Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.402
Filtrar
1.
Microb Cell Fact ; 23(1): 248, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39267051

RESUMEN

BACKGROUND: Rare-earth sulfide nanoparticles (NPs) could harness the optical and magnetic features of rare-earth ions for applications in nanotechnology. However, reports of their synthesis are scarce and typically require high temperatures and long synthesis times. RESULTS: Here we present a biosynthesis of terbium sulfide (TbS) NPs using microorganisms, identifying conditions that allow Escherichia coli to extracellularly produce TbS NPs in aqueous media at 37 °C by controlling cellular sulfur metabolism to produce a high concentration of sulfide ions. Electron microscopy revealed ultrasmall spherical NPs with a mean diameter of 4.1 ± 1.3 nm. Electron diffraction indicated a high degree of crystallinity, while elemental mapping confirmed colocalization of terbium and sulfur. The NPs exhibit characteristic absorbance and luminescence of terbium, with downshifting quantum yield (QY) reaching 28.3% and an emission lifetime of ~ 2 ms. CONCLUSIONS: This high QY and long emission lifetime is unusual in a neat rare-earth compound; it is typically associated with rare-earth ions doped into another crystalline lattice to avoid non-radiative cross relaxation. This suggests a reduced role of nonradiative processes in these terbium-based NPs. This is, to our knowledge, the first report revealing the advantage of biosynthesis over chemical synthesis for Rare Earth Element (REE) based NPs, opening routes to new REE-based nanocrystals.


Asunto(s)
Escherichia coli , Metales de Tierras Raras , Sulfuros , Terbio , Terbio/química , Terbio/metabolismo , Escherichia coli/metabolismo , Sulfuros/metabolismo , Sulfuros/química , Metales de Tierras Raras/metabolismo , Metales de Tierras Raras/química , Nanopartículas/química , Luminiscencia , Tecnología Química Verde/métodos
2.
Materials (Basel) ; 17(17)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39274578

RESUMEN

A glass composition using TeO2-K2TeO3-Nb2O5-BaF2 co-doped with Er2O3/Ho2O3 and Er2O3/Yb2O3 was successfully fabricated. Its thermal stability and physical parameters were studied, and luminescence spectroscopy of the fabricated glasses was conducted. The optical band gap, Eopt, decreased from 2.689 to 2.663 eV following the substitution of Ho2O3 with Yb2O3. The values of the refractive index, third-order nonlinear optical susceptibility (χ(3)), and nonlinear refractive index (n2) of the fabricated glasses were estimated. Furthermore, the Judd-Ofelt intensity parameters Ωt (t=2,4,6), radiative properties such as transition probabilities (Aed), magnetic dipole-type transition probabilities (Amd), branching ratios (ß), and radiative lifetime (τ) of the fabricated glasses were evaluated. The emission cross-section and FWHM of the 4I13/2→4I15/2 transition around 1.54 µm of the glass were reported, and the emission intensity of the visible signal was studied under 980 nm laser excitation. The material might be a useful candidate for solid lasers and nonlinear amplifier devices, especially in the communications bands.

3.
Materials (Basel) ; 17(17)2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39274713

RESUMEN

The aim of the research was to assess the potential of bottom ash from Polish coal-fired power plants as an alternative source of rare earth elements (REY). The potential of these ashes was compared with fly ash from the same coal combustion cycle. The phase and chemical composition, as well as REY, were determined using: X-ray diffraction and inductively coupled plasma mass spectrometry. The tested ashes were classified as inert-low pozzolanic and inert-medium pozzolanic, as well as sialic and ferrosialic, with enrichment in detrital material. The phase and chemical composition of bottom ash was similar to fly ash from the same fuel combustion cycle. The REY content in the ash was 199-286 ppm and was lower than the average for global deposits, and the threshold value was considered profitable for recovery from coal. Bottom ash's importance as a potential source of REY will increase by recovering these metals from separated amorphous glass and mullite and grains rich in Al, Mg, K, and P. The industrial value of bottom ash as an alternative source of REY was similar to fly ash from the same fuel combustion cycle.

4.
Angew Chem Int Ed Engl ; : e202411000, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39301838

RESUMEN

Efficient synthesis of CnH2n+1OH (n=1, 2) via photochemical CO2 reduction holds promise for achieving carbon neutrality but remains challenging. Here, we present rare-earth dual single atoms (SAs) catalysts containing ErN6 and NdN6 moieties, fabricated via an atom-confinement and coordination method. The dual Er-Nd SAs catalysts  exhibit unprecedented generation rates of 1761.4 µmol g-1 h-1 and 987.7 µmol g-1 h-1 for CH3CH2OH and CH3OH, respectively. Through a combination of theoretical calculation, X-ray absorption near edge structural analysis, aberration-corrected transmission electron microscopy, and in-situ FT-IR spectroscopy, we demonstrate that the Er SAs facilitate charge transfer, serving as active centers for C-C bond formation, while Nd SAs provide the necessary *CO for C-C coupling in C2H5OH synthesis under visible light. Furthermore, the experiment and density functional theory calculation elucidate that the variety of electronic states induced by 4f orbitals of the Er SAs and the p-f orbital hybridization of Er-N moieties enable the formation of charge-transfer channel. Therefore, this study sheds light on the pivotal role of *CO adsorption in achieving efficient conversion from CO2 to CnH2n+1OH (n=1, 2) via a novel rare-earth-based dual SAs photocatalysis approach.

5.
J Hazard Mater ; 479: 135679, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-39222561

RESUMEN

Efficient recovery of rare earth elements (REEs) from wastewater is crucial for advancing resource utilization and environmental protection. Herein, a novel nitrogen-rich hydrogel adsorbent (PEI-ALG@KLN) was synthesized by modifying coated kaolinite-alginate composite hydrogels with polyethylenimine through polyelectrolyte interactions and Schiff's base reaction. Various characterizations revealed that the high selective adsorption capacity of Ho (155 mg/g) and Nd (125 mg/g) on PEI-ALG@KLN is due to a combination of REEs (Lewis acids) via coordination interactions with nitrogen-containing functional groups (Lewis bases) and electrostatic interactions; its adsorption capacity remains more than 85 % after five adsorption-desorption cycles. In waste NdFeB magnet hydrometallurgical wastewater, the recovery rate of PEI-ALG@KLN for Nd and Dy can reach more than 93 %, whereas that of Fe is only 5.04 %. Machine learning prediction was used to evaluate adsorbent properties via different predictive models, with the random forest (RF) model showing superior predictive accuracy. The order of significance for adsorption capacity was pH > time > initial concentration > electronegativity > ion radius, as indicated by the RF model feature importance analysis and SHapley Additive exPlanations values. These results confirm that PEI-ALG@KLN has considerable potential in the selective extraction of REEs from wastewater.

6.
Small ; : e2405742, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39295486

RESUMEN

Solar-powered water evaporation as a clean and abundant renewable energy-efficient desalination technology provides a promising strategy to solve the shortage of freshwater resources. However, the development and application of solar vapor technology are hindered by the relatively low near-infrared photothermal conversion efficiency of existing materials and the lack of effective improvement strategies. In this work, the conductivity characteristics of 2D semiconductors are capitalized on the high visible light absorption and ultra-low thermal. Specifically, rare-earth ion dopants into SnSe nanosheets, significantly boosting their near-infrared photothermal conversion efficiency and solar water evaporation performance are introduced. Remarkably, the photothermal conversion efficiency of the doped SnSe nanosheets surged from 51.56% to 82.11%, surpassing many previously reported photothermal materials. Furthermore, leveraging these nanosheets with enhanced photothermal conversion efficiency, a solar interfacial evaporation system is constructed. The evaporation rate of 2.17 kg m-2 h-1 and the efficiency of 96.5% can be achieved at one solar irradiance, and it also has good salt-resistance properties. The findings demonstrate the potential of rare earth ion-doped 2D semiconductor nanosheets in solar water evaporation, paving the way for future sustainable desalination solutions.

7.
Heliyon ; 10(18): e37689, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39309917

RESUMEN

The co-doping of vanadium pentoxide (V2O5) with rare-earth (RE) elements, namely 1.5 % holmium (Ho) and 1.5 % ytterbium (Yb) has been conducted using an eco-friendly, straightforward hydrothermal approach to assess the combined effects on structural, optical, and photocatalytic properties. The application of the density functional theory (DFT) approach effectively examined the impact of RE ions on the photocatalytic efficiency of co-doped V2O5. The stable orthorhombic crystal structure of co-doped V2O5 has been confirmed using DFT and X-ray diffraction without a secondary phase. It appears that homogeneous nucleation occurs while heterogeneous nucleation slows down in co-doped samples, as evidenced by the larger crystallite sizes in co-doped samples compared to doped ones. It means a result, the co-doped samples exhibit photodegrades more quickly and have a higher rate constant than the doped samples. This is because they have less dislocation density (4.26 × 10-3 nm-2) and internal micro-strain (4.93 × 10-3). The bandgap and degradation efficiency are determined by the UV-vis spectroscopy and found to be 2.33 eV and 95 %, respectively, at the optimal pH of 7 in the visible range. The co-doped sample has a rate constant of 24 × 10-3 min-1, which is the highest in the RE-doped V2O5 system. This is a good reason to think of co-doped V2O5 as a possible catalyst.

8.
Angew Chem Int Ed Engl ; : e202415066, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39301844

RESUMEN

The exploration and research for deep-ultraviolet (UV) nonlinear optical (NLO) crystals are of great significance for all-solid-state lasers. This work is based on the excellent structural [B3O6] units which manipulate the excellent performances of famous commercial NLO crystal ß-BaB2O4 (ß-BBO) to explore new alternatives of deep-UV NLO materials. A deep-UV rare-earth metal borate fluoride Rb2ScB3O6F2 (RSBF) is successfully designed by combining the heterovalent ions substitution strategy, and fluorination strategy. Expectedly, RSBF exhibits an extremely short cutoff edge below 175 nm (189 nm for ß-BBO), and a moderate birefringence of 0.088 at 1064 nm. The shortest phase-matching (PM) wavelength of RSBF (λPM = 182 nm) is shortened by 23 nm compared with ß-BBO (λPM = 205 nm) due to the improvements in the chromatic dispersion and cutoff edge, and an experimental frequency-doubling effect 1.4×KDP further suggests that RSBF can output a deep-UV harmonic laser. This work provides new sights from the original influencing factors for the rational and purposeful design of deep-UV NLO materials.

9.
Environ Res ; 262(Pt 2): 119890, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39218338

RESUMEN

The material with high adsorption capacity and selectivity is essential for recovering rare earth elements (REES) from ammonium (NH4+-N)-rich wastewater. Although the emerging metal-organic framework (MOF) has gained intensive attention in REES recovery, there are scientific difficulties unsolved regarding restricted adsorption capacity and selectivity, hindering its extensive engineering applications. In this work, a diethylenetriamine pentaacetic (DTPA)-modified MOF material (MIL-101(Cr)-NH-DTPA) was prepared through an amidation reaction. The MIL-101(Cr)-NH-DTPA showed enhanced adsorption capacity for La(III) (69.78 mg g-1), Eu(III) (103.01 mg g-1) and Er(III) (83.41 mg g-1). The adsorption isotherm and physical chemistry of materials indicated that the adsorption of REEs with MIL-101(Cr)-NH-DTPA was achieved via complexation instead of electrostatic adsorption. Such complexation reaction was principally governed by -COOH instead of -NH2 or -NO2. Meanwhile, the resulting material remained in its superior activity even after five cycles. Such a constructed adsorbent also exhibited excellent selective adsorption activity for La(III), Eu(III), and Er(III), with removal efficiency reaching 70% in NH4+-N concentrations ranging from 100 to 1500 mg L-1. This work offers underlying guidelines for exploitation an adsorbent for REEs recovery from wastewater.

10.
Anal Chim Acta ; 1324: 343003, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39218568

RESUMEN

BACKGROUND: Some heavy metals could be ingested into human body through breathing besides diet and drinking. Atmospheric particulates and smoke are main sources of this kind for the metals' exposure to human. Compared with environmental water, the methodologies for trace metals in particulates and smoke samples with more complex matrix are much less. Magnetic functional sorbents can be designed to remove complex matrix and enrich target analytes. The combination of magnetic solid phase extraction (MSPE) with highly sensitive inductively coupled plasma mass spectrometry (ICP-MS) detection is a good alternative for the analytical purpose. (92). RESULTS: Magnetic polymers were synthesized through free radical polymerization with Fe3O4 nanoparticles as the core and 2-methyl-2-hydroxyethyl 2-acrylate-2-hydroxyethyl ester phosphate as external modifier. The sorbent showed a high phosphorus content (2.7 wt%) and good selectivity to target REEs, along with good reusability (at least 45 times) and chemical stability. With the consumption of 150 mL aqueous solution, an enrichment factor of 300 was obtained by the proposed method, leading to low detection limits (0.001-0.2 ng L-1) for 15 REEs. The application potential of the method was further evaluated by analyzing local atmospheric particulate and cigar smoke samples. Recovery of 86.3-107 % in digested total suspended particulate (TSP) was obtained for 15 REEs, demonstrating a good anti-interference ability of the method. Target REEs in TSP, PM2.5 and PM10 samples were found to be 0.01-2.81, 0.006-1.09 and 0.009-2.46 ng m-3, respectively, and none of them were detected in the collected cigar smoke. (148) SIGNIFICANCE: The method of MSPE-ICP-MS was demonstrated with good potential for trace analysis in complex sample matrix, probably due to the good selectivity of the functionalized polymers. With the design and fabrication of specific functionalized magnetic sorbents, other heavy metals can be monitored in those samples which would be intake by human breathing. It provided an efficient strategy for the evaluation of metals' health risk in particulates and smoke samples. (69).

11.
Angew Chem Int Ed Engl ; : e202412591, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39219031

RESUMEN

Rare earth (RE) elements are attractive for spin-magnetic modulation due to their unique 4f electron configuration and strong orbital couplings. Alloying RE with conventional 3d transition-metal (TM) is promising for the fabrication of advanced spin catalysts yet remains much difficulties in preparation, which leads to the mysteries of spin-magnetic effect between RE and 3d TM on catalysis. Here we define a solid-phase synthetic protocol for creating RE-3d TM-noble metal integrated intraparticle heterostructured nanoalloys (IHAs) with distinct Gd and Co interface within the entire Rh framework, denoted as RhCo-RhGd IHAs. They exhibit interface-triggered antiferromagnetic interaction, which can induce electron redistribution and regulate spin polarization. Theoretical calculations further reveal that active sites around the heterointerface with weakened spin polarization optimize the adsorption and dissociation of H2O, thus promoting alkaline hydrogen evolution catalysis. The RhCo-RhGd IHAs show a small overpotential of 11.3 mV at 10 mA cm-2, as well as remarkable long-term stability, far superior to previously reported Rh-based catalysts.

12.
Artículo en Inglés | MEDLINE | ID: mdl-39287741

RESUMEN

The photocatalytic properties of CoFe2O4 nanoparticles were activated by the doping and co-doping of a low level of Y3+ and Sm3+ cations. After optimizing the annealing temperature, 900 °C was found to be the optimal temperature for the successful incorporation of Y3+ and Sm3+ into the spinel structure. The purity of our samples annealed at 900 °C was confirmed using several characterization methods, including PXRD, SEM, XPS, VSM, FTIR, and Raman spectroscopy. Thus, we were able to increase the photocatalytic degradation of orange G dye from 9.9 to 64.63% for the Sm3+-doped sample, 76.42% for the Y3+-doped sample, and even 85.81% for the co-doped sample under 60 min of UV-visible light irradiation. The beneficial effect of samarium and yttrium doping and co-doping is attributed to several factors: the first factor is doped and co-doped rare earth impurities induce distortion in the lattice, the larger the ionic radii of dopant element, the highest is the photocatalytic activity; second factor, upon doping and co-doping of rare earth impurities in the structure of CoFe2O4 leads to the creation of donor state level within the band gap, causing the Fermi energy to shift near the conduction band. Third factor, co-doping produced strong interactions, which accelerated photocarrier mobility and transport; lastly, longer electron-holes lifetime. We have provided a detailed study of the structural, vibrational, and optical properties to support our conclusions.

13.
ACS Appl Mater Interfaces ; 16(37): 49533-49543, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39250706

RESUMEN

Under purely inorganic conditions, a synthesis route was devised wherein elements were introduced stepwise via coprecipitation based on differences in compound solubility. This synthesis method can change the microscopic morphology of the material without relying on a templating agent, resulting in the formation of the multilayered lamellar Ce/Eu codoped zinc oxide solid solution (ZCEOSS) with a self-assembled nested imbrication structure. The study improves the critical matter of corrosion by focusing on the electron and energy transfer mechanisms. By introduction of the bandgap modulator cerium element and fluorescence enhancer europium element into the ZnO material, the anticorrosion material has been successfully endowed with both photocathodic protection and luminescent initiative/stress dual corrosion defense functions. Due to the energy level staircase protection mechanism synergistically generated by the 4f electron shell of rare-earth elements in concert with semiconductor zinc oxide, the energy band positions were modulated to progressively guide the direction of electron flow, thereby suppressing corrosion reactions. In particular, the ZCEOSS material synthesized by doping 1% cerium and 7% europium and adding rare-earth elements at pH 7 exhibited the best corrosion inhibition performance. After immersion in simulated seawater for 96 h, Tafel polarization test results showed that compared to epoxy resin and ZnO anticorrosion systems, the ZCEOSS anticorrosion system exhibited significantly improved corrosion inhibition efficiency with enhancements of 1028.3 and 402.9%, respectively. This study provides new insights into the development of highly efficient inorganic anticorrosion materials.

14.
ACS Appl Mater Interfaces ; 16(37): 49935-49943, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39253788

RESUMEN

Reversible cycling of rare-earth elements between an aqueous electrolyte solution and its free surface is achieved by X-ray exposure. This exposure alters the competitive equilibrium between lanthanide ions bound to a chelating ligand, diethylenetriamine pentaacetic acid (DTPA), in the bulk solution and to insoluble monolayers of extractant di-hexadecyl phosphoric acid (DHDP) at its surface. Evidence for the exposure-induced temporal variations in the lanthanide surface density is provided by X-ray fluorescence near total reflection measurements. Comparison of results when X-rays are confined to the aqueous surface region to results when X-rays transmit into the bulk solution suggests the importance of aqueous radiolysis in the adsorption cycle. Amine binding sites in DTPA are identified as a likely target of radiolysis products. The molecules DTPA and DHDP are like those used in the separation of lanthanides from ores and in the reprocessing of nuclear fuel. These results suggest that an external source of X-rays can be used to drive rare-earth element separations. More generally, use of X-rays to controllably dose a liquid interface with lanthanides could trigger a range of interfacial processes, including enhanced metal ion extraction, catalysis, and materials synthesis.

15.
Artículo en Inglés | MEDLINE | ID: mdl-39291614

RESUMEN

The magnetocaloric (MC) and magnetic phase transition (MPT) properties in various types of rare earth (RE)-based magnetic materials have been intensively investigated recently, which are aimed at developing suitable MC materials for low-temperature cooling applications and better elucidating their inherent physical properties. We herein provide a combined experimental and theoretical investigation into two new light RE-based magnetic materials, namely, PrZnSi and NdZnSi compounds, regarding their structural, magnetic, MPT, and low-temperature MC properties. Both of these compounds crystallize in an AlB2-type hexagonal structure with a symmetry of the crystallographic space group P6/mmm and reveal a typical second-order-type MPT with ordering temperatures (TC) at approximately 13.5 and 18.5 K for PrZnSi and NdZnSi compounds, respectively. Moreover, they all exhibit large reversible low-temperature MC effects and remarkable performances, which are identified by the parameters of maximum magnetic entropy changes, relative cooling power, and temperature-averaged entropy change (temperature lift 5 K). The deduced values of these MC parameters under a magnetic field change of 0-7 T reach 16.3 J/kgK, 294.46 J/kg, and 15.79 J/kgK for PrZnSi and 15.4 J/kgK, 284.84 J/kg, and 14.95 J/kgK for NdZnSi, respectively, which are evidently better than those of most updated light RE-based magnetic materials with remarkable low-temperature MC performances, indicating that PrZnSi and NdZnSi compounds hold potentials for practical cooling applications.

16.
Front Chem ; 12: 1433004, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39281033

RESUMEN

In this work, Co0.5Zn0.5LaxFe2-xO4 (0.00 ≤ x ≤ 0.10) spinel ferrites were synthesized using the sol-gel auto-combustion method. X-ray diffraction (XRD) analysis and Rietveld refinement confirmed the presence of a cubic spinel structure. The crystallite size was estimated to be between 17.5 nm and 26.5 nm using Scherrer's method and 31.27 nm-54.52 nm using the Williamson-Hall (W-H) method. Lattice constants determined from XRD and Rietveld refinement ranged from (8.440 to 8.433 Å and 8.442 to 8.431 Å), respectively. Scanning electron microscopy (SEM) revealed a non-uniform distribution of morphology with a decrease in particle size. The bandgap values decreased from 2.0 eV to 1.68 eV with increasing rare earth (La3+) doping concentration. Fourier-transform infrared (FT-IR) spectroscopy confirmed the presence of functional groups and M-O vibrations. The dielectric constant and dielectric loss exhibited similar behavior across all samples. The maximum tan δ value obtained at lower frequencies. Regarding magnetic behavior, there was a decrease in magnetization from 55.84 emu/g to 22.08 emu/g and an increase in coercivity from 25.63 Oe to 33.88 Oe with higher doping concentrations. Based on these results, these materials exhibit promising properties for applications in microwave and energy storage devices.

17.
ChemSusChem ; : e202401787, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39251397

RESUMEN

Raw mixtures of Rare Earths Elements, REE, recovered by E-waste, were used as catalysts to promote the (stereoselective) synthesis of highly valuable compounds. Y2O3, the major species that is recovered by the E-waste, can be easily converted into the catalytically active Y(OTf)3 that is able to efficiently promote the Michael addition of indoles to benzylidene malonates and the stereoselective Diels-Alder cycloaddition between cyclopentadiene and 4-(S)-3 acryloyl 4-tert-butyl 2-oxazolidinone. Additionally, the raw mixtures were immobilized onto silica and used to construct packed reactors, resulting in values for Productivity and Space-Time Yields that were significantly higher than those of the corresponding batch conversions. Notably, the prepared cartridge employed in the model Michael reaction maintained its catalytic efficiency for more than 4 days of continuous running.

18.
J Colloid Interface Sci ; 678(Pt A): 1153-1164, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39270572

RESUMEN

HYPOTHESIS: Lanthanide Binding Tag (LBT) peptides that coordinate selectively with lanthanide ions can be used to replace the energy intensive processes used for the separation of rare earth elements (REEs). These surface-active biomolecules, once selectively complexed with the trivalent REE cations, can adsorb to air/aqueous interfaces of bubbles for foam-based REEs recovery. Glutaraldehyde, an organic compound that is a homobifunctional crosslinker for proteins and peptides, can be used to enhance the adsorption and interfacial stabilization of lanthanide-bound peptides films. EXPERIMENTS: The stability of the interfacial cross-linked films was tested by measuring their dilational and shear surface rheological properties. Surface activity of the adsorbed species was analyzed using pendant drop tensiometry, while surface density and molecular arrangement were determined using x-ray reflectivity and x-ray fluorescence near total reflection. FINDINGS: Glutaraldehyde cross-linked REE-peptide complexes enhance the adsorption of lanthanides to air-water interfaces, resulting in thicker interfacial structures. Subsequently, these thicker layers enhance the dilational and shear interfacial rheological properties. The interfacial film stabilization and REEs extraction promoted by the cross-linker presented in this work provides an approach to integrate glutaraldehyde as a substitute of common foam stabilizers such as polymers, surfactants, and particles to optimize the recovery of REEs when using biomolecules as extractants.

19.
Sci Total Environ ; : 176282, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39278502

RESUMEN

Black shale is a type of sedimentary rocks that are enriched in rare earth elements (REEs). It is of both economic importance and environmental significance to understand REE mobility during black shale weathering. The present study approaches to this by analysing REEs in acid rock drainage (ARD) from black shale weathering system, fresh and weathered black shales, soils derived from black shales, and sequential extractants from black shales at Dongping town in Hunan province (China). Results showed that REEs had variable high concentrations in ARD as shown by total REE + Y (∑REY) concentrations from 162 to 4074 (µg/L). REEs in ARD displayed hat-shape NASC-normalized patterns with significant enrichments of middle REEs (MREE) relative to light REEs (LREE) and heavy REEs (HREE), and had significant negative Ce (Ce/Ce⁎ = 0.6) and positive Y (Y/Y⁎ = 1.5) anomalies. MREE enrichment in ARD could be evaluated using MREE/MREE⁎ values, which varied from 1.43 to 1.81 with a mean of 1.65, distinctly higher than those of whole rocks (around 1.0). 1 M HCl extraction results suggested that REEs were integratedly mobilized during shale weathering, while six-step extraction studies identified that REEs in ARD resulted from exchangeable and Fe-oxide fractions with MREE and HREE enrichment in shales respectively. MREE in exchangeable and HREE in Fe-oxide fractions were preferentially released during weathering, as illustrated by plots of MREE/MREE⁎ against HREE/LREE ratios of ARD and six-step extractants. Therefore, geochemical processes for REE mobility during black shale weathering included integrated mobilization and preferential release. Integrated REE mobilization resulted from the dissolution of REE-bearing minerals and oxidation of sulfides. Preferential REE release resulted from acid fluids produced by sulfide oxidation during weathering. Thus, a new model was proposed for interpreting geochemical processes of REE mobility during black shale weathering, and for understanding REE distribution in ARD from natural and anthropogenic systems.

20.
Chemosphere ; 364: 143272, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39243905

RESUMEN

Rare-earth elements (REEs) play a crucial role in state-of-the-art technologies and sustainable energy generation. However, conventional production methods of REE often instigate detrimental impacts on environment. Hence, the development of efficient and sustainable hydrometallurgical methods for REE recovery from complex solution has become a crucial research focus. This study investigates a mixed-matrix membrane composed of a highly europium selective metal-organic framework-based adsorbent, Cr-MIL-PMIDA, embedded in sulfonated poly(ether ketone) (SPEK) polymer membrane matrix to preferentially concentrate europium (Eu3+) ions in the presence of other competing cations. The activated membrane notably reduced ionic conductivity for Eu3+ compared to other multivalent ions. Membrane extraction experiments further confirmed the selective behavior, demonstrating slower diffusion for Eu3+ compared to Mg2+ and Zn2+ cations. Especially, at pH 5, Mg2⁺ and Zn2⁺ recovery was greater than 30%, whereas Eu³âº recovery remained lower than 4%. We propose that the strong chemical affinity between the phosphate group and Eu3+ help partition of the Eu3+ ions in the membrane phase and inhibit the diffusion and further partitioning of the Eu3+ ion from bulk solution. Furthermore, we demonstrate the stability of the composite membrane and the embedded MOF particles in aqueous solution for up to 12 days without degradation, attributing it to the robust chemical stability of the MOF structure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA