Animales , Cardiomegalia/etiología , Cardiomegalia/metabolismo , Cardiomegalia/patología , Lisofosfolípidos/metabolismo , Masculino , Ratones , Daño por Reperfusión Miocárdica/metabolismo , Miocardio/metabolismo , Unión Proteica , Ratas , Transducción de Señal , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Canales Catiónicos TRPP/metabolismo
13.
J Biol Chem ; 291(51): 26262-26272, 2016 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-27803162

RESUMEN

Establishment of a proper balance of excitatory and inhibitory connectivity is achieved during development of cortical networks and adjusted through synaptic plasticity. The neural cell adhesion molecule (NCAM) and the receptor tyrosine kinase EphA3 regulate the perisomatic synapse density of inhibitory GABAergic interneurons in the mouse frontal cortex through ephrin-A5-induced growth cone collapse. In this study, it was demonstrated that binding of NCAM and EphA3 occurred between the NCAM Ig2 domain and EphA3 cysteine-rich domain (CRD). The binding interface was further refined through molecular modeling and mutagenesis and shown to be comprised of complementary charged residues in the NCAM Ig2 domain (Arg-156 and Lys-162) and the EphA3 CRD (Glu-248 and Glu-264). Ephrin-A5 induced co-clustering of surface-bound NCAM and EphA3 in GABAergic cortical interneurons in culture. Receptor clustering was impaired by a charge reversal mutation that disrupted NCAM/EphA3 association, emphasizing the importance of the NCAM/EphA3 binding interface for cluster formation. NCAM enhanced ephrin-A5-induced EphA3 autophosphorylation and activation of RhoA GTPase, indicating a role for NCAM in activating EphA3 signaling through clustering. NCAM-mediated clustering of EphA3 was essential for ephrin-A5-induced growth cone collapse in cortical GABAergic interneurons, and RhoA and a principal effector, Rho-associated protein kinase, mediated the collapse response. This study delineates a mechanism in which NCAM promotes ephrin-A5-dependent clustering of EphA3 through interaction of the NCAM Ig2 domain and the EphA3 CRD, stimulating EphA3 autophosphorylation and RhoA signaling necessary for growth cone repulsion in GABAergic interneurons in vitro, which may extend to remodeling of axonal terminals of interneurons in vivo.


Asunto(s)
Neuronas GABAérgicas/metabolismo , Conos de Crecimiento/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Receptor EphA3/metabolismo , Transducción de Señal/fisiología , Proteínas de Unión al GTP rho/metabolismo , Quinasas Asociadas a rho/metabolismo , Animales , Efrina-A5/genética , Efrina-A5/metabolismo , Ratones , Ratones Mutantes , Moléculas de Adhesión de Célula Nerviosa/genética , Fosforilación/fisiología , Proteínas de Unión al GTP rho/genética , Quinasas Asociadas a rho/genética , Proteína de Unión al GTP rhoA
14.
J Biol Chem ; 291(51): 26364-26376, 2016 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-27815503

RESUMEN

IQ motif-containing GTPase activating protein 1 (IQGAP1) plays a central role in the physical assembly of relevant signaling networks that are responsible for various cellular processes, including cell adhesion, polarity, and transmigration. The RHO family proteins CDC42 and RAC1 have been shown to mainly interact with the GAP-related domain (GRD) of IQGAP1. However, the role of its RASGAP C-terminal (RGCT) and C-terminal domains in the interactions with RHO proteins has remained obscure. Here, we demonstrate that IQGAP1 interactions with RHO proteins underlie a multiple-step binding mechanism: (i) a high affinity, GTP-dependent binding of RGCT to the switch regions of CDC42 or RAC1 and (ii) a very low affinity binding of GRD and a C terminus adjacent to the switch regions. These data were confirmed by phosphomimetic mutation of serine 1443 to glutamate within RGCT, which led to a significant reduction of IQGAP1 affinity for CDC42 and RAC1, clearly disclosing the critical role of RGCT for these interactions. Unlike CDC42, an extremely low affinity was determined for the RAC1-GRD interaction, suggesting that the molecular nature of IQGAP1 interaction with CDC42 partially differs from that of RAC1. Our study provides new insights into the interaction characteristics of IQGAP1 with RHO family proteins and highlights the complementary importance of kinetic and equilibrium analyses. We propose that the ability of IQGAP1 to interact with RHO proteins is based on a multiple-step binding process, which is a prerequisite for the dynamic functions of IQGAP1 as a scaffolding protein and a critical mechanism in temporal regulation and integration of IQGAP1-mediated cellular responses.


Asunto(s)
Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Proteínas Activadoras de ras GTPasa/metabolismo , Sitios de Unión , Humanos , Cinética , Proteína de Unión al GTP cdc42/química , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP rac1/química , Proteína de Unión al GTP rac1/genética , Proteínas Activadoras de ras GTPasa/química , Proteínas Activadoras de ras GTPasa/genética
15.
J Biol Chem ; 291(49): 25364-25374, 2016 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-27758857

RESUMEN

Shroom-mediated remodeling of the actomyosin cytoskeleton is a critical driver of cellular shape and tissue morphology that underlies the development of many tissues including the neural tube, eye, intestines, and vasculature. Shroom uses a conserved SD2 domain to direct the subcellular localization of Rho-associated kinase (Rock), which in turn drives changes in the cytoskeleton and cellular morphology through its ability to phosphorylate and activate non-muscle myosin II. Here, we present the structure of the human Shroom-Rock binding module, revealing an unexpected stoichiometry for Shroom in which two Shroom SD2 domains bind independent surfaces on Rock. Mutation of interfacial residues impaired Shroom-Rock binding in vitro and resulted in altered remodeling of the cytoskeleton and loss of Shroom-mediated changes in cellular morphology. Additionally, we provide the first direct evidence that Shroom can function as a Rock activator. These data provide molecular insight into the Shroom-Rock interface and demonstrate that Shroom directly participates in regulating cytoskeletal dynamics, adding to its known role in Rock localization.


Asunto(s)
Quinasa 1 del Receptor Acoplado a Proteína-G/química , Proteínas de la Membrana/química , Proteínas de Microfilamentos/química , Complejos Multiproteicos/química , Quinasa 1 del Receptor Acoplado a Proteína-G/genética , Quinasa 1 del Receptor Acoplado a Proteína-G/metabolismo , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Miosina Tipo II/química , Miosina Tipo II/genética , Miosina Tipo II/metabolismo , Dominios Proteicos , Estructura Cuaternaria de Proteína , Relación Estructura-Actividad
16.
J Biol Chem ; 291(39): 20353-71, 2016 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-27481945

RESUMEN

RHO GTPase-activating proteins (RHOGAPs) are one of the major classes of regulators of the RHO-related protein family that are crucial in many cellular processes, motility, contractility, growth, differentiation, and development. Using database searches, we extracted 66 distinct human RHOGAPs, from which 57 have a common catalytic domain capable of terminating RHO protein signaling by stimulating the slow intrinsic GTP hydrolysis (GTPase) reaction. The specificity of the majority of the members of RHOGAP family is largely uncharacterized. Here, we comprehensively investigated the sequence-structure-function relationship between RHOGAPs and RHO proteins by combining our in vitro data with in silico data. The activity of 14 representatives of the RHOGAP family toward 12 RHO family proteins was determined in real time. We identified and structurally verified hot spots in the interface between RHOGAPs and RHO proteins as critical determinants for binding and catalysis. We have found that the RHOGAP domain itself is nonselective and in some cases rather inefficient under cell-free conditions. Thus, we propose that other domains of RHOGAPs confer substrate specificity and fine-tune their catalytic efficiency in cells.


Asunto(s)
Proteínas Activadoras de GTPasa/química , Proteínas de Unión al GTP rho/química , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Humanos , Dominios Proteicos , Relación Estructura-Actividad , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo
17.
J Biol Chem ; 291(32): 16709-19, 2016 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-27311713

RESUMEN

ARAP3 (Arf-GAP with Rho-GAP domain, ANK repeat, and PH domain-containing protein 3) is unique for its dual specificity GAPs (GTPase-activating protein) activity for Arf6 (ADP-ribosylation factor 6) and RhoA (Ras homolog gene family member A) regulated by phosphatidylinositol 3,4,5-trisphosphate and a small GTPase Rap1-GTP and is involved in regulation of cell shape and adhesion. However, the molecular interface between the ARAP3-RhoGAP domain and RhoA is unknown, as is the substrates specificity of the RhoGAP domain. In this study, we solved the crystal structure of RhoA in complex with the RhoGAP domain of ARAP3. The structure of the complex presented a clear interface between the RhoGAP domain and RhoA. By analyzing the crystal structure and in combination with in vitro GTPase activity assays and isothermal titration calorimetry experiments, we identified the crucial residues affecting RhoGAP activity and substrates specificity among RhoA, Rac1 (Ras-related C3 botulinum toxin substrate 1), and Cdc42 (cell division control protein 42 homolog).


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Activadoras de GTPasa/química , Proteína de Unión al GTP rhoA/química , Factor 6 de Ribosilación del ADP , Factores de Ribosilacion-ADP/química , Factores de Ribosilacion-ADP/genética , Factores de Ribosilacion-ADP/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Cristalografía por Rayos X , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Humanos , Fosfatos de Fosfatidilinositol/química , Fosfatos de Fosfatidilinositol/genética , Fosfatos de Fosfatidilinositol/metabolismo , Dominios Proteicos , Complejo Shelterina , Relación Estructura-Actividad , Proteínas de Unión a Telómeros/química , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo , Proteína de Unión al GTP rhoA/genética
18.
J Biol Chem ; 291(11): 5484-5499, 2016 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-26719334

RESUMEN

Rho proteins are small GTP/GDP-binding proteins primarily involved in cytoskeleton regulation. Their GTP/GDP cycle is often tightly connected to a membrane/cytosol cycle regulated by the Rho guanine nucleotide dissociation inhibitor α (RhoGDIα). RhoGDIα has been regarded as a housekeeping regulator essential to control homeostasis of Rho proteins. Recent proteomic screens showed that RhoGDIα is extensively lysine-acetylated. Here, we present the first comprehensive structural and mechanistic study to show how RhoGDIα function is regulated by lysine acetylation. We discover that lysine acetylation impairs Rho protein binding and increases guanine nucleotide exchange factor-catalyzed nucleotide exchange on RhoA, these two functions being prerequisites to constitute a bona fide GDI displacement factor. RhoGDIα acetylation interferes with Rho signaling, resulting in alteration of cellular filamentous actin. Finally, we discover that RhoGDIα is endogenously acetylated in mammalian cells, and we identify CBP, p300, and pCAF as RhoGDIα-acetyltransferases and Sirt2 and HDAC6 as specific deacetylases, showing the biological significance of this post-translational modification.


Asunto(s)
Lisina/metabolismo , Inhibidor alfa de Disociación del Nucleótido Guanina rho/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Acetilación , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestructura , Cristalografía por Rayos X , Nucleótidos de Guanina/metabolismo , Células HEK293 , Células HeLa , Histona Desacetilasa 6 , Histona Desacetilasas/metabolismo , Humanos , Modelos Moleculares , Sirtuina 2/metabolismo , Sumoilación , Inhibidor alfa de Disociación del Nucleótido Guanina rho/análisis , Proteína de Unión al GTP rhoA/química
19.
J Biol Chem ; 291(12): 6534-45, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26814130

RESUMEN

The small GTPase DiRas1 has tumor-suppressive activities, unlike the oncogenic properties more common to small GTPases such as K-Ras and RhoA. Although DiRas1 has been found to be a tumor suppressor in gliomas and esophageal squamous cell carcinomas, the mechanisms by which it inhibits malignant phenotypes have not been fully determined. In this study, we demonstrate that DiRas1 binds to SmgGDS, a protein that promotes the activation of several oncogenic GTPases. In silico docking studies predict that DiRas1 binds to SmgGDS in a manner similar to other small GTPases. SmgGDS is a guanine nucleotide exchange factor for RhoA, but we report here that SmgGDS does not mediate GDP/GTP exchange on DiRas1. Intriguingly, DiRas1 acts similarly to a dominant-negative small GTPase, binding to SmgGDS and inhibiting SmgGDS binding to other small GTPases, including K-Ras4B, RhoA, and Rap1A. DiRas1 is expressed in normal breast tissue, but its expression is decreased in most breast cancers, similar to its family member DiRas3 (ARHI). DiRas1 inhibits RhoA- and SmgGDS-mediated NF-κB transcriptional activity in HEK293T cells. We also report that DiRas1 suppresses basal NF-κB activation in breast cancer and glioblastoma cell lines. Taken together, our data support a model in which DiRas1 expression inhibits malignant features of cancers in part by nonproductively binding to SmgGDS and inhibiting the binding of other small GTPases to SmgGDS.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Secuencia de Aminoácidos , Neoplasias de la Mama/enzimología , Carcinoma Ductal de Mama/enzimología , GTP Fosfohidrolasas/química , Factores de Intercambio de Guanina Nucleótido/química , Guanosina Difosfato/química , Guanosina Trifosfato/química , Células HEK293 , Humanos , Células MCF-7 , Simulación del Acoplamiento Molecular , FN-kappa B/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas Supresoras de Tumor/química , Proteína de Unión al GTP rhoA
20.
J Biol Chem ; 290(33): 20086-97, 2015 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-26112408

RESUMEN

Elevated circulating free fatty acid levels are important contributors to insulin resistance in the muscle and liver, but the underlying mechanisms require further elucidation. Here, we show that geranylgeranyl diphosphate synthase 1 (GGPPS), which is a branch point enzyme in the mevalonic acid pathway, promotes lipid-induced muscle insulin resistance through activation of the RhoA/Rho kinase signaling pathway. We have found that metabolic perturbation would increase GGPPS expression in the skeletal muscles of db/db mice and high fat diet-fed mice. To address the metabolic effects of GGPPS activity in skeletal muscle, we generated mice with specific GGPPS deletions in their skeletal muscle tissue. Heterozygous knock-out of GGPPS in the skeletal muscle improved systemic insulin sensitivity and glucose homeostasis in mice fed both normal chow and high fat diets. These metabolic alterations were accompanied by activated PI3K/Akt signaling and enhanced glucose uptake in the skeletal muscle. Further investigation showed that the free fatty acid-stimulated GGPPS expression in the skeletal muscle was able to enhance the geranylgeranylation of RhoA, which further induced the inhibitory phosphorylation of IRS-1 (Ser-307) by increasing Rho kinase activity. These results implicate a crucial role of the GGPPS/RhoA/Rho kinase/IRS-1 pathway in skeletal muscle, in which it mediates lipid-induced systemic insulin resistance in obese mice. Therefore, skeletal muscle GGPPS may represent a potential pharmacological target for the prevention and treatment of obesity-related type 2 diabetes.


Asunto(s)
Farnesiltransferasa/metabolismo , Resistencia a la Insulina , Metabolismo de los Lípidos , Complejos Multienzimáticos/metabolismo , Músculo Esquelético/metabolismo , Quinasas Asociadas a rho/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Animales , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/enzimología , Farnesiltransferasa/genética , Ratones , Complejos Multienzimáticos/genética , Obesidad/complicaciones , Obesidad/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA