Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
J Agric Food Chem ; 72(37): 20299-20307, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39231265

RESUMEN

Microorganisms are the most common cause of food spoilage. Pseudomonas aeruginosa is a common foodborne pathogen that causes food spoilage and poses a serious threat to food safety. As a crucial target in antitoxicity strategies, the quorum sensing (QS) system shows promising potential for further development. The garlic extract diallyl disulfide exhibits inhibitory activity against the QS system of P. aeruginosa, with disulfide bonds serving as the active component. However, the biological activity of other symmetric disulfides has not been investigated in this capacity. The study synthesized 39 disulfide bond-containing analogs and evaluated their activity as quorum sensing inhibitors (QSIs). The results showed that p-hydroxyphenyl substitution can replace the allyl groups while maintaining strong biological activity. The virulence factors production was reduced by compound 2i, with the strongest inhibitory effect being observed on elastase production. Synergistic inhibition was observed in the presence of antibiotics like ciprofloxacin and tobramycin. 2i successfully inhibited P. aeruginosa infection in the Galleria mellonella larvae model. Primary mechanism studies using transcriptome, surface plasmon resonance and molecular docking suggested that 2i inhibits the QS system by targeting the LasR protein. Thus, compound 2i could be used in developing QSIs for the control of P. aeruginosa infections.


Asunto(s)
Antibacterianos , Disulfuros , Ajo , Extractos Vegetales , Pseudomonas aeruginosa , Percepción de Quorum , Percepción de Quorum/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Ajo/química , Disulfuros/química , Disulfuros/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antibacterianos/farmacología , Antibacterianos/química , Animales , Mariposas Nocturnas/efectos de los fármacos , Mariposas Nocturnas/microbiología , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología
2.
Front Cell Infect Microbiol ; 14: 1424038, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39165918

RESUMEN

Introduction: Pseudomonas aeruginosa is a ubiquitous pathogen that causes various infectious diseases through the regulation of quorum sensing (QS). The strategy of interfering with the QS systems of P. aeruginosa, coupled with a reduction in the dosage of conventional antibiotics, presents a potential solution to treating infection and mitigating antibiotic resistance. In this study, seven cinnamoyl hydroxamates were synthesized to evaluate their inhibitory effects on QS of P. aeruginosa. Among these cinnamic acid derivatives, we found cinnamoyl hydroxamic acid (CHA) and 3-methoxy-cinnamoyl hydroxamic acid (MCHA) were the two most effective candidates. Furtherly, the effect of CHA and MCHA on the production of virulence factors and biofilm of P. aeruginosa were evaluated. Ultimately, our study may offer promising potential for treating P. aeruginosa infections and reducing its virulence. Methods: The disc diffusion test were conducted to evaluate inhibitory effects on QS of seven cinnamoyl hydroxamates. The influence of CHA and MCHA on the production of virulence and flagellar motility of P. aeruginosa was furtherly explored. Scanning electron microscopy (SEM) experiment were conducted to evaluate the suppression of CHA and MCHA on the formed biofilm of P. aeruginosa. RT-qPCR was used to detect rhlI, lasA, lasB, rhlA, rhlB, and oprL genes in P. aeruginosa. In silico docking study was performed to explore the molecular mechanism of CHA and MCHA. The synergistic effects of CHA with gentamicin were detected on biofilm cell dispersal. Result: After treatment of CHA or MCHA, the production of multiple virulence factors, including pyocyanin, proteases, rhamnolipid, and siderophore, and swimming and swarming motilities in P. aeruginosa were inhibited significantly. And our results showed CHA and MCHA could eliminate the formed biofilm of P. aeruginosa. RT-qPCR revealed that CHA and MCHA inhibited the expression of QS related genes in P. aeruginosa. Molecular docking indicated that CHA and MCHA primarily inhibited the RhlI/R system in P. aeruginosa by competing with the cognate signaling molecule C4-HSL.Additionally, CHA exhibited potent synergistic effects with gentamicin on biofilm cell dispersal. Discussion: P. aeruginosa is one of the most clinically and epidemiologically important bacteria and a primary cause of catheter-related urinary tract infections and ventilator-associated pneumonia. This study aims to explore whether cinnamoyl hydroxamates have inhibitory effects on QS. And our results indicate that CHA and MCHA, as two novel QSIs, offer promising potential for treating P. aeruginosa infections and reducing its virulence.


Asunto(s)
Antibacterianos , Biopelículas , Cinamatos , Ácidos Hidroxámicos , Simulación del Acoplamiento Molecular , Pseudomonas aeruginosa , Percepción de Quorum , Factores de Virulencia , Percepción de Quorum/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/genética , Biopelículas/efectos de los fármacos , Factores de Virulencia/metabolismo , Factores de Virulencia/genética , Antibacterianos/farmacología , Antibacterianos/química , Cinamatos/farmacología , Cinamatos/química , Ácidos Hidroxámicos/farmacología , Ácidos Hidroxámicos/química , Pruebas de Sensibilidad Microbiana , Virulencia/efectos de los fármacos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos
3.
J Sep Sci ; 47(15): e2400222, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39091177

RESUMEN

Drug-resistant bacterial infections pose a significant challenge in the field of bacterial disease treatment. Finding new antibacterial pathways and targets to combat drug-resistant bacteria is crucial. The bacterial quorum sensing (QS) system regulates the expression of bacterial virulence factors. Inhibiting bacterial QS and reducing bacterial virulence can achieve antibacterial therapeutic effects, making QS inhibition an effective strategy to control bacterial pathogenicity. This article mainly focused on the PqsA protein in the QS system of Pseudomonas aeruginosa. An affinity chromatography medium was developed using the SpyTag/SpyCatcher heteropeptide bond system. Berberine, which can interact with the PqsA target, was screened from Phellodendron amurense by affinity chromatography. We characterized its structure, verified its inhibitory activity on P. aeruginosa, and preliminarily analyzed its mechanism using molecular docking technology. This method can also be widely applied to the immobilization of various protein targets and the effective screening of active substances.


Asunto(s)
Antibacterianos , Cromatografía de Afinidad , Phellodendron , Pseudomonas aeruginosa , Percepción de Quorum , Percepción de Quorum/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/química , Phellodendron/química , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/aislamiento & purificación , Simulación del Acoplamiento Molecular , Evaluación Preclínica de Medicamentos , Pruebas de Sensibilidad Microbiana
4.
Molecules ; 29(15)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39124871

RESUMEN

Antibiotic resistance is a major problem and a major global health concern. In total, there are 16 million deaths yearly from infectious diseases, and at least 65% of infectious diseases are caused by microbial communities that proliferate through the formation of biofilms. Antibiotic overuse has resulted in the evolution of multidrug-resistant (MDR) microbial strains. As a result, there is now much more interest in non-antibiotic therapies for bacterial infections. Among these revolutionary, non-traditional medications is quorum sensing inhibitors (QSIs). Bacterial cell-to-cell communication is known as quorum sensing (QS), and it is mediated by tiny diffusible signaling molecules known as autoinducers (AIs). QS is dependent on the density of the bacterial population. QS is used by Gram-negative and Gram-positive bacteria to control a wide range of processes; in both scenarios, QS entails the synthesis, identification, and reaction to signaling chemicals, also known as auto-inducers. Since the usual processes regulated by QS are the expression of virulence factors and the creation of biofilms, QS is being investigated as an alternative solution to antibiotic resistance. Consequently, the use of QS-inhibiting agents, such as QSIs and quorum quenching (QQ) enzymes, to interfere with QS seems like a good strategy to prevent bacterial infections. This review sheds light on QS inhibition strategy and mechanisms and discusses how using this approach can aid in winning the battle against resistant bacteria.


Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana Múltiple , Percepción de Quorum , Percepción de Quorum/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Antibacterianos/farmacología , Humanos , Biopelículas/efectos de los fármacos , Bacterias/efectos de los fármacos , Infecciones Bacterianas/tratamiento farmacológico , Infecciones Bacterianas/microbiología
5.
BMC Infect Dis ; 24(1): 760, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39085766

RESUMEN

BACKGROUND: As antimicrobial resistance (AMR) has become a global health crisis, new strategies against AMR infection are urgently needed. Quorum sensing (QS), responsible for bacterial communication and pathogenicity, is among the targets for anti-virulence drugs that thrive as one of the promising treatments against AMR infection. METHODS: We identified a natural compound, Harmine, through virtual screening based on three QS receptors of Pseudomonas aeruginosa (P. aeruginosa) and explored the effect of Harmine on QS-controlled and pathogenicity-related phenotypes including pyocyanin production, exocellular protease excretion, biofilm formation, and twitching motility of P. aeruginosa PA14. The protective effect of Harmine on Caenorhabditis elegans (C. elegans) and mice infection models was determined and the synergistic effect of Harmine combined with common antibiotics was explored. The underlaying mechanism of Harmine's QS inhibitory effect was illustrated by molecular docking analysis, transcriptomic analysis, and target verification assay. RESULTS: In vitro results suggested that Harmine possessed QS inhibitory effects on pyocyanin production, exocellular protease excretion, biofilm formation, and twitching motility of P. aeruginosa PA14, and in vivo results displayed Harmine's protective effect on C. elegans and mice infection models. Intriguingly, Harmine increased susceptibility of both PA14 and clinical isolates of P. aeruginosa to polymyxin B and kanamycin when used in combination. Moreover, Harmine down-regulated a series of QS controlled genes associated with pathogenicity and the underlying mechanism may have involved competitively antagonizing autoinducers' receptors LasR, RhlR, and PqsR. CONCLUSIONS: This study shed light on the anti-virulence potential of Harmine against QS targets, suggesting the possible use of Harmine and its derivates as anti-virulence compounds.


Asunto(s)
Antibacterianos , Biopelículas , Caenorhabditis elegans , Harmina , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Percepción de Quorum , Percepción de Quorum/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/patogenicidad , Pseudomonas aeruginosa/genética , Animales , Harmina/farmacología , Caenorhabditis elegans/microbiología , Ratones , Virulencia/efectos de los fármacos , Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Simulación del Acoplamiento Molecular , Pruebas de Sensibilidad Microbiana , Piocianina , Modelos Animales de Enfermedad , Farmacorresistencia Bacteriana/efectos de los fármacos , Femenino
6.
Eur J Med Chem ; 275: 116609, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38896993

RESUMEN

The overuse of antibiotics over an extended period has led to increasing antibiotic resistance in pathogenic bacteria, culminating in what is now considered a global health crisis. To tackle the escalating disaster caused by multidrug-resistant pathogens, the development of new bactericides with new action mechanism is highly necessary. In this study, using a biomimicking strategy, a series of new nonivamide derivatives that feature an isopropanolamine moiety [the structurally similar to the diffusible signal factor (DSF) of Xanthomonas spp.] were prepared for serving as potential quorum-sensing inhibitors (QSIs). After screening and investigation of their rationalizing structure-activity relationships (SARs), compound A26 was discovered as the most optimal active molecule, with EC50 values of 9.91 and 7.04 µg mL-1 against Xanthomonas oryzae pv oryzae (Xoo) and Xanthomonas axonopodis pv. citri (Xac). A docking study showed that compound A26 exhibited robust interactions with Glu A: 161 of RpfF, which was strongly evidenced by fluorescence titration assay (KA value for Xoo RpfF-A26 = 104.8709 M-1). Furthermore, various bioassays showed that compound A26 could inhibit various bacterial virulence factors, including biofilm formation, extracellular polysaccharides (EPS), extracellular enzyme activity, DSF production, and swimming motility. In addition, in vivo anti-Xoo results showed that compound A26 had excellent control efficiency (curative activity: 43.55 %; protective activity: 42.56 %), surpassing that of bismerthiazol and thiodiazole copper by approximately 8.0%-37.3 %. Overall, our findings highlight a new paradigm wherein nonivamide derivatives exhibit potential in combating pathogen resistance issues by inhibiting bacterial quorum sensing systems though attributing to their new molecular skeleton, novel mechanisms of action, and non-toxic features.


Asunto(s)
Antibacterianos , Pruebas de Sensibilidad Microbiana , Percepción de Quorum , Xanthomonas , Percepción de Quorum/efectos de los fármacos , Xanthomonas/efectos de los fármacos , Relación Estructura-Actividad , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Dosis-Respuesta a Droga , Animales , Descubrimiento de Drogas , Xanthomonas axonopodis/efectos de los fármacos
7.
Biofouling ; 40(5-6): 348-365, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38836472

RESUMEN

Our research focuses on developing environmentally friendly biodegradable ultrafiltration (UF) membranes for small-scale water purification in areas lacking infrastructure or during emergencies. To address biofouling challenges without resorting to harmful chemicals, we incorporate bio-based extracts, such as methyl gallate from A. occidentale leaves, a Malaysian ulam herb, known for its quorum sensing inhibition (QSI) properties. The methyl gallate enriched extract was purified by solvent partitioning and integrated into cellulose-based UF membranes (0 to 7.5% w w-1) through phase inversion technique. The resulting membranes exhibited enhanced anti-organic fouling and anti-biofouling properties, with flux recovery ratio (FRR) of 87.84 ± 2.00% against bovine serum albumin and FRRs of 76.67 ± 1.89% and 69.57 ± 1.77% against E. coli and S. aureus, respectively. The CA/MG-5 membrane showed a 224% improvement in pure water flux (PWF) compared to the neat CA membrane. Our innovative approach significantly improves PWF, presenting an environmentally friendly method for biofouling prevention in UF membrane applications.


Asunto(s)
Anacardium , Incrustaciones Biológicas , Escherichia coli , Membranas Artificiales , Extractos Vegetales , Ultrafiltración , Purificación del Agua , Incrustaciones Biológicas/prevención & control , Ultrafiltración/métodos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Escherichia coli/efectos de los fármacos , Anacardium/química , Purificación del Agua/métodos , Staphylococcus aureus/efectos de los fármacos , Ácido Gálico/análogos & derivados , Ácido Gálico/farmacología , Ácido Gálico/química , Albúmina Sérica Bovina/química
8.
Curr Res Toxicol ; 6: 100172, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38803613

RESUMEN

Quorum sensing inhibitors (QSIs), as a kind of ideal antibiotic substitutes, have been recommended to be used in combination with traditional antibiotics in medical and aquaculture fields. Due to the co-existence of QSIs and antibiotics in environmental media, it is necessary to evaluate their joint risk. However, there is little information about the acute toxicity of mixtures for QSIs and antibiotics. In this study, 10 QSIs and 3 sulfonamides (SAs, as the representatives for traditional antibiotics) were selected as the test chemicals, and their acute toxic effects were determined using the bioluminescence of Aliivibrio fischeri (A. fischeri) as the endpoint. The results indicated that SAs and QSIs all induced S-shaped dose-responses in A. fischeri bioluminescence. Furthermore, SAs possessed greater acute toxicity than QSIs, and luciferase (Luc) might be the target protein of test chemicals. Based on the median effective concentration (EC50) for each test chemical, QSI-SA mixtures were designed according to equitoxic (EC50(QSI):EC50(SA) = 1:1) and non-equitoxic ratios (EC50(QSI):EC50(SA) = 1:10, 1:5, 1:0.2, and 1:0.1). It could be observed that with the increase of QSI proportion, the acute toxicity of QSI-SA mixtures enhanced while the corresponding TU values decreased. Furthermore, QSIs contributed more to the acute toxicity of test binary mixtures. The joint toxic actions of QSIs and SAs were synergism for 23 mixtures, antagonism for 12 mixtures, and addition for 1 mixture. Quantitative structure-activity relationship (QSAR) models for the acute toxicity QSIs, SAs, and their binary mixtures were then constructed based on the lowest CDOCKER interaction energy (Ebind-Luc) between Luc and each chemical and the component proportion in the mixture. These models exhibited good robustness and predictive ability in evaluating the toxicity data and joint toxic actions of QSIs and SAs. This study provides reference data and applicable QSAR models for the environmental risk assessment of QSIs, and gives a new perspective for exploring the joint effects of QSI-antibiotic mixtures.

9.
Int J Nanomedicine ; 19: 3861-3890, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38708178

RESUMEN

Introduction: Cystic fibrosis (CF) is associated with pulmonary Pseudomonas aeruginosa infections persistent to antibiotics. Methods: To eradicate pseudomonal biofilms, solid lipid nanoparticles (SLNs) loaded with quorum-sensing-inhibitor (QSI, disrupting bacterial crosstalk), coated with chitosan (CS, improving internalization) and immobilized with alginate lyase (AL, destroying alginate biofilms) were developed. Results: SLNs (140-205 nm) showed prolonged release of QSI with no sign of acute toxicity to A549 and Calu-3 cells. The CS coating improved uptake, whereas immobilized-AL ensured >1.5-fold higher uptake and doubled SLN diffusion across the artificial biofilm sputum model. Respirable microparticles comprising SLNs in carbohydrate matrix elicited aerodynamic diameters MMAD (3.54, 2.48 µm) and fine-particle-fraction FPF (65, 48%) for anionic and cationic SLNs, respectively. The antimicrobial and/or antibiofilm activity of SLNs was explored in Pseudomonas aeruginosa reference mucoid/nonmucoid strains as well as clinical isolates. The full growth inhibition of planktonic bacteria was dependent on SLN type, concentration, growth medium, and strain. OD measurements and live/dead staining proved that anionic SLNs efficiently ceased biofilm formation and eradicated established biofilms, whereas cationic SLNs unexpectedly promoted biofilm progression. AL immobilization increased biofilm vulnerability; instead, CS coating increased biofilm formation confirmed by 3D-time lapse confocal imaging. Incubation of SLNs with mature biofilms of P. aeruginosa isolates increased biofilm density by an average of 1.5-fold. CLSM further confirmed the binding and uptake of the labeled SLNs in P. aeruginosa biofilms. Considerable uptake of CS-coated SLNs in non-mucoid strains could be observed presumably due to interaction of chitosan with LPS glycolipids in the outer cell membrane of P. aeruginosa. Conclusion: The biofilm-destructive potential of QSI/SLNs/AL inhalation is promising for site-specific biofilm-targeted interventional CF therapy. Nevertheless, the intrinsic/extrinsic fundamentals of nanocarrier-biofilm interactions require further investigation.


Asunto(s)
Antibacterianos , Biopelículas , Quitosano , Liposomas , Nanopartículas , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Biopelículas/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/fisiología , Humanos , Infecciones por Pseudomonas/tratamiento farmacológico , Nanopartículas/química , Quitosano/química , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/farmacocinética , Portadores de Fármacos/química , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/microbiología , Lípidos/química , Lípidos/farmacología , Percepción de Quorum/efectos de los fármacos , Células A549 , Alginatos/química
10.
Crit Rev Biotechnol ; : 1-27, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710617

RESUMEN

The rapid increase in antimicrobial resistance (AMR) projects a "global emergency" and necessitates a need to discover alternative resources for combating drug-resistant pathogens or "superbugs." One of the key themes in "One Health Concept" is based on the fact that the interconnected network of humans, the environment, and animal habitats majorly contribute to the rapid selection and spread of AMR. Moreover, the injudicious and overuse of antibiotics in healthcare, the environment, and associated disciplines, further aggravates the concern. The prevalence and persistence of AMR contribute to the global economic burden and are constantly witnessing an upsurge due to fewer therapeutic options, rising mortality statistics, and expensive healthcare. The present decade has witnessed the extensive exploration and utilization of bio-based resources in harnessing antibiotics of potential efficacies. The discovery and characterization of diverse chemical entities from endophytes as potent antimicrobials define an important yet less-explored area in natural product-mediated drug discovery. Endophytes-produced antimicrobials show potent efficacies in targeting microbial pathogens and synthetic biology (SB) mediated engineering of endophytes for yield enhancement, forms a prospective area of research. In keeping with the urgent requirements for new/novel antibiotics and growing concerns about pathogenic microbes and AMR, this paper comprehensively reviews emerging trends, prospects, and challenges of antimicrobials from endophytes and their effective production via SB. This literature review would serve as the platform for further exploration of novel bioactive entities from biological organisms as "novel therapeutics" to address AMR.

11.
Molecules ; 29(7)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38611953

RESUMEN

Bacterial virulence factors and biofilm development can be controlled by the quorum-sensing (QS) system, which is also intimately linked to antibiotic resistance in bacteria. In previous studies, many researchers found that quorum-sensing inhibitors (QSIs) can affect the development of bacterial biofilms and prevent the synthesis of many virulence factors. However, QSIs alone have a limited ability to suppress bacteria. Fortunately, when QSIs are combined with antibiotics, they have a better therapeutic effect, and it has even been demonstrated that the two together have a synergistic antibacterial effect, which not only ensures bactericidal efficiency but also avoids the resistance caused by excessive use of antibiotics. In addition, some progress has been made through in vivo studies on the combination of QSIs and antibiotics. This article mainly expounds on the specific effect of QSIs combined with antibiotics on bacteria and the combined antibacterial mechanism of some QSIs and antibiotics. These studies will provide new strategies and means for the clinical treatment of bacterial infections in the future.


Asunto(s)
Antibacterianos , Infecciones Bacterianas , Humanos , Antibacterianos/farmacología , Infecciones Bacterianas/tratamiento farmacológico , Percepción de Quorum , Biopelículas , Factores de Virulencia
12.
Future Microbiol ; 19(10): 941-961, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38683166

RESUMEN

A higher prevalence of Acinetobacter baumannii infections and mortality rate has been reported recently in hospital-acquired infections (HAI). The biofilm-forming capability of A. baumannii makes it an extremely dangerous pathogen, especially in device-associated hospital-acquired infections (DA-HAI), thereby it resists the penetration of antibiotics. Further, the transmission of the SARS-CoV-2 virus was exacerbated in DA-HAI during the epidemic. This review specifically examines the complex interconnections between several components and genes that play a role in the biofilm formation and the development of infections. The current review provides insights into innovative treatments and therapeutic approaches to combat A. baumannii biofilm-related infections, thereby ultimately improving patient outcomes and reducing the burden of HAI.


Acinetobacter baumannii is a type of bacteria that spreads quickly in the hospital environment. It is extremely dangerous, as it can form protective communities on the surface of medical devices, known as a biofilm. Biofilms can affect the ability of antibiotics to kill the bacteria. This review looks at how A. baumannii forms biofilms and ways that biofilms can be disrupted to kill the bacteria.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Antibacterianos , Biopelículas , Factores de Virulencia , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/fisiología , Acinetobacter baumannii/patogenicidad , Acinetobacter baumannii/genética , Humanos , Infecciones por Acinetobacter/microbiología , Infecciones por Acinetobacter/tratamiento farmacológico , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Antibacterianos/farmacología , Infección Hospitalaria/microbiología , Infección Hospitalaria/tratamiento farmacológico , COVID-19 , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología
13.
Pharmaceutics ; 16(3)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38543290

RESUMEN

The opportunistic bacteria growing in biofilms play a decisive role in the pathogenesis of chronic infectious diseases. Biofilm-dwelling bacteria behave differently than planktonic bacteria and are likely to increase resistance and tolerance to antimicrobial therapeutics. Antimicrobial adjuvants have emerged as a promising strategy to combat antimicrobial resistance (AMR) and restore the efficacy of existing antibiotics. A combination of antibiotics and potential antimicrobial adjuvants, (e.g., extracellular polymeric substance (EPS)-degrading enzymes and quorum sensing inhibitors (QSI) can improve the effects of antibiotics and potentially reduce bacterial resistance). In addition, encapsulation of antimicrobials within nanoparticulate systems can improve their stability and their delivery into biofilms. Lipid nanocarriers (LNCs) have been established as having the potential to improve the efficacy of existing antibiotics in combination with antimicrobial adjuvants. Among them, liquid crystal nanoparticles (LCNPs), liposomes, solid lipid nanoparticles (SLNs), and nanostructured lipid carriers (NLCs) are promising due to their superior properties compared to traditional formulations, including their greater biocompatibility, higher drug loading capacity, drug protection from chemical or enzymatic degradation, controlled drug release, targeted delivery, ease of preparation, and scale-up feasibility. This article reviews the recent advances in developing various LNCs to co-deliver some well-studied antimicrobial adjuvants combined with antibiotics from different classes. The efficacy of various combination treatments is compared against bacterial biofilms, and synergistic therapeutics that deserve further investigation are also highlighted. This review identifies promising LNCs for the delivery of combination therapies that are in recent development. It discusses how LNC-enabled co-delivery of antibiotics and adjuvants can advance current clinical antimicrobial treatments, leading to innovative products, enabling the reuse of antibiotics, and providing opportunities for saving millions of lives from bacterial infections.

14.
ACS Appl Mater Interfaces ; 16(11): 13353-13383, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38462699

RESUMEN

Biofilm contamination presents a significant threat to public health, the food industry, and aquatic/marine-related applications. In recent decades, although various methods have emerged to combat biofilm contamination, the intricate and persistent nature of biofilms makes complete eradication challenging. Therefore, innovative alternative solutions are imperative for addressing biofilm formation. Instead of solely focusing on the eradication of mature biofilms, strategically advantageous measures involve the delay or prevention of biofilm formation on surfaces. Quorum sensing, a communication system enabling bacteria to coordinate their behavior based on population density, plays a pivotal role in biofilm formation for numerous microbial species. Materials possessing antibiofilm properties that target quorum sensing have gained considerable attention for their potential to prevent biofilm formation. This Review consolidates recent research progress on the utilization of materials with antiquorum sensing properties for combating biofilm formation. These materials can be categorized into three distinct types: (i) antibiofilm nanomaterials, (ii) antibiofilm surfaces, and (iii) antibiofilm hydrogels with antiquorum sensing capabilities. Finally, the Review concludes with a brief discussion of current challenges and outlines potential avenues for future research.


Asunto(s)
Antibacterianos , Percepción de Quorum , Antibacterianos/farmacología , Biopelículas , Bacterias , Comunicación
15.
Water Res ; 253: 121358, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38402750

RESUMEN

Membrane biofouling is a challenge to be solved for the stable operation of the seawater reverse osmosis (SWRO) membrane. This study explored the regulation mechanism of quorum sensing (QS) inhibition on microbial community composition and population-level behaviors in seawater desalination membrane biofouling. A novel antibiofouling SWRO membrane (MA_m) by incorporating one of quorum sensing inhibitors (QSIs), methyl anthranilate (MA) was prepared. It exhibited enhanced anti-biofouling performance than the exogenous addition of QSIs, showing long-term stability and alleviating 22 % decrease in membrane flux compared with the virgin membrane. The results observed that dominant bacteria Epsilon- and Gamma-proteobacteria (Shewanella, Olleya, Colwellia, and Arcobacter), which are significantly related to (P ≤ 0.01) the metabolic products (i.e., polysaccharides, proteins and eDNA), are reduced by over 80 % on the MA_m membrane. Additionally, the introduction of MA has a more significant impact on the QS signal-sensing pathway through binding to the active site of the transmembrane sensor receptor. It effectively reduces the abundance of genes encoding QS and extracellular polymeric substance (EPS) (exopolysaccharides (i.e., galE and nagB) and amino acids (i.e., ilvE, metH, phhA, and serB)) by up to 50 % and 30 %, respectively, resulting in a reduction of EPS by more than 50 %, thereby limiting the biofilm formation on the QSI-modified membrane. This study provides novel insights into the potential of QSIs to control consortial biofilm formation in practical SWRO applications.


Asunto(s)
Incrustaciones Biológicas , Microbiota , Purificación del Agua , Percepción de Quorum , Biopelículas , Matriz Extracelular de Sustancias Poliméricas , Ósmosis , Agua de Mar/microbiología , Membranas Artificiales , Purificación del Agua/métodos
16.
Environ Res ; 246: 118136, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38191039

RESUMEN

Preventing soil nitrogen (N) losses driven by microbial nitrification and denitrification contributes to improving global environmental concerns caused by NO3--N leaching and N2O emission. Quorum sensing (QS) signals regulate nitrification and denitrification of N-cycling bacteria in pure culture and water treatment systems, and mediate the composition of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in activated sludge. However, whether disrupting QS could prevent soil N losses remains unclear. This study explored the feasibility of applying quorum sensing inhibitors (QSIs) as an innovative strategy to reduce N losses from agricultural soils. The two QSIs, penicillic acid and 4-iodo-N-[(3S)-tetrahydro-2-oxo-3-furanyl]-benzeneacetamide (4-iodo PHL), were more effective in reducing N losses than traditional inhibitors, including N-(n-butyl) thiophosphoric triamide and 3,4-dimethylpyrazole phosphate. After 36 days of aerobic incubation, penicillic acid and 4-iodo PHL inhibited nitrification by 39% and 68%, respectively. The inhibitory effects are attributed to the fact that 4-iodo PHL decreased the abundance of archaeal and bacterial amoA genes, as well as the relative abundance of Candidatus Nitrocosmicus (AOA), Candidatus Nitrososphaera (AOA), and Nitrospira (nitrite-oxidizing bacteria/comammox), while penicillic acid reduced archaeal amoA abundance and the relative abundance of Nitrosospira (AOB) and the microbes listed above. Penicillic acid also strongly inhibited denitrification (33%) and N2O emissions (61%) at the peak of N2O production (day 4 of anaerobic incubation) via decreasing nitrate reductase gene (narG) abundance and increasing N2O reductase gene (nosZ) abundance, respectively. Furthermore, the environmental risks of QSIs to microbial community structure and network stability, CO2 emissions, and soil animals were acceptable. Overall, QSIs have application potential in agriculture to reduce soil N losses and the associated effect on climate change. This study established a new method to mitigate N losses from the perspective of QS, and can serve as important basis of decreasing the environmental risks of agricultural non-point source pollution.


Asunto(s)
Betaproteobacteria , Suelo , Animales , Suelo/química , Nitrógeno , Amoníaco , Ácido Penicílico , Percepción de Quorum , Microbiología del Suelo , Bacterias/genética , Archaea , Oxidación-Reducción
17.
Microorganisms ; 11(10)2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37894209

RESUMEN

The increasing number of infections caused by antimicrobial multi-resistant microorganisms has led to the search for new microorganisms capable of producing novel antibiotics. This work proposes Streptomyces pakalii sp. nov. as a new member of the Streptomycetaceae family. The strain ENCB-J15 was isolated from the jungle soil in Palenque National Park, Chiapas, Mexico. The strain formed pale brown, dry, tough, and buried colonies in the agar with no diffusible pigment in GAE (glucose-asparagine-yeast extract) medium. Scanning electron micrographs showed typical mycelium with long chains of smooth and oval-shaped spores (3-10 m). The strain grew in all of the International Streptomyces Project (ISP)'s media at 28-37 °C with a pH of 6-9 and 0-10% NaCl. S. pakalii ENCB-J15 assimilated diverse carbon as well as organic and inorganic nitrogen sources. The strain also exhibited significant inhibitory activity against the prodigiosin synthesis of Serratia marcescens and the inhibition of the formation and destruction of biofilms of ESKAPE strains of Acinetobacter baumannii and Klebsiella pneumoniae. The draft genome sequencing of ENCB-J15 revealed a 7.6 Mb genome with a high G + C content (71.6%), 6833 total genes, and 6746 genes encoding putative proteins. A total of 26 accessory clusters of proteins associated with carbon sources and amino acid catabolism, DNA modification, and the antibiotic biosynthetic process were annotated. The 16S rRNA gene phylogeny, core-proteome phylogenomic tree, and virtual genome fingerprints support that S. pakalii ENCB-J15 is a new species related to Streptomyces badius and Streptomyces globisporus. Similarly, its average nucleotide identity (ANI) (96.4%), average amino acid identity (AAI) (96.06%), and virtual DNA-DNA hybridization (67.3%) provide evidence to recognize it as a new species. Comparative genomics revealed that S. pakalli and its closest related species maintain a well-conserved genomic synteny. This work proposes Streptomyces pakalii sp. nov. as a novel species that expresses anti-biofilm and anti-quorum sensing activities.

18.
Environ Sci Technol ; 57(44): 16929-16939, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37665318

RESUMEN

Globally, cyanobacterial blooms have become serious problems in eutrophic water. Most previous studies have focused on environmental factors but have neglected the role of quorum sensing (QS) in bloom development and control. This study explored a key quorum sensing molecule (QSM) that promotes cell growth and then proposed a targeted quorum quencher to control blooms. A new QSM 3-OH-C4-HSL was identified with high-resolution mass spectrometry. It was found to regulate cellular carbon metabolism and energy metabolism as a means to promote Microcystis aeruginosa growth. To quench the QS induced by 3-OH-C4-HSL, three furanone-like inhibitors were proposed based on molecular structure, of which dihydro-3-amino-2-(3H)-furanone (FN) at a concentration of 20 µM exhibited excellent inhibition of M. aeruginosa growth (by 67%). Molecular docking analysis revealed that the inhibitor strongly occupied the QSM receptor protein LuxR by binding with Asn164(A) and His167(A) via two hydrogen bonds (the bond lengths were 3.04 and 4.04 Å) and the binding energy was -5.9 kcal/mol. The inhibitor blocked signaling regulation and induced programmed cell death in Microcystis. Importantly, FN presented little aquatic biotoxicity and negligibly affected aquatic microbial function. This study provides a promising new and eco-friendly strategy for controlling cyanobacterial blooms.


Asunto(s)
Cianobacterias , Microcystis , Percepción de Quorum , Microcystis/fisiología , Simulación del Acoplamiento Molecular
19.
Microorganisms ; 11(8)2023 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-37630639

RESUMEN

Quorum-sensing (QS) is involved in numerous physiological processes in bacteria, such as biofilm formation, sporulation, and virulence formation. Therefore, the search for new quorum-sensing inhibitors (QSI) is a promising strategy that opens up a new perspective for controlling QS-mediated bacterial pathogens. To explore new QSIs, a strain named Streptomyces sp. D67 with QS inhibitory activity was isolated from the soil of the arid zone around the Kumutag Desert in Xinjiang. Phylogenetic analyses demonstrated that strain D67 shared the highest similarity with Streptomyces ardesiacus NBRC 15402T (98.39%), which indicated it represented a potential novel species in the Streptomyces genus. The fermentation crude extracts of strain D67 can effectively reduce the violacein production produced by Chromobacterium violaceum CV026 and the swarming and swimming abilities of Pseudomonas aeruginosa. It also has significant inhibitory activity on the production of virulence factors such as biofilm, pyocyanin, and rhamnolipids of P. aeruginosa in a significant concentration-dependent manner, but not on protease activity. A total of 618 compounds were identified from the fermentation crude extracts of strain D67 by LC-MS, and 19 compounds with significant QS inhibitory activity were observed. Overall, the strain with QS inhibitory activity was screened from Kumutag Desert in Xinjiang for the first time, which provided a basis for further research and development of new QSI.

20.
Chem Biodivers ; 20(9): e202300647, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37602712

RESUMEN

The development of bacterial resistance to chemical therapy poses a severe danger to efficacy of treating bacterial infections. One of the key factors for resistance to antimicrobial medications is growth of bacteria in biofilm. Quorum sensing (QS) inhibition was created as an alternative treatment by developing novel anti-biofilm medicines. Cell-cell communication is impeded by QS inhibition, which targets QS signaling pathway. The goal of this work is to develop newer drugs that are effective against Pseudomonas aeruginosa by decreasing QS and acting as anti-biofilm agents. In this investigation, N-(benzo[d]thiazol-2-yl)benzamide/N-(thiazol-2-yl)benzamide derivatives 3a-h were designed and synthesized in good yields. Further, molecular docking analyses revealed that binding affinity values were founded -11.2 to -7.6 kcal/mol that were moderate to good. The physicochemical properties of these prepared compounds were investigated through in-silico method. Molecular dynamic simulation was also used to know better understanding of stability of the protein and ligand complex. Comparing N-(benzo[d]thiazol-2-yl)benzamide 3a to salicylic acid (4.40±0.10) that was utilised as standard for quorum sensing inhibitor, the anti-QS action was found greater for N-(benzo[d]thiazol-2-yl)benzamide 3a (4.67±0.45) than salicylic acid (4.40±0.10). Overall, research results suggested that N-(benzo[d]thiazol-2-yl)benzamide/N-(thiazol-2-yl)benzamide derivatives 3a-h may hold to develop new quorum sensing inhibitors.


Asunto(s)
Pseudomonas aeruginosa , Percepción de Quorum , Simulación del Acoplamiento Molecular , Biopelículas , Ácido Salicílico/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Proteínas Bacterianas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA