Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Entropy (Basel) ; 26(5)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38785647

RESUMEN

Protein-ligand docking plays a significant role in structure-based drug discovery. This methodology aims to estimate the binding mode and binding free energy between the drug-targeted protein and candidate chemical compounds, utilizing protein tertiary structure information. Reformulation of this docking as a quadratic unconstrained binary optimization (QUBO) problem to obtain solutions via quantum annealing has been attempted. However, previous studies did not consider the internal degrees of freedom of the compound that is mandatory and essential. In this study, we formulated fragment-based protein-ligand flexible docking, considering the internal degrees of freedom of the compound by focusing on fragments (rigid chemical substructures of compounds) as a QUBO problem. We introduced four factors essential for fragment-based docking in the Hamiltonian: (1) interaction energy between the target protein and each fragment, (2) clashes between fragments, (3) covalent bonds between fragments, and (4) the constraint that each fragment of the compound is selected for a single placement. We also implemented a proof-of-concept system and conducted redocking for the protein-compound complex structure of Aldose reductase (a drug target protein) using SQBM+, which is a simulated quantum annealer. The predicted binding pose reconstructed from the best solution was near-native (RMSD = 1.26 Å), which can be further improved (RMSD = 0.27 Å) using conventional energy minimization. The results indicate the validity of our QUBO problem formulation.

2.
Biomed Phys Eng Express ; 10(4)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38663368

RESUMEN

The intricate nature of lung cancer treatment poses considerable challenges upon diagnosis. Early detection plays a pivotal role in mitigating its escalating global mortality rates. Consequently, there are pressing demands for robust and dependable early detection and diagnostic systems. However, the technological limitations and complexity of the disease make it challenging to implement an efficient lung cancer screening system. AI-based CT image analysis techniques are showing significant contributions to the development of computer-assisted detection (CAD) systems for lung cancer screening. Various existing research groups are working on implementing CT image analysis systems for assessing and classifying lung cancer. However, the complexity of different structures inside the CT image is high and comprehension of significant information inherited by them is more complex even after applying advanced feature extraction and feature selection techniques. Traditional and classical feature selection techniques may struggle to capture complex interdependencies between features. They may get stuck in local optima and sometimes require additional exploration strategies. Traditional techniques may also struggle with combinatorial optimization problems when applied to a prominent feature space. This paper proposed a methodology to overcome the existing challenges by applying feature extraction using Vision Transformer (FexViT) and Feature selection using the Quantum Computing based Quadratic unconstrained binary optimization (QC-FSelQUBO) technique. This algorithm shows better performance when compared with other existing techniques. The proposed methodology showed better performance as compared to other existing techniques when evaluated by applying necessary output measures, such as accuracy, Area under roc (receiver operating characteristics) curve, precision, sensitivity, and specificity, obtained as 94.28%, 99.10%, 96.17%, 90.16% and 97.46%. The further advancement of CAD systems is essential to meet the demand for more reliable detection and diagnosis of cancer, which can be addressed by leading the proposed quantum computation and growing AI-based technology ahead.


Asunto(s)
Algoritmos , Neoplasias Pulmonares , Tomografía Computarizada por Rayos X , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/patología , Tomografía Computarizada por Rayos X/métodos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Detección Precoz del Cáncer/métodos , Curva ROC , Teoría Cuántica
3.
Entropy (Basel) ; 25(3)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36981429

RESUMEN

Recent advances in quantum hardware offer new approaches to solve various optimization problems that can be computationally expensive when classical algorithms are employed. We propose a hybrid quantum-classical algorithm to solve a dynamic asset allocation problem where a target return and a target risk metric (expected shortfall) are specified. We propose an iterative algorithm that treats the target return as a constraint in a Markowitz portfolio optimization model, and dynamically adjusts the target return to satisfy the targeted expected shortfall. The Markowitz optimization is formulated as a Quadratic Unconstrained Binary Optimization (QUBO) problem. The use of the expected shortfall risk metric enables the modeling of extreme market events. We compare the results from D-Wave's 2000Q and Advantage quantum annealers using real-world financial data. Both quantum annealers are able to generate portfolios with more than 80% of the return of the classical optimal solutions, while satisfying the expected shortfall. We observe that experiments on assets with higher correlations tend to perform better, which may help to design practical quantum applications in the near term.

4.
Entropy (Basel) ; 25(2)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36832558

RESUMEN

We are in the noisy intermediate-scale quantum (NISQ) devices' era, in which quantum hardware has become available for application in real-world problems. However, demonstrations of the usefulness of such NISQ devices are still rare. In this work, we consider a practical railway dispatching problem: delay and conflict management on single-track railway lines. We examine the train dispatching consequences of the arrival of an already delayed train to a given network segment. This problem is computationally hard and needs to be solved almost in real time. We introduce a quadratic unconstrained binary optimization (QUBO) model of this problem, which is compatible with the emerging quantum annealing technology. The model's instances can be executed on present-day quantum annealers. As a proof-of-concept, we solve selected real-life problems from the Polish railway network using D-Wave quantum annealers. As a reference, we also provide solutions calculated with classical methods, including the conventional solution of a linear integer version of the model as well as the solution of the QUBO model using a tensor network-based algorithm. Our preliminary results illustrate the degree of difficulty of real-life railway instances for the current quantum annealing technology. Moreover, our analysis shows that the new generation of quantum annealers (the advantage system) does not perform well on those instances, either.

5.
Artículo en Inglés | MEDLINE | ID: mdl-38179578

RESUMEN

Quantum annealing is a specialized type of quantum computation that aims to use quantum fluctuations in order to obtain global minimum solutions of combinatorial optimization problems. Programmable D-Wave quantum annealers are available as cloud computing resources, which allow users low-level access to quantum annealing control features. In this article, we are interested in improving the quality of the solutions returned by a quantum annealer by encoding an initial state into the annealing process. We explore twoD-Wave features that allow one toencode such an initialstate: the reverse annealing (RA) and theh-gain(HG)features.RAaimstorefineaknownsolutionfollowinganannealpathstartingwithaclassical state representing a good solution, going backward to a point where a transverse field is present, and then finishing the annealing process with a forward anneal. The HG feature allows one to put a time-dependent weighting scheme on linear (h) biases of the Hamiltonian, and we demonstrate that this feature likewise can be used to bias the annealing to start from an initial state. We also consider a hybrid method consisting of a backward phase resembling RA and a forward phase using the HG initial state encoding. Importantly, we investigate the idea of iteratively applying RA and HG to a problem, with the goal of monotonically improving on an initial state that is not optimal. The HG encoding technique is evaluated on a variety of input problems including the edge-weighted maximum cut problem and the vertex-weighted maximum clique problem, demonstrating that the HG technique is a viable alternative to RA for some problems. We also investigate how the iterative procedures perform for both RA and HG initial state encodings on random whole-chip spin glasses with the native hardware connectivity of the D-Wave Chimera and Pegasus chips.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA