Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Huan Jing Ke Xue ; 45(7): 3930-3940, 2024 Jul 08.
Artículo en Chino | MEDLINE | ID: mdl-39022941

RESUMEN

N-nitrosamines are a type of nitrogen-containing organic pollutant with high carcinogenicity and mutagenicity. In the main drinking water sources of small and medium-sized towns in China, the contamination levels of N-nitrosamines remain unclear. In addition, there is still lack of research on the concentration of N-nitrosamines and their precursors in tributary rivers. In this study, eight N-nitrosamines and their formation potentials (FPs) were investigated in the Qingjiang River, which is a primary tributary of the Yangtze River. The sewage discharge sites were also monitored, and the environmental influencing factors, carcinogenic and ecological risks caused by N-nitrosamines, and their precursors were evaluated. The results showed that six N-nitrosamines were detected in water samples of the Qingjiang River, among which NDMA [(10 ±15) ng·L-1], NDEA [(9.3 ±9.3) ng·L-1], and NDBA [(14 ±7.8) ng·L-1] were the dominant N-nitrosamines, whereas seven N-nitrosamines were detected in chloraminated water samples, among which NDMA-FP [(46 ±21) ng·L-1], NDEA-FP [(26 ±8.3) ng·L-1], and NDBA-FP [(22 ±13) ng·L-1] were the dominant N-nitrosamine FPs. The concentrations of N-nitrosamines in the middle reaches of the Qingjiang River were higher than those in the upper and lower reaches. Furthermore, the concentrations of N-nitrosamines in the sample sites of sewage discharge and tributaries were significantly higher than those in other sampling sites. The monitoring results at the direct sewage discharge points indicated that the main source of N-nitrosamines in river water was the sewage carrying N-nitrosamines and their precursors. In addition, the concentrations of the three dominant N-nitrosamines including NDMA, NDBA, and NDEA were positively correlated with each other, mainly because of their similar sewage sources. The average carcinogenic risk to residents due to N-nitrosamine in drinking water sources was 2.4×10-5, indicating a potential carcinogenic risk. Moreover, due to the high concentrations of N-nitrosamine formation potentials in the Qingjiang River, the carcinogenic risk of drinking water may be even higher. The ecological risk assessment showed that the ecological risk quotient values of N-nitrosamines in the Qingjiang River watershed were lower than 0.002, which was negligible.


Asunto(s)
Monitoreo del Ambiente , Nitrosaminas , Contaminantes Químicos del Agua , Contaminación Química del Agua , Nitrosaminas/análisis , Medición de Riesgo , Contaminación Química del Agua/estadística & datos numéricos , Contaminantes Químicos del Agua/análisis , China , Exposición a Riesgos Ambientales/estadística & datos numéricos , Agua Potable/análisis , Ríos
2.
Ying Yong Sheng Tai Xue Bao ; 34(4): 1051-1062, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37078325

RESUMEN

Identifying the spatiotemporal differentiation characteristics of trade-offs/synergies relationships of ecosystem service in watersheds and their influencing factors is essential for ecosystem management and regulation. It is of great significance for the efficient allocation of environmental resources and the rational formulation of ecological and environmental policies. We used correlation analysis and root mean square deviation to analyze the trade-offs/synergies relationships among grain provision, net primary productivity (NPP), soil conservation, and water yield service in the Qingjiang River Basin from 2000 to 2020. Then, we analyzed the critical factors affecting the trade-offs of ecosystem services by using the geographical detector. The results showed that grain provision service in the Qingjiang River Basin presented a decreasing trend from 2000 to 2020, and that NPP, soil conservation, as well as water yield service showed an increasing trend. There was a decreasing trend in the degree of trade-offs between grain provision and soil conservation services, NPP and water yield service, and an increasing trend in the intensity of trade-offs between other services. Grain provision and NPP, soil conservation and water yield showed trade-off in the northeast and synergy in the southwest. There was a synergistic relationship between NPP with soil conservation and water yield in the central part and a trade-off relationship in the surrounding area. Soil conservation and water yield showed a high degree of synergy. Land use and normalized difference of vegetation index were the dominant factors in the intensity of trade-offs between grain provision and other ecosystem services. Precipitation, temperature, and elevation were the dominant factors in the intensity of trade-offs between water yield service and other ecosystem services. The intensity of ecosystem service trade-offs was not only affected by a single factor. In contrast, the interaction between the two services or the common factors behind the two services was the determining factor. Our results could provide a reference for developing ecological restoration planning strategies in the national land space.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Ríos , Suelo , Grano Comestible , China
3.
Huan Jing Ke Xue ; 38(3): 954-963, 2017 Mar 08.
Artículo en Chino | MEDLINE | ID: mdl-29965565

RESUMEN

Greenhouse gas emission from aquatic ecosystem will affect climate change on the regional and global scale. So large river interception project which affects the carbon cycle model and greenhouse gas emission from aquatic ecosystem has provoked more and more attentions in recent years. In order to understand and evaluate the effects of typical hydropower project construction on the aquatic ecosystem and carbon cycle, the Geheyan Reservoir, a typical river interception project, was selected as a typical case in this paper for measuring carbon dioxide fluxes from interface between water and atmosphere from March, 2015 to February, 2016. The integration of the online gas analyzer and floating box was used to obtain carbon dioxide fluxes from interface between water and atmosphere. Data was obtained over the before dam, upstream, tributary, drawdown area and bay area respectively for understanding the spatial Heterogeneity of carbon dioxide fluxes. Data analysis showed that yearly mean fluxes of carbon dioxide from the Geheyan Reservoir was (55.6918±66.3329) mg·(m2·h)-1 during measurement, which indicated that the temporal distribution was higher in winter and lower in other seasons and the spatial variation was higher in typical bay and lower before dam as well as drawdown zone over the reservoir. Moreover, the seasonal variation of carbon dioxide fluxes from the interface between water and atmosphere was very stable at Yuxiakou measurement points as a typical background area of the reservoir, which was unexpectedly higher than those before dam and drawdown zone in the most months during measurement. The results from data analysis also indicated that the spatial and temporal variation of carbon dioxide fluxes from the Geheyan Reservoir was affected by water quality parameters such as dissolved oxygen, chlorophyll, pH, water temperature and conductivity and carbon in water, but the relationship between carbon dioxide fluxes and other parameter was very different within each season and impound period. So the results above will provide more supports for understanding the import pathway and transfer of aquatic carbon cycle caused by large river interception project in China.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA