Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros











Intervalo de año de publicación
1.
Molecules ; 29(7)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38611768

RESUMEN

In industrial manufacturing, pyrrhotite(Fe1-xS), once depressed, is commonly activated for flotation. However, the replacement of CuSO4 is necessary due to the need for exact control over the dosage during the activation of pyrrhotite, which can pose challenges in industrial settings. This research introduces the use of FeSO4 for the first time to efficiently activate pyrrhotite. The impact of two different activators on pyrrhotite was examined through microflotation experiments and density functional theory (DFT) calculations. Microflotation experiments confirmed that as the CuSO4 dosage increased from 0 to 8 × 10-4 mol/L, the recovery of pyrrhotite initially increased slightly from 71.27% to 87.65% but then sharply decreased to 16.47%. Conversely, when the FeSO4 dosage was increased from 0 to 8 × 10-4 mol/L, pyrrhotite's recovery rose from 71.27% to 82.37%. These results indicate a higher sensitivity of CuSO4 to dosage variations, suggesting that minor alterations in dosage can significantly impact its efficacy under certain experimental conditions. In contrast, FeSO4 might demonstrate reduced sensitivity to changes in dosage, leading to more consistent performance. Fe ions can chemically adsorb onto the surface of pyrrhotite (001), creating a stable chemical bond, thereby markedly activating pyrrhotite. The addition of butyl xanthate (BX), coupled with the action of Fe2+ on activated pyrrhotite, results in the formation of four Fe-S bonds on Fe2+. The proximity of their atomic distances contributes to the development of a stable double-chelate structure. The S 3p orbital on BX hybridizes with the Fe 3d orbital on pyrrhotite, but the hybrid effect of Fe2+ activation is stronger than that of nonactivation. In addition, the Fe-S bond formed by the addition of activated Fe2+ has a higher Mulliken population, more charge overlap, and stronger covalent bonds. Therefore, Fe2+ is an excellent, efficient, and stable pyrrhotite activator.

2.
Environ Sci Pollut Res Int ; 31(13): 20234-20245, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38369659

RESUMEN

Pyrrhotite, especially the monoclinic type, is a promising material for removing Cr (VI) from wastewater and groundwater due to its high reactivity. However, the purity of the preparation monoclinic pyrrhotite from heated natural pyrite is not high enough, and the role of possible sulfur vacancies in pyrrhotite's crystal structure has been largely ignored in the removal mechanism of Cr (VI). In this work, we characterized the phase composition changes of annealed pyrite in inert gas and prepared high-purity (~ 96%) monoclinic pyrrhotite at the optimal condition. We found that it could remove 18.6 mg/g of Cr (VI) by redox reaction, which is the best value reported of natural pyrite-derived materials so far. As the reactive media material of simulated permeable reactive barrier, the service life of the high-purity monoclinic pyrrhotite column is 297 PV, which is much longer than that of the pyrite column (50 PV). A new founding is that S2- and S vacancy play the essential role during the redox reaction of pyrrhotite and Cr (VI). Monoclinic pyrrhotite had more S vacancy than hexagonal pyrrhotite and pyrite, which explained its superior Cr (VI) removal performance.


Asunto(s)
Cromo , Contaminantes Químicos del Agua , Cromo/química , Hierro/química , Sulfuros/química , Aguas Residuales , Contaminantes Químicos del Agua/análisis
3.
Water Res ; 251: 121143, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38277824

RESUMEN

Microbial reduction under anaerobic condition is a promising method for remediating vanadate [V(V)] contamination in aquifers, while V(V) may be re-generated with redox fluctuations. The inability to remove vanadium after remediation has become a key issue limiting bioremediation. In this study, we proposed the use of pyrrhotite, a natural mineral with magnetic properties, to immobilize V(V) to insoluble V(IV) under microbial action and remove vanadium from the aquifer using a magnetic field, which could avoid the problem of V(V) recontamination under redox fluctuating conditions. Up to 49.0 ± 4.7 % of vanadium could be removed from the aquifer by the applied magnetic field, and the vanadium in the aquifer after the reaction was mainly in the acid-extractable and reducible states. pH had a strong effect on the magnetic recovery of V(V), while the influence of initial V(V) concentration was weak. Microbial community structure analysis showed that Thiobacillus, Proteiniphilum, Fermentimonas, and Desulfurivibrio played key roles for V(V) reduction and pyrrhotite oxidation. Structural equation model indicated the positive correlation between these genera with the magnetic recovery of vanadium. Real time-qPCR confirmed the roles of functional genes of V(V) reduction (napA and nirK) and SO42- reduction (dsrA) in such biological processes. This study provides a novel route to sustainable V(V) remediation in aquifers, with synchronous recovery of vanadium resources without rebound.


Asunto(s)
Agua Subterránea , Vanadio , Vanadio/análisis , Oxidación-Reducción , Agua Subterránea/química , Biodegradación Ambiental , Fenómenos Magnéticos
4.
Environ Sci Pollut Res Int ; 31(5): 6766-6781, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38159185

RESUMEN

Autotrophic denitrification technology has many advantages, including no external carbon source addition, low sludge production, high operating cost efficiency, prevention of secondary sewage pollution, and stable treatment efficiency. At present, the main research on autotrophic denitrification electron donors mainly includes sulfur, iron, and hydrogen. In these autotrophic denitrification systems, pyrite has received attention due to its advantages of easy availability of raw materials, low cost, and pH stability. When pyrite is used as a substrate for autotropic denitrification, sulfide (S2-) and ferrous ion (Fe2+) in the substrate will provide electrons to convert nitrate (NO3-) in sewage first to nitrite (NO2-), then to nitrogen (N2), and finally to discharge the system. At the same time, sulfide (S2-) loses electrons to sulfate (SO42-) and ferrous ion (Fe2+) loses electrons to ferric iron (Fe3+). Phosphates (PO43-) in wastewater are chemically combined with ferric iron (Fe3+) to form ferric phosphate (FePO4) precipitate. This paper aims to provide a detailed and comprehensive overview of the dynamic changes of nitrogen (N), phosphorus (P), and other substances in the process of sulfur autotrophic denitrification using iron sulfide, and to summarize the factors that affect wastewater treatment in the system. This work will provide a relevant research direction and theoretical basis for the field of sulfur autotrophic denitrification, especially for the related experiments of the reaction conversion of various substances in the system.


Asunto(s)
Fósforo , Aguas del Alcantarillado , Desnitrificación , Nitrógeno , Hierro , Minerales , Sulfuros , Azufre , Nitratos , Reactores Biológicos , Procesos Autotróficos
5.
Front Bioeng Biotechnol ; 11: 1324417, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38152287

RESUMEN

The presence of sulfur impurities in complex iron ores represents a significant challenge for the iron mining and steel-making industries as their removal often necessitates the use of hazardous chemicals and energy-intensive processes. Here, we examined the microbial and mineralogical composition of both primary and secondary iron concentrates, identifying the presence of Sulfobacillus spp. and Leptospirillum spp., while sulfur-oxidizing bacteria were absent. We also observed that these concentrates displayed up to 85% exposed pyrrhotite. These observations led us to explore the capacity of Acidithiobacillus thiooxidans to remove pyrrhotite-sulfur impurities from iron concentrates. Employing stirred tank bioreactors operating at 30°C and inoculated with 5·106 (At. thiooxidans cells mL-1), we achieved 45.6% sulfur removal over 16 days. Then, we evaluated packed leaching columns operated at 30°C, where the At. thiooxidans enriched system reached 43.5% desulfurization over 60 days. Remarkably, sulfur removal increased to 80% within 21 days under potassium limitation. We then compared the At. thiooxidans-mediated desulfurization process, with and without air supply, under potassium limitation, varying the initial biomass concentration in 1-m columns. Aerated systems facilitated approximately 70% sulfur removal across the entire column with minimal iron loss. In contrast, non-aerated leaching columns achieved desulfurization levels of only 6% and 26% in the lower and middle sections of the column, respectively. Collectively, we have developed an efficient, scalable biological sulfur-removal technology for processing complex iron ores, aligning with the burgeoning demand for sustainable practices in the mining industry.

6.
Water Res ; 238: 119987, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37121198

RESUMEN

Pyrrhotite is ubiquitously found in natural environment and involved in diverse (bio)processes. However, the pyrrhotite-driven bioreduction of toxic selenate [Se(VI)] remains largely unknown. This study demonstrates that Se(VI) is successfully bioreduced under anaerobic condition with the participation of pyrrhotite for the first time. Completely removal of Se(VI) was achieved at initial concentration of 10 mg/L Se(VI) and 0.56 mL/min flow rate in continuous column experiment with indigenous microbial consortium and pyrrhotite. Variation in hydrochemistry and hydrodynamics affected Se(VI) removal performance. Se(VI) was reduced to insoluble Se(0) while elements in pyrrhotite were oxidized to Fe(III) and SO42-. Breakthrough study indicated that biotic activity contributed 81.4 ± 1.07% to Se(VI) transformation. Microbial community analysis suggested that chemoautotrophic genera (e.g., Thiobacillus) could realize pyrrhotite oxidation and Se(VI) reduction independently, while heterotrophic genera (e.g., Bacillus, Pseudomonas) contributed to Se(VI) detoxification by utilizing metabolic intermediates generated through Fe(II) and S(-II) oxidation, which were further verified by pure culture tests. Metagenomic and qPCR analyses indicated genes encoding enzymes for Se(VI) reduction (e.g., serA, napA and srdBAC), S oxidation (e.g., soxB) and Fe oxidation (e.g., mtrA) were upregulated. The elevated electron transporters (e.g., nicotinamide adenine dinucleotide, cytochrome c) promoted electron transfer from pyrrhotite to Se(VI). This study gains insights into Se biogeochemistry under the effect of Fe(II)-bearing minerals and provides a sustainable strategy for Se(VI) bioremediation in natural aquifer.


Asunto(s)
Agua Subterránea , Consorcios Microbianos , Ácido Selénico , Compuestos Férricos , Oxidación-Reducción , Compuestos Ferrosos
7.
Water Environ Res ; 95(4): e10855, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36949606

RESUMEN

In the trend of upgrading wastewater treatment plants, developing advanced treatment technologies for more efficient nutrient removal is crucial. This study prepared a pyrrhotite-biochar composite (Fex Sy @BC) to investigate its potential for simultaneous removal of nitrate and phosphate under autotrophic denitrification conditions. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) were used to characterize the novel composite of Fex Sy @BC, which exhibited 9.2 mg N/(L·d) NO3 - -N reduction rate, 97.3% N2 production, and 81.8 mmol N/(kg·d) NO3 - -N material load with small solid/liquid ratio (0.008). The NO3 - -N removal with Fex Sy @BC was 1.2-2.2 times higher than that with pure iron sulfides or biochar or their mixtures, whereas the Δn(S)/Δn(N) of Fex Sy @BC was the lowest (1.80). Moreover, the PO4 3- -P reduction rate of Fex Sy @BC reached 3.23 mg P/(L·d), as high as that of pure pyrite or pyrrhotite. Thiobacillus was the most dominant denitrifying bacterium. Fex Sy @BC exhibited great promise for enhancing nutrient removal from secondary effluent without additional carbon source. PRACTITIONER POINTS: FexSy@BC enhanced nitrate and phosphate removal simultaneously. First-order kinetics and Monod model were fitted for denitrification with FexSy@BC. FexSy@BC had smaller molar ratio of sulfate release to nitrate removal. Thiobacillus was the dominant bacterium in FexSy@BC autotrophic denitrification. Synergistic effects on nutrients removal existed between biochar and pyrrhotite.


Asunto(s)
Nitratos , Fosfatos , Desnitrificación , Carbón Orgánico/química , Reactores Biológicos , Nitrógeno
8.
Environ Sci Pollut Res Int ; 30(17): 50537-50548, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36795215

RESUMEN

Anaerobic roasting combined with the persulfate-leaching process was used to treat cyanide tailings. In this study, the effect of the roasting conditions on the iron leaching rate was investigated by the response surface methodology. Additionally, this study was focusing on the effect of roasting temperature on the physical phase transformation of cyanide tailings and the persulfate-leaching process of roasted products. The results showed that roasting temperature had significant influences on the leaching of iron. The roasting temperature determined the physical phase changes of iron sulfides in roasted cyanide tailings, which in turn affected the leaching of iron. At the temperature of 700 °C, all pyrite was converted to pyrrhotite, and the leaching rate of iron reached a maximum of 93.62%. At this point, the weight loss rate of cyanide tailings and the recovery rate of sulfur were 43.50% and 37.73%, respectively. The sintering of the minerals became more severe when the temperature raised to 900 °C, and the iron leaching rate gradually decreased. The leaching of iron was mainly attributed to the indirect oxidation by SO4-˙ and OH˙ rather than the direct oxidation by S2O82-. The oxidation of iron sulfides by persulfate produced iron ions along with a certain amount of SO4-˙. Iron ions continuously activated persulfate to produce SO4-˙ and OH˙ under the mediation of sulfur ions in iron sulfides.


Asunto(s)
Cianuros , Hierro , Temperatura , Anaerobiosis , Sulfuros , Azufre
9.
Environ Sci Technol ; 57(4): 1807-1818, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36598371

RESUMEN

Vanadium(V) is a redox-sensitive heavy-metal contaminant whose environmental mobility is strongly influenced by pyrrhotite, a widely distributed iron sulfide mineral. However, relatively little is known about microbially mediated vanadate [V(V)] reduction characteristics driven by pyrrhotite and concomitant mineral dynamics in this process. This study demonstrated efficient V(V) bioreduction during 210 d of operation, with a lifespan about 10 times longer than abiotic control, especially in a stable period when the V(V) removal efficiency reached 44.1 ± 13.8%. Pyrrhotite oxidation coupled to V(V) reduction could be achieved by an enriched single autotroph (e.g., Thiobacillus and Thermomonas) independently. Autotrophs (e.g., Sulfurifustis) gained energy from pyrrhotite oxidation to synthesize organic intermediates, which were utilized by the heterotrophic V(V) reducing bacteria such as Anaerolinea, Bacillus, and Pseudomonas to sustain V(V) reduction. V(V) was reduced to insoluble tetravalent V, while pyrrhotite oxidation mainly produced Fe(III) and SO42-. Secondary minerals including mackinawite (FeS) and greigite (Fe3S4) were produced synchronously, resulting from further transformations of Fe(III) and SO42- by sulfate reducing bacteria (e.g., Desulfatiglans) and magnetotactic bacteria (e.g., Nitrospira). This study provides new insights into the biogeochemical behavior of V under pyrrhotite effects and reveals the previously overlooked mineralogical dynamics in V(V) reduction bioprocesses driven by Fe(II)-bearing minerals.


Asunto(s)
Compuestos Férricos , Vanadatos , Minerales , Hierro , Oxidación-Reducción , Bacterias
10.
Bioresour Technol ; 367: 128240, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36332867

RESUMEN

Pyrrhotite is a promising electron donor for autotrophic denitrification. Using pyrrhotite as the substrate in constructed wetlands (CWs) can enhance the nitrogen removal performance in carbon-limited wastewater treatment. However, the role of plants in pyrrhotite-integrated CW is under debate as the oxygen released from plant roots may destroy the anoxic condition for autotrophic denitrification. This study compared pyrrhotite-integrated CWs with and without plants and identified the effects of plants' presence in nitrogen removal, pyrrhotite oxidized dissolution, and microbial community. The results show that plants enhanced the TN removal significantly (from 41.6 ± 3.9 % to 97.1 ± 2.6 %). Plants can accelerate the PAD in CW through the strengthening of pyrrhotite dissolution. Enriched functional (Thiobacillus and Acidiferrobacter) and a more complex bacterial co-occurrence network has been found in CW with plants. This study identified the role of plants in PAD acceleration, providing an in-depth understanding of pyrrhotite in CW systems.


Asunto(s)
Nitrógeno , Humedales , Desnitrificación , Procesos Autotróficos , Plantas , Aguas Residuales , Eliminación de Residuos Líquidos
11.
Microbiol Spectr ; 10(6): e0061422, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36286994

RESUMEN

The Southwest Indian Ridge (SWIR) is one of the typical representatives of deep-sea ultraslow-spreading ridges, and has increasingly become a hot spot of studying subsurface geological activities and deep-sea mining management. However, the understanding of microbial activities is still limited on active hydrothermal vent chimneys in SWIR. In this study, samples from an active black smoker and a diffuse vent located in the Longqi hydrothermal region were collected for deep metagenomic sequencing, which yielded approximately 290 GB clean data and 295 mid-to-high-quality metagenome-assembled genomes (MAGs). Sulfur oxidation conducted by a variety of Gammaproteobacteria, Alphaproteobacteria, and Campylobacterota was presumed to be the major energy source for chemosynthesis in Longqi hydrothermal vents. Diverse iron-related microorganisms were recovered, including iron-oxidizing Zetaproteobacteria, iron-reducing Deferrisoma, and magnetotactic bacterium. Twenty-two bacterial MAGs from 12 uncultured phyla harbored iron oxidase Cyc2 homologs and enzymes for organic carbon degradation, indicated novel chemolithoheterotrophic iron-oxidizing bacteria that affected iron biogeochemistry in hydrothermal vents. Meanwhile, potential interactions between microbial communities and chimney minerals were emphasized as enriched metabolic potential of siderophore transportation, and extracellular electron transfer functioned by multi-heme proteins was discovered. Composition of chimney minerals probably affected microbial iron metabolic potential, as pyrrhotite might provide more available iron for microbial communities. Collectively, this study provides novel insights into microbial activities and potential mineral-microorganism interactions in hydrothermal vents. IMPORTANCE Microbial activities and interactions with minerals and venting fluid in active hydrothermal vents remain unclear in the ultraslow-spreading SWIR (Southwest Indian Ridge). Understanding about how minerals influence microbial metabolism is currently limited given the obstacles in cultivating microorganisms with sulfur or iron oxidoreduction functions. Here, comprehensive descriptions on microbial composition and metabolic profile on 2 hydrothermal vents in SWIR were obtained based on cultivation-free metagenome sequencing. In particular, autotrophic sulfur oxidation supported by minerals was presumed, emphasizing the role of chimney minerals in supporting chemosynthesis. Presence of novel heterotrophic iron-oxidizing bacteria was also indicated, suggesting overlooked biogeochemical pathways directed by microorganisms that connected sulfide mineral dissolution and organic carbon degradation in hydrothermal vents. Our findings offer novel insights into microbial function and biotic interactions on minerals in ultraslow-spreading ridges.


Asunto(s)
Hierro , Metagenoma , Filogenia , Minerales , Azufre/metabolismo , Oxidación-Reducción , Carbono/metabolismo , ARN Ribosómico 16S
12.
J Environ Manage ; 317: 115394, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35751240

RESUMEN

Nowadays, due to the strategic status of nickel in the global market, utilizing its disregarded resources like low-grade nickel containing pyrrhotite is of significant importance. A comprehensive set of experiments and analyses were performed to determine the bioleaching capability and mechanism for nickel extraction from hexagonal and monoclinic pyrrhotite. Over 95% Ni extraction was achieved from the hexagonal pyrrhotite sample. Ni extraction from the monoclinic sample reached its maximum value of 67% and 90% at 3% pulp density, with mixed mesophilic and moderately thermophilic cultures, respectively. Characterization analyses indicated that jarosite and elemental sulfur formation in mixed mesophilic bioleaching reduced the samples' bio-oxidation rate and metal dissolution. The kinetics study revealed that the controlling step in thermophilic bioleaching is the chemical reaction; however, the mixed control model was best fitted on mesophilic data. Electrochemistry studies confirmed bioleaching results and indicated that monoclinic pyrrhotite's oxidation rate under the operating conditions is faster than hexagonal pyrrhotite, and the temperature positively correlates with the oxidation rate. Toxicity assessment analysis showed that the final residues of both bioleached samples could be considered environmentally safe.


Asunto(s)
Metales , Níquel , Cinética , Metales/química , Níquel/química , Oxidación-Reducción , Temperatura
13.
Trends Microbiol ; 30(11): 1072-1083, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35624031

RESUMEN

Pyrite (FeS2) is the most abundant iron sulfide mineral in Earth's crust. Until recently, FeS2 has been considered a sink for iron (Fe) and sulfur (S) at low temperature in the absence of oxygen or oxidative weathering, making these elements unavailable to biology. However, anaerobic methanogens can transfer electrons extracellularly to reduce FeS2 via direct contact with the mineral. Reduction of FeS2 occurs through a multistep process that generates aqueous sulfide (HS-) and FeS2-associated pyrrhotite (Fe1-xS). Subsequent dissolution of Fe1-xS provides Fe(II)(aq), but not HS-, that rapidly complexes with HS-(aq) generated from FeS2 reduction to form soluble iron sulfur clusters [nFeS(aq)]. Cells assimilate nFeS(aq) to meet Fe/S nutritional demands by mobilizing and hyperaccumulating Fe and S from FeS2. As such, reductive dissolution of FeS2 by methanogens has important implications for element cycling in anoxic habitats, both today and in the geologic past.


Asunto(s)
Hierro , Sulfuros , Compuestos Ferrosos , Minerales , Oxígeno , Azufre
14.
Front Microbiol ; 13: 878387, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35615515

RESUMEN

Pyrite (FeS2) has a very low solubility and therefore has historically been considered a sink for iron (Fe) and sulfur (S) and unavailable to biology in the absence of oxygen and oxidative weathering. Anaerobic methanogens were recently shown to reduce FeS2 and assimilate Fe and S reduction products to meet nutrient demands. However, the mechanism of FeS2 mineral reduction and the forms of Fe and S assimilated by methanogens remained unclear. Thermodynamic calculations described herein indicate that H2 at aqueous concentrations as low as 10-10 M favors the reduction of FeS2, with sulfide (HS-) and pyrrhotite (Fe1- x S) as products; abiotic laboratory experiments confirmed the reduction of FeS2 with dissolved H2 concentrations greater than 1.98 × 10-4 M H2. Growth studies of Methanosarcina barkeri provided with FeS2 as the sole source of Fe and S resulted in H2 production but at concentrations too low to drive abiotic FeS2 reduction, based on abiotic laboratory experimental data. A strain of M. barkeri with deletions in all [NiFe]-hydrogenases maintained the ability to reduce FeS2 during growth, providing further evidence that extracellular electron transport (EET) to FeS2 does not involve H2 or [NiFe]-hydrogenases. Physical contact between cells and FeS2 was required for mineral reduction but was not required to obtain Fe and S from dissolution products. The addition of a synthetic electron shuttle, anthraquinone-2,6-disulfonate, allowed for biological reduction of FeS2 when physical contact between cells and FeS2 was prohibited, indicating that exogenous electron shuttles can mediate FeS2 reduction. Transcriptomics experiments revealed upregulation of several cytoplasmic oxidoreductases during growth of M. barkeri on FeS2, which may indicate involvement in provisioning low potential electrons for EET to FeS2. Collectively, the data presented herein indicate that reduction of insoluble FeS2 by M. barkeri occurred via electron transfer from the cell surface to the mineral surface resulting in the generation of soluble HS- and mineral-associated Fe1- x S. Solubilized Fe(II), but not HS-, from mineral-associated Fe1- x S reacts with aqueous HS- yielding aqueous iron sulfur clusters (FeS aq ) that likely serve as the Fe and S source for methanogen growth and activity. FeS aq nucleation and subsequent precipitation on the surface of cells may result in accelerated EET to FeS2, resulting in positive feedback between cell activity and FeS2 reduction.

15.
Geochim Cosmochim Acta ; 303: 66-91, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34531614

RESUMEN

Determining compositional trends among individual minerals is key to understanding the thermodynamic conditions under which they formed and altered, and is also essential to maximizing the scientific value of small extraterrestrial samples, including returned samples and meteorites. Here we report the chemical compositions of Fe-sulfides, focusing on the pyrrhotite-group sulfides, which are ubiquitous in chondrites and are sensitive indicators of formation and alteration conditions in the protoplanetary disk and in small Solar System bodies. Our data show that while there are trends with the at.% Fe/S ratio of pyrrhotite with thermal and aqueous alteration in some meteorite groups, there is a universal trend between the Fe/S ratio and degree of oxidation. Relatively reducing conditions led to the formation of troilite during: (1) chondrule formation in the protoplanetary disk (i.e., pristine chondrites) and (2) parent body thermal alteration (i.e., LL4 to LL6, CR1, CM, and CY chondrites). Oxidizing and sulfidizing conditions led to the formation of Fe-depleted pyrrhotite with low Fe/S ratios during: (1) aqueous alteration (i.e., CM and CI chondrites), and (2) thermal alteration (i.e., CK and R chondrites). The presence of troilite in highly aqueously altered carbonaceous chondrites (e.g., CY, CR1, and some CM chondrites) indicates they were heated after aqueous alteration. The presence of troilite, Fe-depleted pyrrhotite, or pyrite in a chondrite can provide an estimate of the oxygen and sulfur fugacities at which it was formed or altered. The data reported here can be used to estimate the oxygen fugacity of formation and potentially the aqueous and/or thermal histories of sulfides in extraterrestrial samples, including those returned by the Hayabusa2 mission and due to be returned by the OSIRIS-REx mission in the near future.

16.
J Phys Condens Matter ; 33(46)2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34380113

RESUMEN

Iron mono-sulphides, or pyrrhotites, are minerals present in the Earth's crust and mantle as well as major magnetic constituents of several classes of meteorites, thus are of interest to a wide range of disciplines including geology, geophysics, geochemistry, and material science. Despite displaying diverse magnetic properties as a result of iron vacancy ordering, the underlying exchange mechanism has not been quantified. This study presents an examination of the electronic and magnetic properties for the two pyrrhotite group end members, hexagonal FeS and monoclinic Fe7S8(4C superstructure) by means of density functional theory coupled with a Heisenberg magnetic model. The easy magnetization axes of FeS and Fe7S8are found to be positioned along the crystallographicc-direction and at an angle of 56° to thec-direction, respectively. The magnetic anisotropy energy in Fe7S8is greatly increased as a consequence of the vacancy framework when compared to FeS. The main magnetic interaction, in both compounds, is found to be the isotropic exchange interaction favouring antiferromagnetic alignment between nearest-neighbouring spins. The origin of the exchange interaction is elucidated further following the Goodenough-Kanamori-Anderson rules. The antisymmetric spin exchange is found to have a minor effect in both compounds. The theoretical findings presented in this work thus help to further resolve some of the ambiguities in the magnetic features of pyrrhotites.

17.
Chemosphere ; 285: 131409, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34271466

RESUMEN

As military applications of the insensitive munitions compounds (IMCs) 2,4-dinitroanisole (DNAN) and 3-nitro-1,2,4-triazol-5-one (NTO) increase, there is a growing need to understand their environmental fate and to develop remediation strategies to mitigate their impacts. Iron (II) monosulfide (FeS) minerals are abundant in freshwater and marine sediments, marshes, and hydrothermal environments. This study shows that FeS solids can reduce DNAN and NTO to their corresponding amines under anoxic ambient conditions. The reactions between IMCs and the FeS minerals were surface-mediated since they did not occur when only dissolved Fe2+(aq) and S2-(aq) were present. Mackinawite, a tetragonal FeS with a layered structure, reduced DNAN mainly to 2-methoxy-5-nitroaniline (MENA), which in turn was partially reduced to 2-4-diaminoanisole (DAAN). The layered structure of mackinawite provided intercalation sites likely responsible for partial adsorption of MENA and DAAN. Mackinawite entirely reduced NTO to 3-amino-1,2,4-triazol-5-one (ATO). The reduction of IMCs showed concurrent oxidation of mackinawite to goethite and elemental sulfur. A commercial FeS product, composed mainly of pyrrhotite and troilite, reduced DNAN to DAAN and NTO to ATO. At pH 6.5, DNAN and NTO transformation rates were 667 and 912 µmol h-1 m-2, respectively, on the mackinawite surface and 417 and 1344 µmol h-1 m-2, respectively, on the commercial FeS surface. This is the first report of the reduction of a nitro-heterocyclic compound (NTO) by FeS minerals. The evidence indicates that DNAN and NTO can be rapidly transformed to their succeeding amines in anoxic subsurface environments and aquatic sediments rich in FeS minerals.


Asunto(s)
Sustancias Explosivas , Hierro , Anisoles , Compuestos Ferrosos , Minerales , Nitrocompuestos , Triazoles
18.
Water Res ; 189: 116662, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33271414

RESUMEN

In this study, pyrrhotite is applied to remove arsenite (As(III)) and NO3- from groundwater simultaneously. Batch experiments find that sulfur autotrophic denitrifiers are not inhibited by As(III) with concentration up to 70 mg·L-1, and pyrrhotite autotrophic denitrification (PAD) can effectively remove As(III), NO3- and PO43- simultaneously. Treating water with As(III) 874.50±32.76 µg·L-1, NO3--N 30 mg·L-1, and PO43--P 0.5 mg·L-1, the pyrrhotite-sulfur-limestone autotrophic denitrification (PSLAD) biofilter can achieve effluent with total Arsenic (As) 7.84±7.29 µg·L-1, NO3--N 3.78±1.14 mg·L-1, and PO43--P below detection limit at hydraulic retention time 6 h. In the PSLAD biofilter, Thiobacillus is the most abundant bacterium, and it uses pyrrhotite and sulfur as electron donor to reduce NO3-, and basically Fe2+ and As(III) are oxidized to Fe3+ and arsenate, respectively. As and PO43- were mainly removed through precipitates FeAsO4 and FePO4, respectively. Technology based on the PAD is a simple, cost-effective and efficient way for remediation of As(III) and NO3- co-contaminated groundwater, and avoiding contaminants transference between groundwater and surface water.


Asunto(s)
Arsenitos , Agua Subterránea , Procesos Autotróficos , Reactores Biológicos , Desnitrificación , Nitratos/análisis
19.
Chemosphere ; 263: 128354, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33297276

RESUMEN

In the recent years many studies have shown that wetland plants play beneficial roles in bioelectricity enhancement in constructed wetland-microbial fuel cell (CW-MFC) because of the exudation of root oxygen and root exudates. In this study, the long-term roles of plants on the bioelectricity generation and contaminant removal were investigated in multi-anode (Anode1 and Anode2) and single cathode CW-MFCs. The electrode distances were 20 cm between Anode1-cathode and 10 cm between Anode2-cathode, respectively. Additionally, the employment of natural conductive pyrrhotite mineral as cathode material was firstly investigated in CW-MFC system. A cathode potential of -98 ± 52 mV to -175 ± 60 mV was achieved in the unplanted (CW-MFC 1), and planted CW-MFCs with Iris pseudacorus (CW-MFC 2), Lythrum salicaria (CW-MFC 3), and Phragmites australis (CW-MFC 4). The maximum power densities of Anode1-cathode and Anode2-cathode were 8.23 and 15.29 mW/m2 in CW-MFC 1, 8.51 and 1.67 mW/m2 in CW-MFC 2, 5.67 and 3.15 mW/m2 in CW-MFC 3, and 7.59 and 14.71 mW/m2 in CW-MFC 4, respectively. Interestingly, smaller power density was observed at Anode2-cathode, which has shorter electrode distance than Anode1-cathode in both CW-MFC 2 and CW-MFC 3, which indicates the negative role of oxygen released from the flourished plant roots at Anode2 micro-environment in power production. Therefore, recovering power from commercial CW-MFCs with flourished plants will be a challenge. The contradiction between keeping short electrode distance and avoiding the interference from plant roots to maintain anaerobic anode may be solved by the proposed modular CW-MFCs.


Asunto(s)
Fuentes de Energía Bioeléctrica , Electricidad , Electrodos , Aguas Residuales , Humedales
20.
Bioresour Technol ; 308: 123302, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32276204

RESUMEN

Pyrrhotite-sulfur autotrophic denitrification (PSAD) system, using mixture of pyrrhotite and sulfur particle as electron donor, was studied through batch, column and pilot experiments. Treating synthetic secondary effluent at HRT 3 h, the PSAD system obtained the effluent with NO3--N 0.28 ± 0.14 mg·L-1 and without PO43--P to be detected. Thiobacillus was the most abundant autotrophic denitrification bacteria; autotrophic, heterotrophic and sulfate-reducing bacteria coexisted in the PSAD system; phosphate was mainly removed in forms of graftonite, dufrenite, ardealite. The H+ produced in the SAD could accelerate the PAD through promoting pyrrhotite dissolution, and iron ions produced in the PAD could accelerate the SAD through Fe3+/Fe2+ shuttle. Because of the synergistic effects between the pyrrhotite and sulfur, the PSAD system removed nitrate and phosphate deeply and efficiently. It is a promising way to meet the stringent nitrogen and phosphorus discharge standards and to recover phosphorus resources from wastewater.


Asunto(s)
Desnitrificación , Microbiota , Procesos Autotróficos , Reactores Biológicos , Minerales , Nitratos , Nitrógeno , Fosfatos , Azufre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA