RESUMEN
Acute kidney injury (AKI) caused by ischemia followed by reperfusion (I/R) is characterized by intense anion superoxide (O2â¢-) production and oxidative damage. We investigated whether extracellular vesicles secreted by adipose tissue mesenchymal cells (EVs) administered during reperfusion can suppress the exacerbated mitochondrial O2â¢- formation after I/R. We used Wistar rats subjected to bilateral renal arterial clamping (30 min) followed by 24 h of reperfusion. The animals received EVs (I/R + EVs group) or saline (I/R group) in the kidney subcapsular space. The third group consisted of false-operated rats (SHAM). Mitochondria were isolated from proximal tubule cells and used immediately. Amplex Red™ was used to measure mitochondrial O2â¢- formation and MitoTracker™ Orange to evaluate inner mitochondrial membrane potential (Δψ). In vitro studies were carried out on human renal proximal tubular cells (HK-2) co-cultured or not with EVs under hypoxic conditions. Administration of EVs restored O2â¢- formation to SHAM levels in all mitochondrial functional conditions. The gene expression of catalase and superoxide dismutase-1 remained unmodified; transcription of heme oxygenase-1 (HO-1) was upregulated. The co-cultures of HK-2 cells with EVs revealed an intense decrease in apoptosis. We conclude that the mechanisms by which EVs favor long-term recovery of renal structures and functions after I/R rely on a decrease of mitochondrial O2â¢- formation with the aid of the upregulated antioxidant HO-1/Nuclear factor erythroid 2-related factor 2 system, thus opening new vistas for the treatment of AKI.
Asunto(s)
Lesión Renal Aguda , Vesículas Extracelulares , Daño por Reperfusión , Lesión Renal Aguda/metabolismo , Tejido Adiposo/metabolismo , Animales , Vesículas Extracelulares/metabolismo , Isquemia/metabolismo , Riñón/metabolismo , Mitocondrias/metabolismo , Ratas , Ratas Wistar , Reperfusión , Daño por Reperfusión/metabolismo , Superóxidos/metabolismoRESUMEN
Diabetic kidney disease (DKD) is a frequent, potentially devastating complication of diabetes mellitus. Several factors are involved in its pathophysiology. At a cellular level, diabetic kidney disease is associated with many structural and functional alterations. Autophagy is a cellular mechanism that transports intracytoplasmic components to lysosomes to preserve cellular function and homeostasis. Autophagy integrity is essential for cell homeostasis, its alteration can drive to cell damage or death. Diabetic kidney disease is associated with profound autophagy dysregulation. Autophagy rate and flux alterations were described in several models of diabetic kidney disease. Some of them are closely linked with disease progression and severity. Some antidiabetic agents have shown significant effects on autophagy. A few of them have also demonstrated to modify disease progression and improved outcomes in affected patients. Other drugs also target autophagy and are being explored for clinical use in patients with diabetic kidney disease. The modulation of autophagy could be relevant for the pharmacological treatment and prevention of this disease in the future. Therefore, this is an evolving area that requires further experimental and clinical research. Here we discuss the relationship between autophagy and Diabetic kidney disease and the potential value of autophagy modulation as a target for pharmacological intervention.