Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Exp Neurol ; 348: 113950, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34902356

RESUMEN

Adult neurogenesis is well-described in the subventricular and subgranular zones of the mammalian brain. Recent observations that resident glia express stem cell markers in some areas of the brain not traditionally associated with neurogenesis hint to a possible role in tissue repair. The Bergmann glia (BG) population in the cerebellum displays markers and in vitro features associated with neural stem cells (NSC), however the physiological relevance of this phenotypic overlap remains unclear in the absence of established in vivo evidence of tissue regeneration in the adult cerebellum. Here, this BG population was analysed in the adult cerebellum of different species and showed conservation of NSC-associated marker expression including Sox1, Sox2 and Sox9, in chick, primate and mouse cerebellum tissue. NSC-like cells isolated from adult mouse cerebellum showed slower growth when compared to lateral ventricle NSC, as well as differences upon differentiation. In a mouse model of cerebellar degeneration, progressive Purkinje cell loss was linked to cerebellar cortex disorganisation and a significant increase in Sox-positive cells compared to matching controls. These results show that this Sox-positive population responds to cerebellar tissue disruption, suggesting it may represent a mobilisable cellular resource for targeted strategies to promote tissue repair.


Asunto(s)
Diferenciación Celular/fisiología , Cerebelo/metabolismo , Degeneración Nerviosa/metabolismo , Factores de Transcripción SOX/biosíntesis , Factores de Edad , Animales , Cerebelo/citología , Cerebelo/patología , Pollos , Ratones , Ratones Transgénicos , Degeneración Nerviosa/genética , Degeneración Nerviosa/patología , Primates , Factores de Transcripción SOX/genética , Especificidad de la Especie
2.
Natl Sci Rev ; 8(7): nwab024, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34691693

RESUMEN

Loss-of-function mutations in sorting nexin 14 (SNX14) cause autosomal recessive spinocerebellar ataxia 20, which is a form of early-onset cerebellar ataxia that lacks molecular mechanisms and mouse models. We generated Snx14-deficient mouse models and observed severe motor deficits and cell-autonomous Purkinje cell degeneration. SNX14 deficiency disrupted microtubule organization and mitochondrial transport in axons by destabilizing the microtubule-severing enzyme spastin, which is implicated in dominant hereditary spastic paraplegia with cerebellar ataxia, and compromised axonal integrity and mitochondrial function. Axonal transport disruption and mitochondrial dysfunction further led to degeneration of high-energy-demanding Purkinje cells, which resulted in the pathogenesis of cerebellar ataxia. The antiepileptic drug valproate ameliorated motor deficits and cerebellar degeneration in Snx14-deficient mice via the restoration of mitochondrial transport and function in Purkinje cells. Our study revealed an unprecedented role for SNX14-dependent axonal transport in cerebellar ataxia, demonstrated the convergence of SNX14 and spastin in mitochondrial dysfunction, and suggested valproate as a potential therapeutic agent.

3.
Acta Neuropathol Commun ; 9(1): 94, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-34020718

RESUMEN

Fluorescent staining of newly transcribed RNA via metabolic labelling with 5-ethynyluridine (EU) and click chemistry enables visualisation of changes in transcription, such as in conditions of cellular stress. Here, we tested whether EU labelling can be used to examine transcription in vivo in mouse models of nervous system disorders. We show that injection of EU directly into the cerebellum results in reproducible labelling of newly transcribed RNA in cerebellar neurons and glia, with cell type-specific differences in relative labelling intensities, such as Purkinje cells exhibiting the highest levels. We also observed EU-labelling accumulating into cytoplasmic inclusions, indicating that EU, like other modified uridines, may introduce non-physiological properties in labelled RNAs. Additionally, we found that EU induces Purkinje cell degeneration nine days after EU injection, suggesting that EU incorporation not only results in abnormal RNA transcripts, but also eventually becomes neurotoxic in highly transcriptionally-active neurons. However, short post-injection intervals of EU labelling in both a Purkinje cell-specific DNA repair-deficient mouse model and a mouse model of spinocerebellar ataxia 1 revealed reduced transcription in Purkinje cells compared to controls. We combined EU labelling with immunohistology to correlate altered EU staining with pathological markers, such as genotoxic signalling factors. These data indicate that the EU-labelling method provided here can be used to identify changes in transcription in vivo in nervous system disease models.


Asunto(s)
Mutación/genética , Enfermedades Neurodegenerativas/genética , Células de Purkinje/química , Coloración y Etiquetado/métodos , Transcripción Genética/genética , Uridina/análisis , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Degeneración Nerviosa/genética , Degeneración Nerviosa/patología , Enfermedades Neurodegenerativas/patología , Células de Purkinje/patología
4.
Front Neurosci ; 14: 293, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32300292

RESUMEN

Spinocerebellar ataxias (SCAs) affect the cerebellum and its afferent and efferent systems that degenerate during disease progression. In the cerebellum, Purkinje cells (PCs) are the most vulnerable and their prominent loss in the late phase of the pathology is the main characteristic of these neurodegenerative diseases. Despite the constant advancement in the discovery of affected molecules and cellular pathways, a comprehensive description of the events leading to the development of motor impairment and degeneration is still lacking. However, in the last years the possible causal role for altered cerebellar development and neuronal circuit wiring in SCAs has been emerging. Not only wiring and synaptic transmission deficits are a common trait of SCAs, but also preventing the expression of the mutant protein during cerebellar development seems to exert a protective role. By discussing this tight relationship between cerebellar development and SCAs, in this review, we aim to highlight the importance of cerebellar circuitry for the investigation of SCAs.

5.
J Tissue Eng Regen Med ; 13(9): 1702-1711, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31272136

RESUMEN

Cell therapy has been proven to be a promising treatment for fighting neurodegenerative diseases. As neuronal replacement presents undeniable complications, the neuroprotection of live neurons arises as the most suitable therapeutic approach. Accordingly, the earlier the diagnosis and treatment, the better the prognosis. However, these diseases are commonly diagnosed when symptoms have already progressed towards an irreversible degenerative stage. This problem is especially dramatic when neurodegeneration is aggressive and rapidly progresses. One of the most interesting approaches for neuroprotection is the fusion between healthy bone marrow-derived cells and neurons, as the former can provide the latter with regular/protective genes without harming brain parenchyma. So far, this phenomenon has only been identified in Purkinje cells, whose death is the cause of different diseases like cerebellar ataxias. Here we have employed a model of aggressive cerebellar neurodegeneration, the Purkinje Cell Degeneration mouse, to optimize a cell therapy based on bone marrow-derived cell and cell fusion. Our findings show that the substitution of bone marrow in diseased animals by healthy bone marrow, even prior to the onset of neurodegeneration, is not fast enough to stop neuronal loss in time. Conversely, avoiding bone marrow replacement and ensuring a regular supply of healthy cells through continuous, daily transplants, the neurodegenerative milieu of PCD is enough to attract those transplanted elements. Furthermore, in the most affected cerebellar regions, more than a half of surviving neurons undergo a process of cell fusion. Therefore, this method deserves consideration as a means to impede neuronal cell death.


Asunto(s)
Trasplante de Médula Ósea , Enfermedades Neurodegenerativas/terapia , Animales , Busulfano/farmacología , Recuento de Células , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Enfermedades Neurodegenerativas/patología , Células de Purkinje/efectos de los fármacos , Células de Purkinje/patología
6.
J Neurochem ; 147(4): 557-572, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30225910

RESUMEN

Purkinje cell degeneration (pcd) was first identified in a spontaneous mouse mutant showing cerebellar ataxia. In addition to cerebellar Purkinje cells (PCs), retinal photoreceptors, mitral cells in the olfactory bulb, and a discrete subpopulation of thalamic neurons also degenerate in the mutant brains. The gene responsible for the pcd mutant is Nna1, also known as ATP/GTP binding protein 1 or cytosolic carboxypeptidase-like 1, which encodes a zinc carboxypeptidase protein. To investigate pathogenesis of the pcd mutation in detail, we generated a conditional Nna1 allele targeting the carboxypeptidase domain at C-terminus. After Cre recombination and heterozygous crossing, we generated Nna1 knockout (KO) mice and found that the Nna1 KO mice began to show cerebellar ataxia at postnatal day 20 (P20). Most PCs degenerated until 4-week-old, except lobule X. Activated microglia and astrocytes were also observed in the Nna1 KO cerebellum. In the mutant brain, the Nna1 mRNA level was dramatically reduced, suggesting that nonsense-mediated mRNA decay occurs in it. Since the Nna1 protein acts as a de-glutamatase on the C-terminus of α-tubulin and ß-tubulin, increased polyglutamylated tubulin was detected in the Nna1 KO cerebellum. In addition, the endoplasmic reticulum stress marker, C/EBP homologous protein (CHOP), was up-regulated in the mutant PCs. We report the generation of a functional Nna1 conditional allele and possible mechanisms of PC death in the Nna1 KO in the cerebellum. OPEN PRACTICES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.


Asunto(s)
Proteínas de Unión al GTP/genética , Degeneración Nerviosa/genética , Degeneración Nerviosa/patología , Células de Purkinje/patología , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/genética , Alelos , Animales , Conducta Animal , Carboxipeptidasas , Ataxia Cerebelosa/genética , Cerebelo/metabolismo , Cerebelo/patología , Estrés del Retículo Endoplásmico/genética , Exones/genética , Femenino , Eliminación de Gen , Masculino , Ratones , Ratones Noqueados , Mutación/genética , Degeneración Nerviosa/psicología , Fenotipo , Desempeño Psicomotor , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
7.
Mol Neurodegener ; 12(1): 16, 2017 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-28193238

RESUMEN

BACKGROUND: Neuroinflammation is associated with a wide range of neurodegenerative disorders, however the specific contribution to individual disease pathogenesis and selective neuronal cell death is not well understood. Inflammatory cerebellar ataxias are neurodegenerative diseases occurring in various autoimmune/inflammatory conditions, e.g. paraneoplastic syndromes. However, how inflammatory insults can cause selective cerebellar neurodegeneration in the context of these diseases remains open, and appropriate animal models are lacking. A key regulator of neuroinflammatory processes is the NF-κB signalling pathway, which is activated by the IκB kinase 2 (IKK2) in response to various pathological conditions. Importantly, its activation is sufficient to initiate neuroinflammation on its own. METHODS: To investigate the contribution of IKK/NF-κB-mediated neuroinflammation to neurodegeneration, we established conditional mouse models of cerebellar neuroinflammation, which depend either on the tetracycline-regulated expression of IKK2 in astrocytes or Cre-recombination based IKK2 activation in Bergmann glia. RESULTS: We demonstrate that IKK2 activation for a limited time interval in astrocytes is sufficient to induce neuroinflammation, astrogliosis and loss of Purkinje neurons, resembling the pathogenesis of inflammatory cerebellar ataxias. We identified IKK2-driven irreversible dysfunction of Bergmann glia as critical pathogenic event resulting in Purkinje cell loss. This was independent of Lipocalin 2, an acute phase protein secreted by reactive astrocytes and well known to mediate neurotoxicity. Instead, downregulation of the glutamate transporters EAAT1 and EAAT2 and ultrastructural alterations suggest an excitotoxic mechanism of Purkinje cell degeneration. CONCLUSIONS: Our results suggest a novel pathogenic mechanism how diverse inflammatory insults can cause inflammation/autoimmune-associated cerebellar ataxias. Disease-mediated elevation of danger signals like TLR ligands and inflammatory cytokines in the cerebellum activates IKK2/NF-κB signalling in astrocytes, which as a consequence triggers astrogliosis-like activation of Bergmann glia and subsequent non-cell-autonomous Purkinje cell degeneration. Notably, the identified hit and run mechanism indicates only an early window for therapeutic interventions.


Asunto(s)
Astrocitos/metabolismo , Cerebelo/metabolismo , Quinasa I-kappa B/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Neuroglía/metabolismo , Animales , Modelos Animales de Enfermedad , Gliosis/patología , Inflamación/metabolismo , Ratones Transgénicos , FN-kappa B/metabolismo , Enfermedades Neurodegenerativas/patología
8.
Neurosci Lett ; 558: 154-8, 2014 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-24269873

RESUMEN

SCA2 transgenic mice are thought to be a useful model of human spinocerebellar ataxia type 2. There is no effective therapy for cerebellar degenerative disorders, therefore neurotransplantation could offer hope. The aim of this work was to assess the survival and morphology of embryonic cerebellar grafts transplanted into the cerebellum of adult SCA2 mice. Four month-old homozygous SCA2 and negative control mice were treated with bilateral intracerebellar injections of an enhanced green fluorescent protein-positive embryonic cerebellar cell suspension. Graft survival and morphology were examined three months later. Graft-derived Purkinje cells and the presence of astrocytes in the graft were detected immunohistochemically. Nissl and hematoxylin-eosin techniques were used to visualize the histological structure of the graft and surrounding host tissue. Grafts survived in all experimental mice; no differences in graft structure, between SCA2 homozygous and negative mice, were found. The grafts contained numerous Purkinje cells but long distance graft-to-host axonal connections to the deep cerebellar nuclei were rarely seen. Relatively few astrocytes were found in the center of the graft. No signs of inflammation or tissue destruction were seen in the area around the grafts. Despite good graft survival and the presence of graft-derived Purkinje cells, the structure of the graft did not seem to promise any significant specific functional effects. We have shown that the graft is available for long-term experiments. Nevertheless, it would be beneficial to search for ways of enhancement of connections between the graft and host.


Asunto(s)
Cerebelo/patología , Cerebelo/trasplante , Trasplante de Tejido Fetal , Animales , Femenino , Supervivencia de Injerto , Masculino , Ratones Transgénicos , Factores Sexuales , Ataxias Espinocerebelosas/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA