Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Imaging Biol ; 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38038860

RESUMEN

PURPOSE: Bioprinting is an additive manufacturing technology analogous to 3D printing. Instead of plastic or resin, cell-laden hydrogels are used to produce a construct of the intended biological structure. Over time, cells transform this construct into a functioning tissue or organ. The process of printing followed by tissue maturation is referred to as 4D bioprinting. The fourth dimension is temporal. Failure to provide living cells with sufficient amounts of oxygen at any point along the developmental timeline may jeopardize the bioprinting goals. Even transient hypoxia may alter cells' differentiation and proliferation or trigger apoptosis. Electron paramagnetic resonance (EPR) imaging modality is proposed to permit 4D monitoring of oxygen within bioprinted structures. PROCEDURES: Lithium octa-n-butoxy-phthalocyanine (LiNc-BuO) probes have been introduced into gelatin methacrylate (GelMA) bioink. GelMA is a cross-linkable hydrogel, and LiNc-BuO is an oxygen-sensitive compound that permits longitudinal oximetric measurements. The effects of the oxygen probe on printability have been evaluated. A digital light processing (DLP) bioprinter was built in the laboratory. Bioprinting protocols have been developed that consider the optical properties of the GelMA/LiNc-BuO composites. Acellular and cell-laden constructs have been printed and imaged. The post-printing effect of residual photoinitiator on oxygen depletion has been investigated. RESULTS: Models have been successfully printed using a lab-built bioprinter. Rapid scan EPR images reflective of the expected oxygen concentration levels have been acquired. An unreported problem of oxygen depletion in bioprinted constructs by the residual photoinitiator has been documented. EPR imaging is proposed as a control method for its removal. The oxygen consumption rates by HEK293T cells within a bioprinted cylinder have been imaged and quantified. CONCLUSIONS: The feasibility of the cointegration of 4D EPR imaging and 4D bioprinting has been demonstrated. The proof-of-concept experiments, which were conducted using oxygen probes loaded into GelMA, lay the foundation for a broad range of applications, such as bioprinting with many types of bioinks loaded with diverse varieties of molecular spin probes.

2.
Artículo en Inglés | MEDLINE | ID: mdl-36680741

RESUMEN

Significance: Fundamental to the application of tissue redox status to human health is the quantification and localization of tissue redox abnormalities and oxidative stress and their correlation with the severity and local extent of disease to inform therapy. The centrality of the low-molecular-weight thiol, glutathione, in physiological redox balance has long been appreciated, but direct measurement of tissue thiol status in vivo has not been possible hitherto. Recent advances in instrumentation and molecular probes suggest the feasibility of real-time redox assessment in humans. Recent Advances: Recent studies have demonstrated the feasibility of using low-frequency electron paramagnetic resonance (EPR) techniques for quantitative imaging of redox status in mammalian tissues in vivo. Rapid-scan (RS) EPR spectroscopy and imaging, new disulfide-dinitroxide spin probes, and novel analytic techniques have led to significant advances in direct, quantitative imaging of thiol redox status. Critical Issues: While novel RS EPR imaging coupled with first-generation molecular probes has demonstrated the feasibility of imaging thiol redox status in vivo, further technical advancements are desirable and ongoing. These include developing spin probes that are tailored for specific tissues with response kinetics tuned to the physiological environment. Equally critical are RS instrumentation with higher signal-to-noise ratio and minimal signal distortion, as well as optimized imaging protocols for image acquisition with sparsity adapted to image information content. Future Directions: Quantitative images of tissue glutathione promise to enable acquisition of a general image of mammalian and potentially human tissue health.

3.
J Magn Reson ; 345: 107308, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36356489

RESUMEN

Automation has become an essential component of modern scientific instruments which often capture large amounts of complex dynamic data. Algorithms are developed to read multiple sensors in parallel with data acquisition and to adjust instrumental parameters on the fly. Decisions are made on a time scale unattainable to the human operator. In addition to speed, automation reduces human error, improves the reproducibility of experiments, and improves the reliability of acquired data. An automatic digital control (ADiC) was developed to reliably sustain critical coupling of a resonator over a wide range of time-varying loading conditions. The ADiC uses the computational power of a microcontroller that directly communicates with all system components independent of a personal computer (PC). The PC initiates resonator tuning and coupling by sending a command to MC via serial port. After receiving the command, ADiC establishes critical coupling conditions within approximately 5 ms. A printed circuit board resonator was designed to permit digital control. The performance of the resonator together with the ADiC was evaluated by varying the resonator loading from empty to heavily loaded. For the loading, samples containing aqueous sodium chloride that strongly absorb electromagnetic waves were used. A previously reported rapid scan (RS) electron paramagnetic resonance (EPR) imaging instrument was upgraded by the incorporation of ADiC. RS spectra and an in vivo image of oxygen in a mouse tumor model have been acquired using the upgraded system. ADiC robustly sustained critical coupling of the resonator to the transmission line during these measurements. The design implemented in this study can be used in slow-scan and pulsed EPR with modifications.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón , Humanos , Animales , Ratones , Reproducibilidad de los Resultados
4.
J Magn Reson ; 318: 106801, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32862080

RESUMEN

A general solution for the RS EPR deconvolution problem has been derived. This solution permits the use of arbitrary magnetic field scans. As a result, constraints on the current experimental designs can be lifted. For example, a trapezoidal waveform can be used to accelerate the scan rate without affecting the signal bandwidth. The assumptions made to develop the previous algorithms are mathematically validated.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón/métodos , Algoritmos , Campos Electromagnéticos , Modelos Lineales , Reproducibilidad de los Resultados , Procesamiento de Señales Asistido por Computador , Análisis de Ondículas
5.
Appl Magn Reson ; 51(9-10): 1117-1124, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33642700

RESUMEN

Functional four-dimensional spectral-spatial electron paramagnetic imaging (EPRI) is routinely used in biomedical research. Positions and widths of EPR lines in the spectral dimension report oxygen partial pressure, pH, and other important parameters of the tissue microenvironment. Images are measured in the homogeneous external magnetic field. An application of EPRI is proposed in which the field is perturbed by a magnetized object. A proof-of-concept imaging experiment was conducted, which permitted visualization of the magnetic field created by this object. A single-line lithium octa-n-butoxynaphthalocyanine spin probe was used in the experiment. The spectral position of the EPR line directly measured the strength of the perturbation field with spatial resolution. A three-dimensional magnetic field map was reconstructed as a result. Several applications of this technology can be anticipated. First is EPRI/MPI co-registration, where MPI is an emerging magnetic particle imaging technique. Second, EPRI can be an alternative to magnetic field cameras that are used for the development of high-end permanent magnets and their assemblies, consumer electronics, and industrial sensors. Besides the high resolution of magnetic field readings, EPR probes can be placed in the internal areas of various assemblies that are not accessible by the standard sensors. Third, EPRI can be used to develop systems for magnetic manipulation of cell cultures.

6.
J Magn Reson ; 305: 94-103, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31238278

RESUMEN

An electron paramagnetic resonance (EPR) imaging system has been custom built for use in pre-clinical and, potentially, clinical studies. Commercial standalone modules have been used in the design that are MATLAB-controlled. The imaging system combines digital and analog technologies. It was designed to achieve maximum flexibility and versatility and to perform standard and novel user-defined experiments. This design goal is achieved by frequency mixing of an arbitrary waveform generator (AWG) output at the intermediate frequency (IF) with a constant source frequency (SF). Low noise SF at 250, 750, and 1000 MHz are available in the system. A wide range of frequencies from near-baseband to L-band can be generated as a result. Two-stage downconversion at the signal detection side is implemented that enables multi-frequency EPR capability. In the first stage, the signal frequency is converted to IF. A novel AWG-enabled digital auto-frequency control method that operates at IF is described that is used for automatic resonator tuning. Quadrature baseband EPR signal is generated in the second downconversion step. The semi-digital approach of mixing low-noise frequency sources with an AWG permits generation of arbitrary excitation patterns that include but are not limited to frequency sweeps for resonator tuning and matching, continuous-wave, and pulse sequences. Presented in this paper is the demonstration of rapid scan (RS) EPR imaging implemented at 800 MHz. Generation of stable magnetic scan waveforms is critical for the RS method. A digital automatic scan control (DASC) system was developed for sinusoidal magnetic field scans. DASC permits tight control of both amplitude and phase of the scans. A surface loop resonator was developed using 3D printing technology. RS EPR imaging system was validated using sample phantoms. In vivo imaging of a breast cancer mouse model is demonstrated.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón/instrumentación , Neoplasias Mamarias Experimentales/diagnóstico por imagen , Algoritmos , Animales , Diseño de Equipo , Procesamiento de Imagen Asistido por Computador , Ratones , Fantasmas de Imagen , Procesamiento de Señales Asistido por Computador
7.
J Magn Reson ; 304: 42-52, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31100585

RESUMEN

The development of a digital console for in-vivo rapid scan electron paramagnetic resonance (RS-EPR) spectroscopy and imaging is described in detail. The console was build using field programmable gate array (FGPA) technology that permits real-time control of the resonator and scanning magnetic fields during the measurements. Automatic resonator tuning and matching are achieved by implementing a digital feedback control system and using voltage-tunable capacitors. A band-pass subsampling method is used to directly digitize EPR signals at the carrier frequencies of about 1.2 GHz. The magnetic field scan waveforms, excitation EPR frequency, and sampling clock are all internally synchronized. Full-cycle RS-EPR signals are accumulated in the FPGA in real time without any time gaps. The result is the elimination of the re-arm time, during which data are not acquired. The proposed design in this manuscript has a small footprint and is relatively low cost. The FPGA-based RS-EPR system was tested using standard LiNc-BuO and tempone-d16 samples. The RS-EPR linewidth of the LiNc-BuO sample was consistent with an independent pulsed EPR measurement.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón/instrumentación , Algoritmos , Diseño de Equipo , Procesamiento de Señales Asistido por Computador
8.
J Magn Reson ; 281: 272-278, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28666168

RESUMEN

Rapid scan electron paramagnetic resonance (RS EPR) is a continuous-wave (CW) method that combines narrowband excitation and broadband detection. Sinusoidal magnetic field scans that span the entire EPR spectrum cause electron spin excitations twice during the scan period. Periodic transient RS signals are digitized and time-averaged. Deconvolution of absorption spectrum from the measured full-cycle signal is an ill-posed problem that does not have a stable solution because the magnetic field passes the same EPR line twice per sinusoidal scan during up- and down-field passages. As a result, RS signals consist of two contributions that need to be separated and postprocessed individually. Deconvolution of either of the contributions is a well-posed problem that has a stable solution. The current version of the RS EPR algorithm solves the separation problem by cutting the full-scan signal into two half-period pieces. This imposes a constraint on the experiment; the EPR signal must completely decay by the end of each half-scan in order to not be truncated. The constraint limits the maximum scan frequency and, therefore, the RS signal-to-noise gain. Faster scans permit the use of higher excitation powers without saturating the spin system, translating into a higher EPR sensitivity. A stable, full-scan algorithm is described in this paper that does not require truncation of the periodic response. This algorithm utilizes the additive property of linear systems: the response to a sum of two inputs is equal the sum of responses to each of the inputs separately. Based on this property, the mathematical model for CW RS EPR can be replaced by that of a sum of two independent full-cycle pulsed field-modulated experiments. In each of these experiments, the excitation power equals to zero during either up- or down-field scan. The full-cycle algorithm permits approaching the upper theoretical scan frequency limit; the transient spin system response must decay within the scan period. Separation of the interfering up- and down-field scan responses remains a challenge for reaching the full potential of this new method. For this reason, only a factor of two increase in the scan rate was achieved, in comparison with the standard half-scan RS EPR algorithm. It is important for practical use that faster scans not necessarily increase the signal bandwidth because acceleration of the Larmor frequency driven by the changing magnetic field changes its sign after passing the inflection points on the scan. The half-scan and full-scan algorithms are compared using a LiNC-BuO spin probe of known line-shape, demonstrating that the new method produces stable solutions when RS signals do not completely decay by the end of each half-scan.


Asunto(s)
Algoritmos , Espectroscopía de Resonancia por Spin del Electrón/estadística & datos numéricos , Campos Electromagnéticos , Análisis de Fourier , Modelos Lineales , Compuestos de Litio/química , Procesamiento de Señales Asistido por Computador
9.
J Magn Reson ; 281: 17-25, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28500917

RESUMEN

X-band rapid-scan EPR was implemented on a commercially available Bruker ELEXSYS E580 spectrometer. Room temperature rapid-scan and continuous-wave EPR spectra were recorded for amorphous silicon powder samples. By comparing the resulting signal intensities the feasibility of performing quantitative rapid-scan EPR is demonstrated. For different hydrogenated amorphous silicon samples, rapid-scan EPR results in signal-to-noise improvements by factors between 10 and 50. Rapid-scan EPR is thus capable of improving the detection limit of quantitative EPR by at least one order of magnitude. In addition, we provide a recipe for setting up and calibrating a conventional pulsed and continuous-wave EPR spectrometer for rapid-scan EPR.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón/métodos , Límite de Detección , Microondas , Polvos , Procesamiento de Señales Asistido por Computador , Relación Señal-Ruido , Silicio/química
10.
J Magn Reson ; 276: 31-36, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28092786

RESUMEN

Thiol redox status is an important physiologic parameter that affects the success or failure of cancer treatment. Rapid scan electron paramagnetic resonance (RS EPR) is a novel technique that has shown higher signal-to-noise ratio than conventional continuous-wave EPR in in vitro studies. Here we used RS EPR to acquire rapid three-dimensional images of the thiol redox status of tumors in living mice. This work presents, for the first time, in vivo RS EPR images of the kinetics of the reaction of 2H,15N-substituted disulfide-linked dinitroxide (PxSSPx) spin probe with intracellular glutathione. The cleavage rate is proportional to the intracellular glutathione concentration. Feasibility was demonstrated in a FSa fibrosarcoma tumor model in C3H mice. Similar to other in vivo and cell model studies, decreasing intracellular glutathione concentration by treating mice with l-buthionine sulfoximine (BSO) markedly altered the kinetic images.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Diagnóstico por Imagen/métodos , Espectroscopía de Resonancia por Spin del Electrón/métodos , Fibrosarcoma/diagnóstico por imagen , Neoplasias Experimentales/diagnóstico por imagen , Animales , Butionina Sulfoximina/química , Disulfuros/química , Femenino , Glutatión/metabolismo , Imagenología Tridimensional , Cinética , Ratones , Ratones Endogámicos C3H , Neoplasias Experimentales/metabolismo , Óxidos de Nitrógeno/química , Oxidación-Reducción , Relación Señal-Ruido , Marcadores de Spin/síntesis química
11.
J Magn Reson ; 260: 77-82, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26415686

RESUMEN

Measurement of thiol-disulfide redox status is crucial for characterization of tumor physiology. The electron paramagnetic resonance (EPR) spectra of disulfide-linked dinitroxides are readily distinguished from those of the corresponding monoradicals that are formed by cleavage of the disulfide linkage by free thiols. EPR spectra can thus be used to monitor the rate of cleavage and the thiol redox status. EPR spectra of (1)H,(14)N- and (2)H,(15)N-disulfide dinitroxides and the corresponding monoradicals resulting from cleavage by glutathione have been characterized at 250 MHz, 1.04 GHz, and 9 GHz and imaged by rapid-scan EPR at 250 MHz.


Asunto(s)
Disulfuros/química , Óxidos de Nitrógeno/química , Compuestos de Sulfhidrilo/química , Espectroscopía de Resonancia por Spin del Electrón , Radicales Libres , Glutatión/química , Imagen por Resonancia Magnética , Oxidación-Reducción , Fantasmas de Imagen
12.
Chemphyschem ; 16(3): 528-31, 2015 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-25488257

RESUMEN

Radicals, including hydroxyl, superoxide, and nitric oxide, play key signaling roles in vivo. Reaction of these free radicals with a spin trap affords more stable paramagnetic nitroxides, but concentrations in vivo still are so low that detection by electron paramagnetic resonance (EPR) is challenging. Three innovative enabling technologies have been combined to substantially improve sensitivity for imaging spin-trapped radicals at 250 MHz. 1) Spin-trapped adducts of BMPO have lifetimes that are long enough to make imaging by EPR at 250 MHz feasible. 2) The signal-to-noise ratio of rapid-scan EPR is substantially higher than for conventional continuous-wave EPR. 3) An improved algorithm permits image reconstruction with a spectral dimension that encompasses the full 50 G spectrum of the BMPO-OH spin adduct without requiring the wide sweeps that would be needed for filtered backprojection. A 2D spectral-spatial image is shown for a phantom containing ca. 5 µM BMPO-OH.


Asunto(s)
Radical Hidroxilo/química , Detección de Spin , Óxidos N-Cíclicos/química , Espectroscopía de Resonancia por Spin del Electrón
13.
J Magn Reson ; 249: 126-134, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25462956

RESUMEN

The use of multiple synchronized outputs from an arbitrary waveform generator (AWG) provides the opportunity to perform EPR experiments differently than by conventional EPR. We report a method for reconstructing the quadrature EPR spectrum from periodic signals that are generated with sinusoidal magnetic field modulation such as continuous wave (CW), multiharmonic, or rapid scan experiments. The signal is down-converted to an intermediate frequency (IF) that is less than the field scan or field modulation frequency and then digitized in a single channel. This method permits use of a high-pass analog filter before digitization to remove the strong non-EPR signal at the IF, that might otherwise overwhelm the digitizer. The IF is the difference between two synchronized X-band outputs from a Tektronix AWG 70002A, one of which is for excitation and the other is the reference for down-conversion. To permit signal averaging, timing was selected to give an exact integer number of full cycles for each frequency. In the experiments reported here the IF was 5kHz and the scan frequency was 40kHz. To produce sinusoidal rapid scans with a scan frequency eight times IF, a third synchronized output generated a square wave that was converted to a sine wave. The timing of the data acquisition with a Bruker SpecJet II was synchronized by an external clock signal from the AWG. The baseband quadrature signal in the frequency domain was reconstructed. This approach has the advantages that (i) the non-EPR response at the carrier frequency is eliminated, (ii) both real and imaginary EPR signals are reconstructed from a single physical channel to produce an ideal quadrature signal, and (iii) signal bandwidth does not increase relative to baseband detection. Spectra were obtained by deconvolution of the reconstructed signals for solid BDPA (1,3-bisdiphenylene-2-phenylallyl) in air, 0.2mM trityl OX63 in water, 15N perdeuterated tempone, and a nitroxide with a 0.5G partially-resolved proton hyperfine splitting.

14.
J Magn Reson ; 247: 67-71, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25240151

RESUMEN

X-band electron paramagnetic resonance spectra of immobilized nitroxides were obtained by rapid scan at 293 K. Scan widths were 155 G with 13.4 kHz scan frequency for (14)N-perdeuterated tempone and for T4 lysozyme doubly spin labeled with an iodoacetamide spirocyclohexyl nitroxide and 100 G with 20.9 kHz scan frequency for (15)N-perdeuterated tempone. These wide scans were made possible by modifications to our rapid-scan driver, scan coils made of Litz wire, and the placement of highly conducting aluminum plates on the poles of a Bruker 10″ magnet to reduce resistive losses in the magnet pole faces. For the same data acquisition time, the signal-to-noise for the rapid-scan absorption spectra was about an order of magnitude higher than for continuous wave first-derivative spectra recorded with modulation amplitudes that do not broaden the lineshapes.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón/métodos , Óxidos de Nitrógeno/química , Deuterio , Campos Electromagnéticos , Indicadores y Reactivos , Muramidasa/química , Radioisótopos de Nitrógeno , Marcadores de Spin , Triacetonamina-N-Oxil/química
15.
J Magn Reson ; 245: 150-5, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25058914

RESUMEN

An algorithm is derived and demonstrated that reconstructs an EPR spectral-spatial image from projections with arbitrarily selected gradients. This approach permits imaging wide spectra without the use of the very large sweep widths and gradients that would be required for spectral-spatial imaging with filtered back projection reconstruction. Each projection is defined as the sum of contributions at the set of locations in the object. At each location gradients shift the spectra in the magnetic field domain, which is equivalent to a phase change in the Fourier-conjugate frequency domain. This permits solution of the problem in the frequency domain. The method was demonstrated for 2D images of phantoms consisting of (i) two tubes containing (14)N and (15)N nitroxide and (ii) two tubes containing a pH sensitive trityl radical at pH 7.0 and 7.2. In each case spectral slices through the image agree well with the full spectra obtained in the absence of gradient.


Asunto(s)
Algoritmos , Espectroscopía de Resonancia por Spin del Electrón , Óxidos de Nitrógeno/química , Compuestos de Tritilo/química , Espectroscopía de Resonancia por Spin del Electrón/métodos , Aumento de la Imagen/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Fantasmas de Imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA