Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Int J Med Sci ; 21(10): 1840-1851, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39113898

RESUMEN

Pulmonary arterial hypertension (PAH) is a severe pulmonary vascular disease characterized by increased pulmonary vascular resistance because of vascular remodeling and vasoconstriction. Subsequently, PAH leads to right ventricular hypertrophy and heart failure. Cell death mechanisms play a significant role in development and tissue homeostasis, and regulate the balance between cell proliferation and differentiation. Several basic and clinical studies have demonstrated that multiple mechanisms of cell death, including pyroptosis, apoptosis, autophagy, ferroptosis, anoikis, parthanatos, and senescence, are closely linked with the pathogenesis of PAH. This review summarizes different cell death mechanisms involved in the death of pulmonary artery smooth muscle cells (PASMCs) and pulmonary artery endothelial cells (PAECs), the primary target cells in PAH. This review summarizes the role of these cell death mechanisms, associated signaling pathways, unique effector molecules, and various pro-survival or reprogramming mechanisms. The aim of this review is to summarize the currently known molecular mechanisms underlying PAH. Further investigations of the cell death mechanisms may unravel new avenues for the prevention and treatment of PAH.


Asunto(s)
Células Endoteliales , Miocitos del Músculo Liso , Hipertensión Arterial Pulmonar , Arteria Pulmonar , Transducción de Señal , Humanos , Células Endoteliales/patología , Miocitos del Músculo Liso/patología , Hipertensión Arterial Pulmonar/fisiopatología , Hipertensión Arterial Pulmonar/patología , Arteria Pulmonar/patología , Arteria Pulmonar/fisiopatología , Muerte Celular , Animales , Apoptosis , Autofagia/fisiología , Hipertensión Pulmonar/patología , Hipertensión Pulmonar/fisiopatología
3.
Respir Res ; 25(1): 261, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38943142

RESUMEN

AIMS: To detect the expression of autophagy components, p38 MAPK (p38) and phosphorylated forkhead box transcription factor O-1 (pFoxO1) in pulmonary vascular endothelial cells of chronic thromboembolic pulmonary hypertension (CTEPH) rats and to investigate the possible mechanism through which tissue factor (TF) regulates autophagy. METHODS: Pulmonary artery endothelial cells (PAECs) were isolated from CTEPH (CTEPH group) and healthy rats (control group (ctrl group)) which were cocultured with TF at different time points including 12 h, 24 h, 48 h and doses including 0 nM,10 nM, 100 nM, 1µM, 10µM, 100µM and cocultured with TFPI at 48 h including 0 nM, 2.5 nM, 5 nM. The expression of forkhead box transcription factor O-1 (FoxO1), pFoxO1, p38, Beclin-1 and LC3B in PAECs was measured. Coimmunoprecipitation (co-IP) assays were used to detect the interaction between FoxO1 and LC3. RESULTS: The protein expression of p-FoxO1/FoxO1 was significantly lower in the CTEPH groups (cocultured with TF from 0 nM to 100 µM) than in the ctrl group at 12 h, 24 h, and 48 h (P < 0.05) and was significantly lower in the CTEPH groups (cocultured with TFPI from 0 nM to 5 nM) than in the ctrl group at 48 h (P < 0.05). The protein expression of p38 in the CTEPH groups treated with 0 nM, 10 nM, 100 nM or 1 µM TF for 48 h significantly increased than ctrl groups (P < 0.05) and was significantly increased in the CTEPH groups (cocultured with TFPI concentration from 0 nM to 5 nM) than in the ctrl group at 48 h (P < 0.05). The protein expression of Beclin1 at the same concentration (cocultured with TF from 0 nM to 100 µM) was significantly lower in the CTEPH groups than ctrl groups after 24 h and 48 h (P < 0.05) and was significantly decreased in the CTEPH groups (cocultured with TFPI concentration from 2.5 nM to 5 nM) than in the ctrl group at 48 h (P < 0.05). The protein expression of LC3-II/LC3-I at the same concentration (cocultured with TF 0 nM, 1 µM, 10 µM, and 100 µM) was significantly lower in the CTEPH than in the ctrl groups after 12 h (P < 0.05) and was significantly lower in the CTEPH groups (cocultured with TFPI concentration from 0 nM to 5 nM) than in the ctrl group at 48 h (P < 0.05). There were close interactions between FoxO1 and LC3 in the control and CTEPH groups at different doses and time points. CONCLUSION: The autophagic activity of PAECs from CTEPH rats was disrupted. TF, FoxO1 and p38 MAPK play key roles in the autophagic activity of PAECs. TF may regulate autophagic activity through the p38 MAPK-FoxO1 pathway.


Asunto(s)
Autofagia , Células Endoteliales , Hipertensión Pulmonar , Arteria Pulmonar , Ratas Sprague-Dawley , Tromboplastina , Proteínas Quinasas p38 Activadas por Mitógenos , Animales , Autofagia/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Ratas , Masculino , Células Endoteliales/metabolismo , Células Cultivadas , Tromboplastina/metabolismo , Tromboplastina/biosíntesis , Hipertensión Pulmonar/metabolismo , Embolia Pulmonar/metabolismo , Embolia Pulmonar/patología , Enfermedad Crónica , Transducción de Señal/fisiología , Proteína Forkhead Box O1
4.
Eur J Pharmacol ; 972: 176547, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38561103

RESUMEN

Idiopathic pulmonary fibrosis (IPF) associated to pulmonary hypertension (PH) portends a poor prognosis, characterized by lung parenchyma fibrosis and pulmonary artery remodeling. Serum and parenchyma levels of Interleukin 11 (IL-11) are elevated in IPF-PH patients and contributes to pulmonary artery remodeling and PH. However, the effect of current approved therapies against IPF in pulmonary artery remodeling induced by IL-11 is unknown. The aim of this study is to analyze the effects of nintedanib and pirfenidone on pulmonary artery endothelial and smooth muscle cell remodeling induced by IL-11 in vitro. Our results show that nintedanib (NTD) and pirfenidone (PFD) ameliorates endothelial to mesenchymal transition (EnMT), pulmonary artery smooth muscle cell to myofibroblast-like transformation and pulmonary remodeling in precision lung cut slices. This study provided also evidence of the inhibitory effect of PFD and NTD on IL-11-induced endothelial and muscle cells proliferation and senescence. The inhibitory effect of these drugs on monocyte arrest and angiogenesis was also studied. Finally, we observed that IL-11 induced canonical signal transducer and activator of transcription 3 (STAT3) and non-canonical mitogen-activated protein kinase 1/2 (ERK1/2) phosphorylation, but, PFD and NTD only inhibited ERK1/2 phosphorylation. Therefore, this study provided evidence of the inhibitory effect of NTD and PFD on markers of pulmonary artery remodeling induced by IL-11.


Asunto(s)
Proliferación Celular , Células Endoteliales , Indoles , Interleucina-11 , Miocitos del Músculo Liso , Arteria Pulmonar , Piridonas , Factor de Transcripción STAT3 , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/citología , Interleucina-11/metabolismo , Indoles/farmacología , Animales , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Factor de Transcripción STAT3/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Piridonas/farmacología , Proliferación Celular/efectos de los fármacos , Ratas , Humanos , Masculino , Senescencia Celular/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/patología , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Remodelación Vascular/efectos de los fármacos
5.
Methods Mol Biol ; 2803: 49-58, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38676884

RESUMEN

Pulmonary arterial hypertension (PAH) is a severe vascular disease characterized by persistent precapillary pulmonary hypertension, leading to right heart failure and death. Despite intense research in the last decades, PAH remains an incurable disease with high morbidity and mortality. New directions and therapies to improve understanding and treatment of PAH are desperately needed. The pathological mechanisms leading to this fatal disorder remain mostly undetermined, although structural remodeling of the pulmonary vessels is known to be an early feature of PAH. Pulmonary vascular remodeling includes proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) and pulmonary artery endothelial cells (PAECs). The use of in vitro approaches is useful to delineate the mechanisms involved in the pathogenesis of PAH and to identify new therapeutic strategies for PAH. In this chapter, we describe protocols for culturing and assessing proliferation and migration of human PASMCs and PAECs.


Asunto(s)
Movimiento Celular , Proliferación Celular , Células Endoteliales , Miocitos del Músculo Liso , Arteria Pulmonar , Humanos , Arteria Pulmonar/citología , Células Endoteliales/citología , Células Endoteliales/metabolismo , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , Técnicas de Cultivo de Célula/métodos , Células Cultivadas , Músculo Liso Vascular/citología
6.
Int Immunopharmacol ; 132: 111946, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38552292

RESUMEN

Ensuring the homeostatic integrity of pulmonary artery endothelial cells (PAECs) is essential for combatting pulmonary arterial hypertension (PAH), as it equips the cells to withstand microenvironmental challenges. Spermidine (SPD), a potent facilitator of autophagy, has been identified as a significant contributor to PAECs function and survival. Despite SPD's observed benefits, a comprehensive understanding of its protective mechanisms has remained elusive. Through an integrated approach combining metabolomics and molecular biology, this study uncovers the molecular pathways employed by SPD in mitigating PAH induced by monocrotaline (MCT) in a Sprague-Dawley rat model. The study demonstrates that SPD administration (5 mg/kg/day) significantly corrects right ventricular impairment and pathological changes in pulmonary tissues following MCT exposure (60 mg/kg). Metabolomic profiling identified a purine metabolism disorder in MCT-treated rats, which SPD effectively normalized, conferring a protective effect against PAH progression. Subsequent in vitro analysis showed that SPD (0.8 mM) reduces oxidative stress and apoptosis in PAECs challenged with Dehydromonocrotaline (MCTP, 50 µM), likely by downregulating purine nucleoside phosphorylase (PNP) and modulating polyamine biosynthesis through alterations in S-adenosylmethionine decarboxylase (AMD1) expression and the subsequent production of decarboxylated S-adenosylmethionine (dcSAM). These findings advocate SPD's dual inhibitory effect on PNP and AMD1 as a novel strategy to conserve cellular ATP and alleviate oxidative injuries, thus providing a foundation for SPD's potential therapeutic application in PAH treatment.


Asunto(s)
Células Endoteliales , Monocrotalina , Poliaminas , Hipertensión Arterial Pulmonar , Arteria Pulmonar , Purinas , Ratas Sprague-Dawley , Espermidina , Remodelación Vascular , Animales , Espermidina/farmacología , Espermidina/uso terapéutico , Purinas/farmacología , Poliaminas/metabolismo , Masculino , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Remodelación Vascular/efectos de los fármacos , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Ratas , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Hipertensión Arterial Pulmonar/inducido químicamente , Hipertensión Arterial Pulmonar/metabolismo , Células Cultivadas , Estrés Oxidativo/efectos de los fármacos , Apoptosis/efectos de los fármacos , Purina-Nucleósido Fosforilasa/metabolismo , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/metabolismo , Adenosilmetionina Descarboxilasa/metabolismo , Modelos Animales de Enfermedad , Humanos
7.
Poult Sci ; 103(5): 103388, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38428352

RESUMEN

Pulmonary artery remodeling is a characteristic feature of broiler ascites syndrome (BAS). Pulmonary artery endothelial cells (PAECs) regulated by HIF-1α play a critical role in pulmonary artery remodeling, but the underlying mechanisms of HIF-1α in BAS remain unclear. In this experiment, primary PAECs were cultured in vitro and were identified by coagulation factor VIII. After hypoxia and RNA interference, the mRNA and protein expression levels of HIF-1α and VEGF were determined by qPCR and Western blotting. The transcriptome profiles of PAECs were obtained by RNA sequencing. Our results showed that the positive rate of PAECs was more than 90%, hypoxia-induced promoted the proliferation and apoptosis of PAECs, and RNA interference significantly downregulated the expression of HIF-1α, inhibited the proliferation of PAECs, and promoted the apoptosis of PAECs. In addition, transcriptome sequencing analysis indicated that HIF-1α may regulate broiler ascites syndrome by mediating COL4A, vitronectin, vWF, ITGα8, and MKP-5 in the ECM, CAMs and MAPK pathways in PAECs. These studies lay the foundation for further exploration of the mechanisms of pulmonary artery remodeling, and HIF-1α may be a potentially effective gene for the prevention and treatment of BAS.


Asunto(s)
Pollos , Células Endoteliales , Subunidad alfa del Factor 1 Inducible por Hipoxia , Arteria Pulmonar , Interferencia de ARN , Animales , Arteria Pulmonar/metabolismo , Arteria Pulmonar/citología , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Células Endoteliales/fisiología , Células Endoteliales/metabolismo , Proliferación Celular , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , Enfermedades de las Aves de Corral/genética , Ascitis/veterinaria , Ascitis/genética , Apoptosis , Células Cultivadas
8.
J Cardiovasc Transl Res ; 17(4): 859-869, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38347336

RESUMEN

Altered mitochondrial dynamics affect pulmonary artery endothelial cells (PAECs) proliferation, contributing to the development of pulmonary hypertension. CD137 signaling promotes mitochondrial fission. We hypothesize CD137 signaling is involved in the excessive proliferation of PAECs. The levels of CD137 protein were increased in the lung tissue of hypoxic mice and hypoxic-stimulated PAECs. Activation of CD137 signal in hypoxic-PAECs upregulated the levels of hypoxia-inducible factor-2α (HIF-2α), glucose transporters type 4, the lactate transporter monocarboxylate transporter 4, key glycolysis rate-limiting enzymes and promoted mitochondrial division; moreover, increased glucose uptake, lactic acid and ATP production and proliferative cells were observed in these PAECs. Whereas, knockdown HIF-2α reversed CD137 signal-mediated effects in PAECs mentioned above. Compared with wild-type mice, the proliferation of PAECs and the percentage of vascular lateral wall thickness decreased in CD137 knockout mice. Together, CD137 signal participated in pulmonary vascular remodeling through the regulation of mitochondrial dynamics dependent on HIF-2α in PAECs.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Proliferación Celular , Células Endoteliales , Ratones Endogámicos C57BL , Ratones Noqueados , Dinámicas Mitocondriales , Arteria Pulmonar , Transducción de Señal , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral , Animales , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Células Cultivadas , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/genética , Remodelación Vascular , Masculino , Modelos Animales de Enfermedad , Hipoxia de la Célula , Mitocondrias/metabolismo , Mitocondrias/patología
9.
China Pharmacy ; (12): 179-185, 2024.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1006175

RESUMEN

OBJECTIVE To investigate the effects of the peroxisome proliferator-activated receptors δ (PPARδ) agonist GW501516 on the injury of pulmonary artery endothelial cells (PAECs) induced by hypoxia and its mechanism. METHODS The cytotoxic effects of GW501516 were observed by detecting the relative survival rate of PAECs; the protein expression of PPARδ was determined by Western blot assay. The cellular model of PAECs injury was established under hypoxic conditions; using antioxidant N-acetylcysteine (NAC) as positive control, the effects of GW501516 on cell injury and reactive oxygen species (ROS) production were investigated by detecting cell apoptotic rate, cell viability, lactate dehydrogenase (LDH) activity and ROS levels. Using nuclear factor erythroid 2-related factor 2(Nrf2) activator dimethyl fumarate (DMF) as positive control, PAECs were incubated with GW501516 and/or Nrf2 inhibitor ML385 under hypoxic conditions; the mechanism of GW501516 on PAECs injury induced by hypoxia was investigated by detecting cell injury (cell apoptosis, cell viability, LDH activity), the levels of superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), malondialdehyde (MDA) and ROS, the expressions of Nrf2, heme oxygenase-1 (HO-1) and cleaved-caspase-3 (C-caspase-3) protein. RESULTS The results demonstrated that hypoxia inhibited the protein expression of PPARδ (P<0.05), while GW501516 promoted the protein expression of PPARδ in hypoxia- exposed PAECs without obvious cytotoxic effects. GW501516 inhibited the apoptosis of PAECs, improved cell viability, and reduced LDH activity and ROS levels. GW501516 could up-regulate the protein expression of HO-1 in PAECs and the levels of SOD, GPx and CAT, while down-regulated the levels of MDA and ROS by activating the Nrf2 pathway (P<0.05); but Nrf2 inhibitor ML385 could reverse the above effects of GW501516 (P<0.05). GW501516 exerted similar effects to Nrf2 activator DMF in down-regulating the expression of C-caspase-3 and inhibiting the injury of PAECs under conditions of hypoxia (P<0.05). Moreover, Nrf2 inhibitor ML385 reversed the 163.com inhibition effects of GW501516 on PAECs injury (P<0.05). CONCLUSIONS GW501516 can relieve the hypoxia-induced injury of PAECs via the inhibition of oxidative stress, the mechanism of which may be associated with activating Nrf2.

10.
Cell Signal ; 113: 110939, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37871666

RESUMEN

Mitochondrial dysfunction in pulmonary artery endothelial cells (PAECs) is related to the pathogenesis of pulmonary hypertension (PH). The mitochondrial receptor protein FUN14 domain containing 1 (FUNDC1) was found to be involved in pulmonary artery smooth muscle cell proliferation in PH. However, its role in PAECs remains unclear. We investigated FUNDC1 expression in the pulmonary artery endothelium in both monocrotaline-induced animal models and TNF-α-stimulated cell models. Additionally, the effect of FUNDC1 on PAECs proliferation and its possible mechanism were also investigated. We observed decreased FUNDC1 protein levels in animals and in vitro in PAECs. FUNDC1 deficiency in PAECs upregulated the expression of the deubiquitination enzyme ubiquitin-specific peptidase 15 (USP15), enhanced dynamin-related protein1 (Drp1)-mediated mitochondrial division, and increased mitochondrial ROS levels via the deubiquitination of Drp1. Additionally, FUNDC1 deficiency increased aerobic glycolysis, the production of ATP and lactic acid, and glucose uptake. FUNDC1 overexpression inhibited PAECs proliferation. Moreover, FUNDC1 overexpression in combination with a mitochondrial division or aerobic glycolysis inhibitor enhanced its inhibitory effect on cell proliferation. Our study findings suggest that FUNDC1 deficiency induced by inflammation can promote PAECs proliferation by regulating mitochondrial dynamics and cell energy metabolism via the USP15/Drp1 pathway.


Asunto(s)
Hipertensión Pulmonar , Arteria Pulmonar , Animales , Arteria Pulmonar/metabolismo , Factor de Necrosis Tumoral alfa , Células Endoteliales/metabolismo , Dinámicas Mitocondriales , Dinaminas/metabolismo , Proliferación Celular , Proteínas Mitocondriales/metabolismo
11.
Pharmacol Res ; 197: 106985, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37949331

RESUMEN

IL-11 is linked to fibrotic diseases, but its role in pulmonary hypertension is unclear. We examined IL-11's involvement in idiopathic pulmonary arterial hypertension (iPAH). Using samples from control (n = 20) and iPAH (n = 6) subjects, we assessed IL-11 and IL-11Rα expression and localization through RT-qPCR, ELISA, immunohistochemistry, and immunofluorescence. A monocrotaline-induced PAH model helped evaluate the impact of siRNA-IL-11 on pulmonary artery remodeling and PH. The effects of recombinant human IL-11 and IL-11Rα on human pulmonary artery smooth muscle cell (HPASMC) proliferation, pulmonary artery endothelial cell (HPAEC) mesenchymal transition, monocyte interactions, endothelial tube formation, and precision cut lung slice (PCLS) pulmonary artery remodeling and contraction were evaluated. IL-11 and IL-11Rα were over-expressed in pulmonary arteries (3.2-fold and 75-fold respectively) and serum (1.5-fold and 2-fold respectively) of patients with iPAH. Therapeutic transient transfection with siRNA targeting IL-11 resulted in a significant reduction in pulmonary artery remodeling (by 98%), right heart hypertrophy (by 66%), and pulmonary hypertension (by 58%) in rats exposed to monocrotaline treatment. rhIL-11 and soluble rhIL-11Rα induce HPASMC proliferation and HPAEC to monocyte interactions, mesenchymal transition, and tube formation. Neutralizing monoclonal IL-11 and IL-11Rα antibodies inhibited TGFß1 and EDN-1 induced HPAEC to mesenchymal transition and HPASMC proliferation. In 3D PCLS, rhIL-11 and soluble rhIL-11Rα do not promote pulmonary artery contraction but sensitize PCLS pulmonary artery contraction induced by EDN-1. In summary, IL-11 and IL-11Rα are more highly expressed in the pulmonary arteries of iPAH patients and contribute to pulmonary artery remodeling and the development of PH.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Humanos , Animales , Ratas , Hipertensión Pulmonar Primaria Familiar , Interleucina-11 , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/tratamiento farmacológico , Monocrotalina , Arteria Pulmonar , ARN Interferente Pequeño/genética
12.
Eur J Pharmacol ; 941: 175502, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36638952

RESUMEN

BACKGROUND: Hypoxia is a risk factor of pulmonary hypertension (PH) and may induce pulmonary artery endothelial cells (PAECs) injury and inflammation. Pyroptosis is a form of cell death through maturation and secretion of inflammatory mediators. However, the mechanistic association of pyroptosis, PAECs injury, and inflammation remain unknown. Here, we explored in detail the effects of hypoxia on pyroptosis of PAECs. EXPERIMENTAL APPROACH: Using RNA sequencing, we screened differentially expressed genes in pulmonary artery tissue of a Sugen5416/hypoxia-induced (SuHx) rat PH model. We examined the role of the differentially expressed gene G-protein coupled receptor 146 (GPR146) in PAECs through immunohistochemistry, immunofluorescence, CCK-8 assays, western blotings, real-time PCR, detection of reactive oxygen species, and lactate dehydrogenase release experiments. KEY RESULTS: According to RNA sequencing, GPR146 was 11.64-fold increased in the SuHx-induced PH model, compared to the controls. Further, GPR146 was highly expressed in pulmonary arterial hypertension human lung tissue and SuHx-induced rat PH lung tissues. Our results suggested that the expression of pyroptosis-related proteins was markedly increased under hypoxia, both in vivo and in vitro, which was inhibited by silencing GPR146. Moreover, inhibiting NLRP3 or caspase-1 effectively suppressed cleavage of caspase-1, production of interleukin (IL)-1ß, IL-6, and IL-18 in PAECs by hypoxia and overexpression of GPR146. CONCLUSION: Our results indicated that GPR146 induced pyroptosis and inflammatory responses through the NLRP3/caspase-1 signaling axis, thus triggering endothelial injury and vascular remodeling. Hypoxia may promote PAECs pyroptosis through upregulation of GPR146 and thereby facilitate the progression of PH. Taken together, these insights may help identify a novel target for the treatment of PH.


Asunto(s)
Hipertensión Pulmonar , Piroptosis , Humanos , Ratas , Animales , Arteria Pulmonar/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Células Endoteliales , Remodelación Vascular , Hipoxia/complicaciones , Hipoxia/metabolismo , Hipertensión Pulmonar/metabolismo , Caspasa 1/metabolismo , Inflamación/metabolismo
13.
Chinese Pharmacological Bulletin ; (12): 723-730, 2023.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1013903

RESUMEN

Aim To explore the mechanism by which calpain-1 promotes hypoxia-induced pulmonary hypertension pulmonary artery endothelial cell apoptosis through endoplasmic reticulum stress. Methods C57BL/6 wild-type (WT) and calpain-1 gene knockout mice (KO) were reared in a hypoxic chamber (10% O

14.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1014706

RESUMEN

Pulmonary hypertension (PH) is a rare and severe progressive disease. It results from hypertrophic remodeling of distal pulmonary arterioles that increases pulmonary arterial pressure and pulmonary vascular resistance in the absence of left heart, pulmonary parenchymal, or thromboembolic disease. Hypoxia-inducible factor-1 (HIF-1) regulates a large number of genes related to the occurrence and development of PH, and induces pulmonary angiogenesis, cell proliferation and migration, cellular energy metabolism and utilization. HIF-1 is an important component of the pathogenesis of hypoxic PH and plays an important role in driving the pathological process of pulmonary vascular and right ventricular remodeling. This article systematically elucidated the role and regulation of HIF-1 in hypoxic PH and its potential in targeted therapy of PH.

15.
Respir Res ; 23(1): 313, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36376885

RESUMEN

BACKGROUND: Pulmonary hypertension (PH) associated to idiopathic pulmonary fibrosis (IPF) portends a poor prognosis. IL-11 has been implicated in fibrotic diseases, but their role on pulmonary vessels is unknown. Here we analyzed the contribution of IL-11 to PH in patients with IPF and the potential mechanism implicated. METHODS: Pulmonary arteries, lung tissue and serum of control subjects (n = 20), IPF (n = 20) and PH associated to IPF (n = 20) were used to study the expression and localization of IL-11 and IL-11Rα. Two models of IL-11 and bleomycin-induced lung fibrosis associated to PH were used in Tie2-GFP transgenic mice to evaluate the contribution of IL-11 and endothelial cells to pulmonary artery remodeling. The effect of IL-11 and soluble IL-11Rα on human pulmonary artery endothelial cells and smooth muscle cell transformations and proliferation were analyzed. RESULTS: IL-11 and IL-11Rα were over-expressed in pulmonary arteries and serum of patients with PH associated to IPF vs IPF patients without PH. Recombinant mice (rm)IL-11 induced lung fibrosis and PH in Tie2-GFP mice, activating in vivo EnMT as a contributor of pulmonary artery remodeling and lung fibrosis. Transient transfection of siRNA-IL-11 reduced lung fibrosis and PH in Tie2-GFP bleomycin model. Human (h)rIL-11 and soluble hrIL-11Rα induced endothelial to mesenchymal transition (EnMT) and pulmonary artery smooth muscle cell to myofibroblast-like transformation, cell proliferation and senescence in vitro. CONCLUSIONS: IL-11 and IL-11Rα are overexpressed in pulmonary arteries of PH associated to IPF patients, and contributes to pulmonary artery remodeling and PH.


Asunto(s)
Hipertensión Pulmonar , Fibrosis Pulmonar Idiopática , Animales , Humanos , Ratones , Bleomicina/toxicidad , Células Endoteliales/metabolismo , Hipertensión Pulmonar/metabolismo , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/complicaciones , Interleucina-11/genética , Interleucina-11/metabolismo , Interleucina-11/farmacología , Pulmón/metabolismo , Arteria Pulmonar/metabolismo , Remodelación Vascular
16.
Int J Mol Sci ; 23(19)2022 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-36233263

RESUMEN

Pulmonary arterial hypertension (PAH) is characterized by a progressive elevation of pulmonary pressure leading to right ventricular dysfunction and is associated with a poor prognosis. Patients with PAH have increased numbers of circulating extracellular vesicles (EVs) and altered expression of circulating microRNAs (miRs). The study aimed to evaluate the miR profile contained within purified EVs derived from the plasma of PAH patients as compared to healthy controls (HC). Circulating EVs, purified from platelet-free plasma were analyzed using flow cytometry, western blot, and electron microscopy. Total RNA isolated from EVs was subjected to Microarray analysis using GeneChip miRNA 4.0 Array and bioinformatics tools. Overexpression and inhibition of miRs were conducted in human pulmonary artery endothelial cells (hPAECs) that had been incubated previously with either PAH- or HC-derived EVs. Cell proliferation (MTT assay) and angiogenesis (tube formation assay) were tested in hPAECs to determine miR functionality. MiR profiling revealed 370 heats while comparing PAH and HC groups, 22 of which were found to be down-regulated and 6 were up-regulated in the PAH EVs. Among the altered miRs, miR-486-5p was overexpressed, while miR-26a-5p was downregulated in PAH EVs compared to HC EVs. Inhibition of mir-486-5p or overexpression of miR-26a-5p in hPAECs post-exposure of PAH EVs abrogated proangiogenic and proliferative effects posed by PAH EVs contrary to HC EVs. The angiogenic and proliferative effects of the miRs from PAH EVs were observed to be mediated through nuclear factor (NF)-κB activation. PAH EVs carry and present an altered miR profile that can be targeted to restrict angiogenesis and reduce pulmonary endothelium activation. Further studies concerning miRs from circulating heterogeneous EVs in PAH patients are warranted to understand their potential as targets for treatment in PAH.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Hipertensión Arterial Pulmonar , Células Endoteliales/metabolismo , Endotelio/metabolismo , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Hipertensión Pulmonar Primaria Familiar/metabolismo , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Hipertensión Arterial Pulmonar/genética
17.
Mol Med ; 28(1): 126, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36284300

RESUMEN

BACKGROUND: Pyroptosis is a form of programmed cell death involved in the pathophysiological progression of hypoxic pulmonary hypertension (HPH). Emerging evidence suggests that N6-methyladenosine (m6A)-modified transcripts of long noncoding RNAs (lncRNAs) are important regulators that participate in many diseases. However, whether m6A modified transcripts of lncRNAs can regulate pyroptosis in HPH progression remains unexplored. METHODS: The expression levels of FENDRR in hypoxic pulmonary artery endothelial cells (HPAECs) were detected by using quantitative real-time polymerase chain reaction (qRT-PCR) and fluorescence in situ hybridization (FISH). Western blot, Lactate dehydrogenase (LDH) release assay, Annexin V-FITC/PI double staining, Hoechst 33342/PI fluorescence staining and Caspase-1 activity assay were used to detect the role of FENDRR in HPAEC pyroptosis. The relationship between FENDRR and dynamin-related protein 1 (DRP1) was explored using bioinformatics analysis, Chromatin Isolation by RNA Purification (CHIRP), Electrophoretic mobility shift assay (EMSA) and Methylation-Specific PCR (MSP) assays. RNA immunoprecipitation (RIP) and m6A dot blot were used to detect the m6A modification levels of FENDRR. A hypoxia-induced mouse model of pulmonary hypertension (PH) was used to test preventive effect of conserved fragment TFO2 of FENDRR. RESULTS: We found that FENDRR was significantly downregulated in the nucleus of hypoxic HPAECs. FENDRR overexpression inhibited hypoxia-induced HPAEC pyroptosis. Additionally, DRP1 is a downstream target gene of FENDRR, and FENDRR formed an RNA-DNA triplex with the promoter of DRP1, which led to an increase in DRP1 promoter methylation that decreased the transcriptional level of DRP1. Notably, we illustrated that the m6A reader YTHDC1 plays an important role in m6A-modified FENDRR degradation. Additionally, conserved fragment TFO2 of FENDEE overexpression prevented HPH in vivo. CONCLUSION: In summary, our results demonstrated that m6A-induced decay of FENDRR promotes HPAEC pyroptosis by regulating DRP1 promoter methylation and thereby provides a novel potential target for HPH therapy.


Asunto(s)
Hipertensión Pulmonar , ARN Largo no Codificante , Ratones , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Metilación de ADN , Células Endoteliales/metabolismo , Piroptosis , Arteria Pulmonar , Hipertensión Pulmonar/genética , Hibridación Fluorescente in Situ , Hipoxia/genética , Dinaminas/genética , Dinaminas/metabolismo , Cromatina , Lactato Deshidrogenasas/genética , Lactato Deshidrogenasas/metabolismo , Caspasas
18.
Appl Biochem Biotechnol ; 194(12): 6319-6334, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35917100

RESUMEN

The objective of study was to find the actions of astragaloside IV (ASIV) on PAH due to monocrotaline (MCT) in rats. Intraperitoneal injection of 60 mg/ kg MCT was injected to rats, come after by ASIV treatment with doses of 10 mg/kg daily once or 30 mg/kg of dose for twenty one days once daily. RVSP, serum inflammatory cytokines, RVH, and the other pathological parameters of the pulmonary arteries were evaluated. ASIV attenuated the increased pulmonary artery pressure and its structure in rat modification due to MCT. Additionally, ASIV avoided the rise in tumor necrosis factor (TNF)-α and interleukin (IL)-1ß levels in the blood serum, and their expression of gene in the pleural parts, which was caused by MCT. ASIV promoted apoptotic resistance of HPASMCs and weakened the hypoxia-induced proliferation. ASIV shows over expression of caspase-3, caspase-9, p21, p27, and Bax, while ASIV downregulated Bcl-2, phospho-ERK, HIF-1α, and protein appearance in HPASMCs. These findings of the in vitro and the in vivo experiment indicate that astragaloside IV exerts protective effects against pulmonary arterial pressure, and may have action to be improved into pharmacological drug for pulmonary arterial pressure treatment.


Asunto(s)
Hipertensión Pulmonar , Saponinas , Ratas , Animales , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/inducido químicamente , Monocrotalina/efectos adversos , Saponinas/farmacología , Saponinas/uso terapéutico , Hipoxia/complicaciones , Hipoxia/tratamiento farmacológico , Factor de Necrosis Tumoral alfa , Modelos Animales de Enfermedad
19.
Vascul Pharmacol ; 145: 107017, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35680060

RESUMEN

Pulmonary hypertension (PH) is a progressive and life-threatening disease with poor prognosis despite many advances in medical therapy over the past 20 years. Novel therapies which target on the underlying pathology of PH are still urgent to be met. TPN171H is a recently found new compound that exhibits potent pharmacological effects in PH via inhibiting phosphodiesterase type 5 (PDE-5). However, as one icariin derivative, the anti-inflammatory effects of TPN171H for treating PH are not clear. The present study was designed to investigate the therapeutical effect of TPN171H against inflammation in PH and reveal the underlying mechanism. Hypoxia and monocrotaline (MCT)-induced PH rat models were established, which were treated by oral administration of TPN171H (5, 25 mg/kg/d) or sildenafil (25 mg/kg/d). The right ventricle systolic pressure (RVSP), right ventricle hypertrophy index (RVHI) and vascular remodeling were measured. The results suggested that TPN171H significantly reduced RVSP and RVHI, and reversed pulmonary vascular remodeling in rats with both models. Furthermore, in in vivo and in vitro research, our data suggested that TPN171H remarkably suppressed cathepsin B-mediated NLRP3 inflammasome activation, which may contribute to its therapeutical function for PH.


Asunto(s)
Hipertensión Pulmonar , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Catepsina B/farmacología , Catepsina B/uso terapéutico , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/terapia , Hipertrofia Ventricular Derecha/tratamiento farmacológico , Hipertrofia Ventricular Derecha/prevención & control , Hipoxia/tratamiento farmacológico , Inflamasomas , Inflamación/patología , Monocrotalina , Proteína con Dominio Pirina 3 de la Familia NLR , Inhibidores de Fosfodiesterasa 5/farmacología , Inhibidores de Fosfodiesterasa 5/uso terapéutico , Arteria Pulmonar , Ratas , Ratas Sprague-Dawley , Citrato de Sildenafil/farmacología , Citrato de Sildenafil/uso terapéutico , Remodelación Vascular
20.
Antioxidants (Basel) ; 11(5)2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35624710

RESUMEN

The development and use of nanomaterials, especially of nickel oxide nanoparticles (NiONPs), is expected to provide many benefits but also has raised concerns about the potential human health risks. Inhaled NPs are known to exert deleterious cardiovascular side effects, including pulmonary hypertension. Consequently, patients with pulmonary hypertension (PH) could be at increased risk for morbidity. The objective of this study was to compare the toxic effects of NiONPs on human pulmonary artery endothelial cells (HPAEC) under physiological and pathological conditions. The study was conducted with an in vitro model mimicking the endothelial dysfunction observed in PH. HPAEC were cultured under physiological (static and normoxic) or pathological (20% cycle stretch and hypoxia) conditions and exposed to NiONPs (0.5-5 µg/cm2) for 4 or 24 h. The following endpoints were studied: (i) ROS production using CM-H2DCF-DA and MitoSOX probes, (ii) nitrite production by the Griess reaction, (iii) IL-6 secretion by ELISA, (iv) calcium signaling with a Fluo-4 AM probe, and (v) mitochondrial dysfunction with TMRM and MitoTracker probes. Our results evidenced that under pathological conditions, ROS and nitrite production, IL-6 secretions, calcium signaling, and mitochondria alterations increased compared to physiological conditions. Human exposure to NiONPs may be associated with adverse effects in vulnerable populations with cardiovascular risks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA