Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(34): e202406161, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-38864758

RESUMEN

Proton-coupled electron transfer (PCET) imparts an energetic advantage over single electron transfer in activating inert substances. Natural PCET enzyme catalysis generally requires tripartite preorganization of proton relay, substrate-bound active center, and redox mediator, making the processes efficient and precluding side reactions. Inspired by this, a heterogeneous photocatalytic PCET system was established to achieve higher PCET driving forces by modifying proton relays into anthraquinone-based anionic coordination polymers. The proximally separated proton relays and photoredox-mediating anthraquinone moiety allowed pre-assembly of inert substrate between them, merging proton and electron into unsaturated bonds by photoreductive PCET, which enhanced reaction kinetics compared with the counter catalyst without proton relay. This photocatalytic PCET method was applied to a broad-scoped reduction of aryl ketones, unsaturated carbonyls, and aromatic compounds. The distinctive regioselectivities for the reduction of isoquinoline derivatives were found to occur on the carbon-ring sides. PCET-generated radical intermediate of quinoline could be trapped by alkene for proton relay-assisted Minisci addition, forming the pharmaceutical aza-acenaphthene scaffold within one step. When using heteroatom(X)-H/C-H compounds as proton-electron donors, this protocol could activate these inert bonds through photooxidative PCET to afford radicals and trap them by electron-deficient unsaturated compounds, furnishing the direct X-H/C-H functionalization.

2.
Angew Chem Int Ed Engl ; 63(37): e202407667, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-38923372

RESUMEN

Electrocatalytic nitrite reduction (eNO2RR) is a promising alternative route to produce ammonia (NH3). Until now, several molecular catalysts have shown capability to homogeneously reduce nitrite to NH3, while taking advantage of added secondary-sphere functionalities to direct catalytic performance. Yet, realizing such control over heterogeneous electrocatalytic surfaces remains a challenge. Herein, we demonstrate that heterogenization of a Fe-porphyrin molecular catalyst within a 2D Metal-Organic Framework (MOF), allows efficient eNO2RR to NH3. On top of that, installation of pendant proton relaying moieties proximal to the catalytic site, resulted in significant improvement in catalytic activity and selectivity. Notably, systematic manipulation of NH3 faradaic efficiency (up to 90 %) and partial current (5-fold increase) was achieved by varying the proton relay-to-catalyst molar ratio. Electrochemical and spectroscopic analysis show that the proton relays simultaneously aid in generating and stabilizing of reactive Fe-bound NO intermediate. Thus, this concept offers new molecular tools to tune heterogeneous electrocatalytic systems.

3.
Angew Chem Int Ed Engl ; 62(48): e202313648, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37801352

RESUMEN

Atomically precise Cu clusters are highly desirable as catalysts for CO2 reduction reaction (CO2 RR), and they provide an appropriate model platform for elaborating their structure-activity relationship. However, an efficient overall photocatalytic CO2 RR with H2 O using assembled Cu-cluster aggregates as single component photocatalyst has not been reported. Herein, we report a stable crystalline Cu-S-N cluster photocatalyst with local protonated N-H groups (denoted as Cu6 -NH). The catalyst exhibits suitable photocatalytic redox potentials, high structural stability, active catalytic species, and a narrow band gap, which account for its outstanding photocatalytic CO2 RR performance under visible light, with ≈100 % selectivity for CO evolution. Remarkably, systematic isostructural Cu-cluster control experiments, in situ infrared spectroscopy, and density functional theory calculations revealed that the protonated pyrimidine N atoms in the Cu6 -NH cluster act as a proton relay station, providing a local proton during the photocatalytic CO2 RR. This efficiently lowers the energy barrier for the formation of the *COOH intermediate, which is the rate-limiting step, efficiently enhancing the photocatalytic performance. This work lays the foundation for the development of atomically precise metal-cluster-based photocatalysts.

4.
Angew Chem Int Ed Engl ; 62(36): e202302779, 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37073946

RESUMEN

Nickel bisdiphosphine complexes bearing pendant amines form a unique series of catalysts (so-called DuBois' catalysts) capable of bidirectional/reversible electrocatalytic oxidation and production of dihydrogen. This unique behaviour is directly linked to the presence of proton relays installed close to the metal center. We report here for the arginine derivative [Ni(P2 Cy N2 Arg )2 ]6+ on a mechanistic model and its kinetic treatment that may apply to all DuBois' catalysts and show that it allows for a good fit of experimental data measured at different pH values, catalyst concentrations and partial hydrogen pressures. The bidirectionality of catalysis results from balanced equilibria related to hydrogen uptake/evolution on one side and (metal)-hydride installation/capture on the other side, both controlled by concentration effects resulting from the presence of proton relays and connected by two square schemes corresponding to proton-coupled electron transfer processes. We show that the catalytic bias is controlled by the kinetic of the H2 uptake/evolution step. Reversibility does not require that the energy landscape be flat, with redox transitions occurring at potentials up to 250 mV away for the equilibrium potential, although such large deviations from a flat energy landscape can negatively impacts the rate of catalysis when coupled with slow interfacial electron transfer kinetics.

5.
Biomolecules ; 12(10)2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36291556

RESUMEN

To clarify the obscure hydrolysis mechanism of ubiquitous P-loop-fold nucleoside triphosphatases (Walker NTPases), we analysed the structures of 3136 catalytic sites with bound Mg-NTP complexes or their analogues. Our results are presented in two articles; here, in the second of them, we elucidated whether the Walker A and Walker B sequence motifs-common to all P-loop NTPases-could be directly involved in catalysis. We found that the hydrogen bonds (H-bonds) between the strictly conserved, Mg-coordinating Ser/Thr of the Walker A motif ([Ser/Thr]WA) and aspartate of the Walker B motif (AspWB) are particularly short (even as short as 2.4 ångströms) in the structures with bound transition state (TS) analogues. Given that a short H-bond implies parity in the pKa values of the H-bond partners, we suggest that, in response to the interactions of a P-loop NTPase with its cognate activating partner, a proton relocates from [Ser/Thr]WA to AspWB. The resulting anionic [Ser/Thr]WA alkoxide withdraws a proton from the catalytic water molecule, and the nascent hydroxyl attacks the gamma phosphate of NTP. When the gamma-phosphate breaks away, the trapped proton at AspWB passes by the Grotthuss relay via [Ser/Thr]WA to beta-phosphate and compensates for its developing negative charge that is thought to be responsible for the activation barrier of hydrolysis.


Asunto(s)
Dominio AAA , Nucleósido-Trifosfatasa , Nucleósido-Trifosfatasa/química , Nucleósido-Trifosfatasa/metabolismo , Ácido Aspártico , Protones , Nucleósidos , Catálisis , Agua/metabolismo , Proteínas AAA/metabolismo , Fosfatos/metabolismo
6.
Nanomaterials (Basel) ; 10(7)2020 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-32610453

RESUMEN

We have recently demonstrated in a previous work an appreciable photoelectrocatalytic (PEC) behavior towards hydrogen evolution reaction (HER) of a MoS2/Ag2S/Ag nanocomposite electrochemically deposited on a commercial writable Digital Versatile Disc (DVD), consisting therefore on an interesting strategy to convert a common waster product in an added-value material. Herein, we present the conjugation of this MoS2/Ag2S/Ag-DVD nanocomposite with thiol-terminated tetraphenylporphyrins, taking advantage of the grafting of thiol groups through covalent S-S bridges, for integrating the well-known porphyrins photoactivity into the nanocomposite. Moreover, we employ two thiol-terminated porphyrins with different hydrophilicity, demonstrating that they either suppress or improve the PEC-HER performance of the overall hybrid, as a function of the molecule polarity, sustaining the concept of a local proton relay. Actually, the active polar porphyrin-MoS2/Ag2S/Ag-DVD hybrid material presented, when illuminated, a better HER performance, compared to the pristine nanocomposite, since the porphyrin may inject photoelectrons in the conduction band of the semiconductors at the formed heterojunction, presenting also a stable operational behavior during overnight chopped light chronoamperometric measurement, thanks to the robust bond created.

7.
J Biol Chem ; 295(29): 9998-10007, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32493730

RESUMEN

CYP51 enzymes (sterol 14α-demethylases) are cytochromes P450 that catalyze multistep reactions. The CYP51 reaction occurs in all biological kingdoms and is essential in sterol biosynthesis. It removes the 14α-methyl group from cyclized sterol precursors by first forming an alcohol, then an aldehyde, and finally eliminating formic acid with the introduction of a Δ14-15 double bond in the sterol core. The first two steps are typical hydroxylations, mediated by an electrophilic compound I mechanism. The third step, C-C bond cleavage, has been proposed to involve either compound I (i.e. FeO3+) or, alternatively, a proton transfer-independent nucleophilic ferric peroxo anion (compound 0, i.e. Fe3+O2-). Here, using comparative crystallographic and biochemical analyses of WT human CYP51 (CYP51A1) and its D231A/H314A mutant, whose proton delivery network is destroyed (as evidenced in a 1.98-Å X-ray structure in complex with lanosterol), we demonstrate that deformylation of the 14α-carboxaldehyde intermediate requires an active proton relay network to drive the catalysis. These results indicate a unified, compound I-based mechanism for all three steps of the CYP51 reaction, as previously established for CYP11A1 and CYP19A1. We anticipate that our approach can be applied to mechanistic studies of other P450s that catalyze multistep reactions, such as C-C bond cleavage.


Asunto(s)
Protones , Esterol 14-Desmetilasa/química , Aromatasa/química , Catálisis , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/química , Cristalografía por Rayos X , Humanos
8.
Proc Natl Acad Sci U S A ; 117(15): 8455-8461, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32234783

RESUMEN

The reduction of protochlorophyllide (Pchlide) to chlorophyllide (Chlide) is the penultimate step of chlorophyll biosynthesis. In oxygenic photosynthetic bacteria, algae, and plants, this reaction can be catalyzed by the light-dependent Pchlide oxidoreductase (LPOR), a member of the short-chain dehydrogenase superfamily sharing a conserved Rossmann fold for NAD(P)H binding and the catalytic activity. Whereas modeling and simulation approaches have been used to study the catalytic mechanism of this light-driven reaction, key details of the LPOR structure remain unclear. We determined the crystal structures of LPOR from two cyanobacteria, Synechocystis sp. PCC 6803 and Thermosynechococcus elongatus Structural analysis defines the LPOR core fold, outlines the LPOR-NADPH interaction network, identifies the residues forming the substrate cavity and the proton-relay path, and reveals the role of the LPOR-specific loop. These findings provide a basis for understanding the structure-function relationships of the light-driven Pchlide reduction.


Asunto(s)
Cianobacterias/enzimología , Luz , NADP/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/química , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Protoclorofilida/metabolismo , Synechocystis/enzimología , Catálisis , Clorofila/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , NADP/química , Conformación Proteica , Protoclorofilida/química , Protones , Thermosynechococcus
9.
Biochem Biophys Res Commun ; 514(3): 772-776, 2019 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-31079924

RESUMEN

Superoxide dismutase, known to gain large rate enhancement on dimerization, forms a homodimer stabilized by hydrogen bonding between a number of internal water molecules and a few amino acid residues at the interface. Within each subunit the ß-sheets provide a sequence of delocalized π-electron units of peptide bonds alternating with hydrogen bonds referred as π-H pathway. These pathways in the two subunits in the dimer are interlinked through a chain of four water molecules bridged by hydrogen bonds at the interface. Connecting the two Cu-centers this π-H pathway can enable rapid electron transfer from one superoxide molecule to the other, crucial for the catalytic reaction and the high rate in the dimer. A proton relay of hydrogen-bonded water molecules in the dimer translocates protons to form the product, hydrogen peroxide.


Asunto(s)
Dimerización , Protones , Superóxido Dismutasa/química , Superóxido Dismutasa/metabolismo , Animales , Bovinos , Transporte de Electrón , Agua/química
10.
Biochim Biophys Acta Bioenerg ; 1860(5): 375-382, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30910528

RESUMEN

The alternative oxidase (AOX) is a monotopic diiron carboxylate protein which catalyzes the four-electron reduction of dioxygen to water by ubiquinol. Although we have recently determined the crystal structure of Trypanosoma brucei AOX (TAO) in the presence and absence of ascofuranone (AF) derivatives (which are potent mixed type inhibitors) the mechanism by which ubiquinol and dioxygen binds to TAO remain inconclusive. In this article, ferulenol was identified as the first competitive inhibitor of AOX which has been used to probe the binding of ubiquinol. Surface plasmon resonance reveals that AF is a quasi-irreversible inhibitor of TAO whilst ferulenol binding is completely reversible. The structure of the TAO-ferulenol complex, determined at 2.7 Å, provided insights into ubiquinol binding and has also identified a potential dioxygen molecule bound in a side-on conformation to the diiron center for the first time.


Asunto(s)
Proteínas Mitocondriales/química , Oxidorreductasas/química , Oxígeno/química , Proteínas de Plantas/química , Proteínas Protozoarias/química , Trypanosoma brucei brucei/enzimología , Ubiquinona/análogos & derivados , Cumarinas/química , Proteínas Mitocondriales/metabolismo , Oxidorreductasas/metabolismo , Oxígeno/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Protozoarias/metabolismo , Resonancia por Plasmón de Superficie , Ubiquinona/química , Ubiquinona/metabolismo
11.
Materials (Basel) ; 11(7)2018 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-30011791

RESUMEN

Electromagnetic waves, such as microwaves, have been used to enhance various chemical reactions over polyoxometalates. The dielectric properties of catalysts are among the relevant parameters facilitating catalytic reactions under electromagnetic radiation. This study describes the dielectric properties of polyoxometalate catalysts in aqueous and organic solutions to understand the mechanism of interactions between polyoxometalates and electromagnetic waves. Specific loss factors of polyoxometalates were observed at lower frequencies (<1 GHz) by the ionic conduction of the polyoxometalate solution. The evolution of ionic conduction depended strongly on cations rather than anions. Proton-type polyoxometalates exhibited significantly higher loss factors than other cations did. The activation energy for ionic conduction in protonated silicotungstic acid (H4SiW12O40) was significantly low in water (7.6⁻14.1 kJ/mol); therefore, the high loss factor of protonated polyoxometalates in water was attributed to the proton relay mechanism (i.e., Grotthuss mechanism). The results suggested that the proton relay mechanism at the radio-frequency band is critical for generating selective interactions of polyoxometalates with applied electromagnetic fields.

12.
Methods Mol Biol ; 1700: 147-165, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29177830

RESUMEN

Transporters undergo large conformational changes in their functional cycle. RND (Resistance-Nodulation-Division) family efflux transporters usually exist as homotrimers, and each protomer was proposed to undergo a cycle of conformational changes in succession so that at any given time the trimer would contain three protomers of different conformations, the functionally rotating mechanism of transport. This mechanism implies that the inactivation of one protomer among three will inactivate the entire trimeric ensemble by blocking the functional rotation. We describe a biochemical approach to test this prediction by first producing a giant protein in which the three protomers of Escherichia coli AcrB efflux pump are covalently linked together through linker sequences, and then testing for its function by inactivation of a single protomer unit. Inactivation can be done permanently by mutating a residue involved in proton relay, or in "real time" by using a protein in which one protomer contains two Cys residues on both sides of the large cleft in the periplasmic domain and then by rapidly inactivating this protomer with a methanethiosulfonate cross-linker.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/química , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Sitios de Unión , Farmacorresistencia Bacteriana Múltiple , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Modelos Moleculares , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Mutación , Unión Proteica , Conformación Proteica , Multimerización de Proteína
13.
J Inorg Biochem ; 157: 8-14, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26816109

RESUMEN

Efficient catalysis of the oxygen reduction reaction (ORR) is of central importance to function in fuel cells. Metalloproteins, such as laccase (Cu) or cytochrome c oxidase (Cu/Fe-heme) carry out the 4H(+)/4e(-) reduction quite efficiently, but using large, complex protein frameworks. Smaller heme proteins also can carry out ORR, but less efficiently. To gain greater insight into features that promote efficient ORR, we expressed, characterized, and investigated the electrochemical behavior of six new mutants of cytochrome c552 from Thermus thermophilus: V49S/M69A, V49T/M69A, L29D/V49S/M69A, P27A/P28A/L29D/V49S/M69A, and P27A/P28A/L29D/V49T/M69A. Mutation to V49 causes only minor shifts to Fe(III/II) reduction potentials (E°'), but introduction of Ser provides a hydrogen bond donor that slightly enhances oxygen reduction activity. Mutation of L29 to D induces small shifts in heme optical spectra, but not to E°' (within experimental error). Replacement of P27 and P28 with A in both positions induces a -50 mV shift in E°', again with small changes to the optical spectra. Both the optical spectra and reduction potentials have signatures consistent with peroxidase enzymes. The V49S and V49T mutations have the largest impact of ORR catalysis, suggesting that increased electron density at the Fe site does not improve O2 reduction chemistry.


Asunto(s)
Grupo Citocromo c/metabolismo , Oxígeno/química , Thermus thermophilus/enzimología , Espectroscopía de Resonancia Magnética con Carbono-13 , Catálisis
14.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 12): 2396-411, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26627648

RESUMEN

During X-ray data collection from a multicopper oxidase (MCO) crystal, electrons and protons are mainly released into the system by the radiolysis of water molecules, leading to the X-ray-induced reduction of O2 to 2H2O at the trinuclear copper cluster (TNC) of the enzyme. In this work, 12 crystallographic structures of Thermus thermophilus HB27 multicopper oxidase (Tth-MCO) in holo, apo and Hg-bound forms and with different X-ray absorbed doses have been determined. In holo Tth-MCO structures with four Cu atoms, the proton-donor residue Glu451 involved in O2 reduction was found in a double conformation: Glu451a (∼7 Šfrom the TNC) and Glu451b (∼4.5 Šfrom the TNC). A positive peak of electron density above 3.5σ in an Fo - Fc map for Glu451a O(ℇ2) indicates the presence of a carboxyl functional group at the side chain, while its significant absence in Glu451b strongly suggests a carboxylate functional group. In contrast, for apo Tth-MCO and in Hg-bound structures neither the positive peak nor double conformations were observed. Together, these observations provide the first structural evidence for a proton-relay mechanism in the MCO family and also support previous studies indicating that Asp106 does not provide protons for this mechanism. In addition, eight composite structures (Tth-MCO-C1-8) with different X-ray-absorbed doses allowed the observation of different O2-reduction states, and a total depletion of T2Cu at doses higher than 0.2 MGy showed the high susceptibility of this Cu atom to radiation damage, highlighting the importance of taking radiation effects into account in biochemical interpretations of an MCO structure.


Asunto(s)
Proteínas Bacterianas/química , Cobre/química , Electrones , Oxidorreductasas/química , Protones , Thermus thermophilus/química , Secuencias de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/efectos de la radiación , Dominio Catalítico , Cationes Bivalentes , Cristalografía por Rayos X , Relación Dosis-Respuesta en la Radiación , Expresión Génica , Modelos Moleculares , Datos de Secuencia Molecular , Oxidación-Reducción , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Oxidorreductasas/efectos de la radiación , Oxígeno/química , Unión Proteica , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/efectos de la radiación , Thermus thermophilus/enzimología
15.
Sci Adv ; 1(7): e1500263, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26601228

RESUMEN

Hydrolysis of carbohydrates is a major bioreaction in nature, catalyzed by glycoside hydrolases (GHs). We used neutron diffraction and high-resolution x-ray diffraction analyses to investigate the hydrogen bond network in inverting cellulase PcCel45A, which is an endoglucanase belonging to subfamily C of GH family 45, isolated from the basidiomycete Phanerochaete chrysosporium. Examination of the enzyme and enzyme-ligand structures indicates a key role of multiple tautomerizations of asparagine residues and peptide bonds, which are finally connected to the other catalytic residue via typical side-chain hydrogen bonds, in forming the "Newton's cradle"-like proton relay pathway of the catalytic cycle. Amide-imidic acid tautomerization of asparagine has not been taken into account in recent molecular dynamics simulations of not only cellulases but also general enzyme catalysis, and it may be necessary to reconsider our interpretation of many enzymatic reactions.

16.
Chemistry ; 21(50): 18072-5, 2015 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-26459272

RESUMEN

Oxygen reduction in acidic aqueous solution mediated by a series of asymmetric iron (III)-tetra(aryl)porphyrins adsorbed to basal- and edge- plane graphite electrodes is investigated. The asymmetric iron porphyrin systems bear phenyl groups at three meso positions and either a 2-pyridyl, a 2-benzoic acid, or a 2-hydroxyphenyl group at the remaining meso position. The presence of the three unmodified phenyl groups makes the compounds insoluble in water, enabling catalyst retention during electrochemical experiments. Resonance Raman data demonstrate that catalyst layers are maintained, but can undergo modification after prolonged catalysis in the presence of O2 . The introduction of a single proton relay group at the fourth meso position makes the asymmetric iron porphyrins markedly more robust catalysts; these molecules support higher sustained current densities than the parent iron tetraphenylporphyrin. Iron porphyrins bearing a 2-pyridyl group are the most active catalysts and operate at stable current densities ≥1 mA cm(-2) for over 5 h. Comparative analysis of the catalysts with different proton relays also is reported.

17.
Proteins ; 82(2): 216-29, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23836456

RESUMEN

Despite significant influence of secondary bile acids on human health and disease, limited structural and biochemical information is available for the key gut microbial enzymes catalyzing its synthesis. Herein, we report apo- and cofactor bound crystal structures of BaiA2, a short chain dehydrogenase/reductase from Clostridium scindens VPI 12708 that represent the first protein structure of this pathway. The structures elucidated the basis of cofactor specificity and mechanism of proton relay. A conformational restriction involving Glu42 located in the cofactor binding site seems crucial in determining cofactor specificity. Limited flexibility of Glu42 results in imminent steric and electrostatic hindrance with 2'-phosphate group of NADP(H). Consistent with crystal structures, steady state kinetic characterization performed with both BaiA2 and BaiA1, a close homolog with 92% sequence identity, revealed specificity constant (kcat /KM ) of NADP(+) at least an order of magnitude lower than NAD(+) . Substitution of Glu42 with Ala improved specificity toward NADP(+) by 10-fold compared to wild type. The cofactor bound structure uncovered a novel nicotinamide-hydroxyl ion (NAD(+) -OH(-) ) adduct contraposing previously reported adducts. The OH(-) of the adduct in BaiA2 is distal to C4 atom of nicotinamide and proximal to 2'-hydroxyl group of the ribose moiety. Moreover, it is located at intermediary distances between terminal functional groups of active site residues Tyr157 (2.7 Å) and Lys161 (4.5 Å). Based on these observations, we propose an involvement of NAD(+) -OH(-) adduct in proton relay instead of hydride transfer as noted for previous adducts.


Asunto(s)
Proteínas Bacterianas/química , Ácidos y Sales Biliares/biosíntesis , Clostridium/enzimología , Hidroxiesteroide Deshidrogenasas/química , Apoenzimas/química , Dominio Catalítico , Cristalografía por Rayos X , Humanos , Concentración de Iones de Hidrógeno , Cinética , Modelos Moleculares , NAD/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA