Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
Más filtros











Intervalo de año de publicación
1.
Chemistry ; : e202402578, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39054904

RESUMEN

In this contribution we report on a novel approach towards luminescent light-responsive ligands. To this end, cyanostilbene- guanidiniocarbonyl-pyrrole hybrids were designed and investigated. Merging of a luminophore with a supramolecular bioactive ligand bears numerous advantages by overcoming the typical drawbacks of drug-labelling, influencing the overall performance of the active species by attachment of a large luminophore. Here we were able to establish a simple and easily accessible synthesis route to different cyanostyryl-guanidininiocarbonyl-pyrrole (CGCP) derivatives. These compounds were investigated regarding their light-responsive double bond isomerisation, their molecular structures in single crystals by means of X-ray diffractometry, their emission properties by state of the art photophysical characterisation as well as bioimaging and assessment of cell toxicity.

2.
Curr Top Med Chem ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39069813

RESUMEN

Pyrrole derivatives are known as building blocks for the synthesis of biological compounds and pharmaceutical drugs. Several processes were employed to synthesize pyrroles, including Hantzsch, Paal-Knorr, and cycloaddition of dicarbonyl compounds reaction. Using catalysts like nanoparticles, metal salts, and heterogeneous ones was necessary to obtain the targeted pyrrole structure. Also, to afford more active pyrrole compounds, heterocyclic molecules such as imidazole or other rings were used in the synthesis as amines. This review presents heterogeneous catalysts since 2010 for the green synthesis of bioactive pyrroles in a one-pot multi-component reaction. Additionally, each synthetic method included a demonstration of the suggested mechanisms. Diakylacetylenedicarboxylate, dicarbonyl group, amines, furans, and acetylene group are consolidated to yield biological pyrroles through the heterogeneous catalysts. Finally, various parolee-performed activities were displayed, such as antibacterial, anti-inflammatory, analgesic, and other significant activities.

3.
Chem Biodivers ; 21(8): e202400638, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38837284

RESUMEN

QSAR studies on the number of compounds tested as S. aureus inhibitors were performed using an interactive Online Chemical Database and Modeling Environment (OCHEM) web platform. The predictive ability of the developed consensus QSAR model was q2=0.79±0.02. The consensus prediction for the external evaluation set afforded high predictive power (q2=0.82±0.03). The models were applied to screen a virtual chemical library with anti-S. aureus activity. Six promising new bicyclic trifluoromethylated pyrroles were identified, synthesized and evaluated in vitro against S. aureus, E. coli, and A. baumannii for their antibacterial activity and against C. albicans, C. krusei and C. glabrata for their antifungal activity. The synthesized compounds were characterized by 1H, 19F, and 13C NMR and elemental analysis. The antimicrobial activity assessment indicated that trifluoromethylated pyrroles 9 and 11 demonstrated the greatest antibacterial and antifungal effects against all the tested pathogens, especially against multidrug-resistant strains. The acute toxicity of the compounds to Daphnia magna ranged from 1.21 to 33.39 mg/L (moderately and slightly toxic). Based on the docking results, it can be suggested that the antibacterial and antifungal effects of the compounds can be explained by the inhibition of bacterial wall component synthesis.


Asunto(s)
Antibacterianos , Antifúngicos , Pruebas de Sensibilidad Microbiana , Pirroles , Relación Estructura-Actividad Cuantitativa , Antifúngicos/farmacología , Antifúngicos/química , Antifúngicos/síntesis química , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Pirroles/química , Pirroles/farmacología , Pirroles/síntesis química , Staphylococcus aureus/efectos de los fármacos , Diseño de Fármacos , Escherichia coli/efectos de los fármacos , Animales , Estructura Molecular , Daphnia/efectos de los fármacos , Simulación del Acoplamiento Molecular , Acinetobacter baumannii/efectos de los fármacos , Simulación por Computador , Candida albicans/efectos de los fármacos
4.
Chem Biodivers ; 21(5): e202301605, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38488861

RESUMEN

Curcumin conjugated heterocyclic compounds are potent candidates with drug likeness against various bacterial pathogens. A set of curcumin-based pyrrole conjugates (CPs) were synthesized and characterized by FT-IR, 1H and 13C NMR and HR-MS techniques. The results of free radical scavenging activity of the synthesized CPs, evaluated by FRAP and CUPRAC assays, showed the potency of these compounds as effective antioxidants. CP3 exhibits the highest antioxidant activity amongst the CPs. The bactericidal efficacy of CPs was screened against ESKAP bacterial pathogens, and CPs were found to possess better antibacterial property than curcumin, specifically against staphylococcus aureus bacteria. In addition, serum albumin (BSA and HSA) binding interaction of these CPs were determined by UV-visible and fluorescence spectrophotometric techniques. In-silico molecular docking study was performed to determine the binding patterns of molecular targets against Staphylococcus aureus tyrosyl tRNA synthetase, and serum albumin proteins. The structure-activity relationship showed that the presence of multiple phenolic hydroxyl groups, and electron withdrawing groups on the structure of CP molecule, enhances its antioxidant and antibacterial activity, respectively.


Asunto(s)
Antibacterianos , Antioxidantes , Curcumina , Diseño de Fármacos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Pirroles , Staphylococcus aureus , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Curcumina/farmacología , Curcumina/química , Curcumina/síntesis química , Staphylococcus aureus/efectos de los fármacos , Pirroles/química , Pirroles/farmacología , Pirroles/síntesis química , Relación Estructura-Actividad , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/síntesis química , Humanos , Estructura Molecular , Tirosina-ARNt Ligasa/antagonistas & inhibidores , Tirosina-ARNt Ligasa/metabolismo
5.
Chem Biol Drug Des ; 103(2): e14484, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38355143

RESUMEN

A series of alkynylated pyrrole derivatives were meticulously designed, drawing inspiration from the structure of 3-alkynylpyrrole-2,4-dicarboxylates, which were synthesized via a cyclization process involving methylene isocyanides and propiolaldehydes under mild conditions. These derivatives were subsequently subjected to evaluation for their anticancer properties against a panel of cell lines, including U251, A549, 769-P, HepG2, and HCT-116. According to the detailed analysis of structure-activity relationship, compound 12l emerged as the most promising molecule, with IC50 values of 2.29 ± 0.18 and 3.49 ± 0.30 µM toward U251 and A549 cells, respectively. Subsequent mechanistic investigations revealed that compound 12l exerts its effects by arresting the cell cycle in the G0/G1 phase and inducing apoptosis specifically in A549 cells. These innovative alkynylated pyrrole derivatives hold the potential to serve as a valuable template for the discovery of novel anticancer molecules.


Asunto(s)
Antineoplásicos , Antineoplásicos/química , Línea Celular Tumoral , Pirroles/química , Ensayos de Selección de Medicamentos Antitumorales , Relación Estructura-Actividad , Apoptosis , Proliferación Celular , Estructura Molecular , Diseño de Fármacos
6.
Bioorg Med Chem ; 100: 117619, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38320389

RESUMEN

A structure-activity relationship study performed on 1H-pyrrolo[3,2-g]isoquinoline scaffold identified new haspin inhibitors with nanomolar potencies and selectivity indices (SI) over 6 (inhibitory potency evaluated against 8 protein kinases). Compound 22 was the most active of the series (haspin IC50 = 76 nM). Cellular evaluation of 22 confirmed its activity for endogenous haspin in U-2 OS cells and its anti-proliferative activity against various cell lines. In addition, the binding mode of analog 22 in complex with haspin was determined by X-ray crystallography.


Asunto(s)
Inhibidores de Proteínas Quinasas , Proteínas Serina-Treonina Quinasas , Pirroles , Inhibidores de Proteínas Quinasas/química , Pirroles/química , Relación Estructura-Actividad , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Isoquinolinas/química , Isoquinolinas/farmacología
7.
ChemMedChem ; 19(1): e202300447, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-37926686

RESUMEN

An overview of pyrroles as distinct scaffolds with therapeutic potential and the significance of pyrrole derivatives for drug development are provided in this article. It lists instances of naturally occurring pyrrole-containing compounds and describes the sources of pyrroles in nature, including plants and microbes. It also explains the many conventional and modern synthetic methods used to produce pyrroles. The key topics are the biological characteristics, pharmacological behavior, and functional alterations displayed by pyrrole derivatives. It also details how pyrroles are used to treat infectious diseases. It describes infectious disorders resistant to standard treatments and discusses the function of compounds containing pyrroles in combating infectious diseases. Furthermore, the review covers the uses of pyrrole derivatives in treating non-infectious diseases and resistance mechanisms in non-infectious illnesses like cancer, diabetes, and Alzheimer's and Parkinson's diseases. The important discoveries and probable avenues for pyrrole research are finally summarized, along with their significance for medicinal chemists and drug development. A reference from the last two decades is included in this review.


Asunto(s)
Enfermedades Transmisibles , Pirroles , Humanos , Pirroles/farmacología , Relación Estructura-Actividad , Desarrollo de Medicamentos
8.
Luminescence ; 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38053240

RESUMEN

Three new pyrrolo[3,2-b]pyrrole derivatives containing methoxyphenyl, pyrene or tetraphenylethylene (TPE) units (compounds 1-3) have been designed, synthesized and fully characterized. The aggregation-induced emission (AIE) properties of compounds 1-3 were tested in different water fraction (fw ) of tetrahydrofuran (THF). The pyrrolo[3,2-b]pyrrole derivative 3 containing TPE units exhibited typical AIE features with an enhanced emission (∼32-fold) in the solid state versus in solution; compounds 1 and 2 exhibited an aggregation-caused quenching effect. In addition, the steric and electronic effects of the peripheral moieties on the emission behavior, both in solution and in the solid state, have been investigated. Moreover, pyrrolo[3,2-b]pyrrole 1 exhibits high sensitivity and selectivity for dichloromethane and chloroform solvents, with the system displaying a new emission peak and fast response time under ultraviolet irradiation.

9.
Molecules ; 28(24)2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38138448

RESUMEN

Molecular hybridization has emerged as a promising approach in the treatment of diseases exhibiting multifactorial etiology. With regard to this, dual cyclooxygenase-2/lipoxygenase (COX-2/LOX) inhibitors could be considered a safe alternative to traditional non-steroidal anti-inflammatory drugs (tNSAIDs) and selective COX-2 inhibitors (coxibs) for the treatment of inflammatory conditions. Taking this into account, six novel pyrrole derivatives and pyrrole-cinnamate hybrids were developed as potential COX-2 and soybean LOX (sLOX) inhibitors with antioxidant activity. In silico calculations were performed to predict their ADMET (absorption, distribution, metabolism, excretion, toxicity) properties and drug-likeness, while lipophilicity was experimentally determined as RM values. All synthesized compounds (1-4, 5-8) could be described as drug-like. The results from the docking studies on COX-2 were in accordance with the in vitro studies. According to molecular docking studies on soybean LOX, the compounds displayed allosteric interactions with the enzyme. Pyrrole 2 appeared to be the most potent s-LOX inhibitor (IC50 = 7.5 µM). Hybrids 5 and 6 presented a promising combination of in vitro LOX (IC50 for 5 = 30 µM, IC50 for 6 = 27.5 µM) and COX-2 (IC50 for 5 = 0.55 µM, IC50 for 6 = 7.0 µM) inhibitory activities, and therefore could be used as the lead compounds for the synthesis of more effective multi-target agents.


Asunto(s)
Inhibidores de la Ciclooxigenasa 2 , Lipooxigenasa , Inhibidores de la Ciclooxigenasa 2/farmacología , Ciclooxigenasa 2/metabolismo , Simulación del Acoplamiento Molecular , Lipooxigenasa/metabolismo , Inhibidores de la Lipooxigenasa/farmacología , Relación Estructura-Actividad
10.
Molecules ; 28(22)2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38005323

RESUMEN

An efficient and direct approach to pyrroles was successfully developed by employing 3-formylchromones as decarboxylative coupling partners, and facilitated by microwave irradiation. The protocol utilizes easily accessible feedstocks, a catalytic amount of DBU without any metals, resulting in high efficiency and regioselectivity. Notably, all synthesized products were evaluated against five different cancer cell lines and compound 3l selectively inhibited the proliferation of HCT116 cells with an IC50 value of 10.65 µM.


Asunto(s)
Metales , Pirroles , Reacción de Cicloadición , Pirroles/farmacología , Catálisis
11.
Nanomaterials (Basel) ; 13(20)2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37887912

RESUMEN

In this work, the hysteresis of elastomer composites suitable for tire compounds was reduced by using CB functionalized with pyrrole compounds containing sulfur-based functional groups reactive with the elastomer chains. CB was functionalized with bio-based pyrrole compounds: 2-(2,5-dimethyl-1H-pyrrol-1-yl)ethane-1-thiol (SHP) and 1,2-bis(2-(2,5-dimethyl-1H-pyr-rol-1-yl)ethyl)disulfide (SSP), bearing an -SH and an -SS- functional group, respectively. SHP and SSP were synthesized via a one-pot two-step synthesis, with yields higher than 70%, starting from biosourced chemicals as follows: 2,5-hexanedione from 2,5-dimethylfuran, cysteine and cysteamine. The functionalization of CB was carried out by mixing the CB with PyC and heating, with quantitative yields ranging from 92 to 97%. Thus, the whole functionalization process was characterized by a high carbon efficiency. The formation of the covalent bond between SHP, SSP and CB, in line with the prior art of such a functionalization technology, was proven by means of extraction and TGA analyses. The reactivity of the sulfur-based functional groups with unsaturated polymer chains was demonstrated by using squalene as the model compound. Poly(styrene-co-butadiene) from solution anionic polymerization and poly(1,4-cis-isoprene) from Hevea Brasiliensis were the elastomers employed for the preparation of the composites, which were crosslinked with a sulfur-based system. Pristine CB was partially replaced with CB/SHP (33%) and CB/SSP (33% and 66%). The PyC resulted in better curing efficiency, an increase in the dynamic rigidity of approximately 20% and a reduction in the hysteresis of approximately 10% at 70 °C, as well as similar/better ultimate tensile properties. The best results were achieved with a 66% replacement of CB with CB/SSP. This new family of reactive carbon blacks paves the way for a new generation of 'green tires', reinforced by a CB reactive with the polymer chains, which provides high mechanical properties and low rolling resistance. Such a reactive CB eliminates the use of silica, and thus the ethanol emission resulting from the condensation of silane is used as a coupling agent. In addition, CB-based tires are characterized by a higher mileage, at a moment in which the reduction in tire wear has become a primary concern.

12.
Molecules ; 28(20)2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37894702

RESUMEN

As a new approach, pyrrolo[1,2-a]pyrazines were synthesized through the cyclization of 2-formylpyrrole-based enaminones in the presence of ammonium acetate. The enaminones were prepared with a straightforward method, reacting the corresponding alkyl 2-(2-formyl-1H-pyrrol-1-yl)acetates, 2-(2-formyl-1H-pyrrol-1-yl)acetonitrile, and 2-(2-formyl-1H-pyrrol-1-yl)acetophenones with DMFDMA. Analogous enaminones elaborated from alkyl (E)-3-(1H-pyrrol-2-yl)acrylates were treated with a Lewis acid to afford indolizines. The antifungal activity of the series of substituted pyrroles, pyrrole-based enaminones, pyrrolo[1,2-a]pyrazines, and indolizines was evaluated on six Candida spp., including two multidrug-resistant ones. Compared to the reference drugs, most test compounds produced a more robust antifungal effect. Docking analysis suggests that the inhibition of yeast growth was probably mediated by the interaction of the compounds with the catalytic site of HMGR of the Candida species.


Asunto(s)
Antifúngicos , Indolizinas , Antifúngicos/farmacología , Pirroles/farmacología , Indolizinas/farmacología , Pirazinas/farmacología , Pruebas de Sensibilidad Microbiana , Candida
13.
Chemistry ; 29(64): e202302410, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37639280

RESUMEN

The anion binding features of diphenylpyrrole-strapped calix[4]pyrrole 1 have been investigated by means of 1 H NMR spectroscopy and ITC (isothermal titration calorimetry), as well as single crystal X-ray diffraction analyses. Receptor 1 bearing an auxiliary pyrrolic NH donor and solubilizing phenyl groups on the strap was found to bind F- , Cl- , and Br- as their tetrabutylammonium salts with high affinity in DMSO-d6 . In addition, receptor 1 was found to extract the fluoride anion (as both its tetraethylammonium (TEA+ ) and tetrabutylammonium (TBA+ ) salts), as well as the chloride anion into chloroform-d from an aqueous source phase. Cation metathesis using TBAI or the use of a dual host approach involving crown ethers enabled receptor 1 to extract simple alkali metal fluoride or chloride salts from water. Quantitative binding of NaF by receptor 1 was observed in 20 % D2 O-DMSO-d6 allowing for the direct determination of the NaF concentration in an unknown sample.

14.
Chemistry ; 29(67): e202302429, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37624878

RESUMEN

A family of propeller-shaped donor-acceptor hexapyrrolylbenzenes (HPBs) were designed and synthesized by sequential nucleophilic substitution of hexafluorobenzene with π-extended pyrroles. In particular, four hybrids were obtained, containing various combinations of electron-rich and electron-poor acenaphthylene-fused pyrroles. Additionally, to probe the efficiency of ortho transfer interactions, a system was designed containing unique donor and acceptor subunits spatially separated with four unfunctionalized pyrroles. DFT calculations showed propeller-shaped geometries of all HPB molecules and separation of frontier molecular orbitals between donor and acceptor subunits. Steady-state and time-resolved photophysical measurements revealed charge-transfer (CT) character of the emission with strong positive dependence on solvent polarity. The principal CT pathway involves ortho-positioned pairs of donors and acceptors and requires bending of the acceptor in the excited state.

15.
Comput Biol Chem ; 106: 107930, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37542846

RESUMEN

In this study, the one-pot synthetic methodology for the preparation of substituted pyrroles with diethyl acetylene-dicarboxylate is reported for the various pyrrole derivatives via the Trifimow synthesis process from oximes. This method also offers the literature as a cyclization pathway using a ytterbium triflate catalyst. Another importance of this study is the use of pyrrole derivatives in pharmaceuticals, biological processes, and agrochemicals. From this point of view, the development of a new catalyst in synthetic organic chemistry and the difference in the method is also important. The syntheses of the target substituted pyrroles are accomplished in high yields. Also, all synthesized structures were confirmed by 1H NMR, 13C NMR, and IR spectra. The DFT computations were leveraged for structural and spectroscopic validation of the compounds. Then, FMO and NBO analyses were subsequently employed to elucidate the reactivity characteristics and intramolecular interactions within these compounds. Also, ADMET indices were ascertained to assess potential pharmacokinetic properties, drug-like qualities, and possible adverse effects of these compounds. Last, optimized molecules were analyzed by molecular docking methods against crystal structures of Bovine Serum Albumin and Leukemia Inhibitory Factor, and their binding affinities, interaction details, and inhibition constants were determined.


Asunto(s)
Pirroles , Iterbio , Simulación del Acoplamiento Molecular , Pirroles/química , Catálisis , Estructura Molecular
16.
Chemistry ; 29(58): e202302235, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37477346

RESUMEN

A modular approach to highly functional acyl (MIDA)boronates is described. It involves the generation of the hitherto unknown radical derived from acetyl (MIDA)boronate and its capture by various alkenes, including electronically unbiased, unactivated alkenes. In contrast to the anion of acetyl (MIDA)boronate, which has not so far been employed in synthesis, the corresponding radical is well behaved and readily produced from the novel α-xanthyl acetyl (MIDA)boronate. This shelf-stable, easily prepared solid is a convenient acyl (MIDA)boronate transfer agent that provides a direct entry to numerous otherwise inaccessible structures, including latent 1,4-dicarbonyl derivatives that can be transformed into B(MIDA) substituted pyrroles and furans. A competition experiment indicated the acyl (MIDA)boronate substituted radical to be more stable than the all-carbon acetonyl radical but somewhat less reactive in additions to alkenes.

17.
Molecules ; 28(11)2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37298892

RESUMEN

A controllable synthesis of trisubstituted imidazoles and pyrroles has been developed through rhodium(II)-catalyzed regioselective annulation of N-sulfonyl-1,2,3-trizaoles with ß-enaminones. The imidazole ring was formed through a 1,1-insertion of the N-H bond to α-imino rhodium carbene, followed by a subsequent intramolecular 1,4-conjugate addition. This occurred when the α-carbon atom of the amino group was bearing a methyl group. Additionally, the pyrrole ring was constructed by utilizing a phenyl substituent and undergoing intramolecular nucleophilic addition. The mild conditions, good tolerance towards functional groups, gram-scale synthesis capability, and ability to undergo valuable transformations of the products qualify this unique protocol as an efficient tool for the synthesis of N-heterocycles.


Asunto(s)
Pirroles , Rodio , Pirroles/química , Triazoles/química , Catálisis , Rodio/química
18.
Molecules ; 28(10)2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37241902

RESUMEN

A new series of tetrasubstituted pyrrole derivatives (TSPs) was synthesized based on a previously developed hypothesis on their ability to mimic hydrophobic protein motifs. The resulting new TSPs were endowed with a significant toxicity against human epithelial melanoma A375 cells, showing IC50 values ranging from 10 to 27 µM, consistent with the IC50 value of the reference compound nutlin-3a (IC50 = 15 µM). In particular, compound 10a (IC50 = 10 µM) resulted as both the most soluble and active among the previous and present TSPs. The biological investigation evidenced that the anticancer activity is related to the activation of apoptotic cell-death pathways, supporting our rational design based on the ability of TSPs to interfere with PPI involved in the cell cycle regulation of cancer cells and, in particular, the p53 pathway. A reinvestigation of the TSP pharmacophore by using DFT calculations showed that the three aromatic substituents on the pyrrole core are able to mimic the hydrophobic side chains of the hot-spot residues of parallel and antiparallel coiled coil structures suggesting a possible molecular mechanism of action. A structure-activity relationship (SAR) analysis which includes solubility studies allows us to rationalize the role of the different substituents on the pyrrole core.


Asunto(s)
Antineoplásicos , Melanoma , Humanos , Pirroles/farmacología , Pirroles/química , Ensayos de Selección de Medicamentos Antitumorales , Antineoplásicos/farmacología , Antineoplásicos/química , Relación Estructura-Actividad , Melanoma/tratamiento farmacológico , Proliferación Celular , Estructura Molecular , Apoptosis , Línea Celular Tumoral
19.
Molecules ; 28(7)2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37049788

RESUMEN

A rhodium(II)-catalyzed reaction of cyclic nitronates (5,6-dihydro-4H-1,2-oxazine N-oxides) with vinyl diazoacetates proceeds as a [3+3]-annulation producing bicyclic unsaturated nitroso acetals (4a,5,6,7-tetrahydro-2H-[1,2]oxazino[2,3-b][1,2]oxazines). Optimization of reaction conditions revealed the use of Rh(II) octanoate as the preferred catalyst in THF at room temperature, which allows the preparation of target products in good yields and excellent diastereoselectivity. Under basic conditions, namely, the combined action of DBU and alcohol, these nitroso acetals undergo ring contraction of an unsaturated oxazine ring into the corresponding pyrrole. Both transformations can be performed in a one-pot fashion, thus constituting a quick approach to oxazine-annulated pyrroles from available starting materials, such as nitroalkenes, olefins, and diazo compounds.

20.
Angew Chem Int Ed Engl ; 62(31): e202303966, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37097389

RESUMEN

Axially chiral compounds have been always considered a laboratory curiosity with rare prospects of being applied in asymmetric synthesis. Things have changed very quickly in the last twenty years when it was understood the important role and the enormous impact that these compounds have in medicinal, biological and material chemistry. The asymmetric synthesis of atropisomers became a rapidly expanding field and recent reports on the development of N-N atropisomers strongly prove how this research field is a hot topic open to new challenges and frontiers of asymmetric synthesis. This review focuses on the recent advances in the enantioselective synthesis of N-N atropisomers highlighting the strategies and breakthroughs to obtain this novel and stimulating atropisomeric framework.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA