Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Cell Proteomics ; 23(2): 100708, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38154689

RESUMEN

In the era of open-modification search engines, more posttranslational modifications than ever can be detected by LC-MS/MS-based proteomics. This development can switch proteomics research into a higher gear, as PTMs are key in many cellular pathways important in cell proliferation, migration, metastasis, and aging. However, despite these advances in modification identification, statistical methods for PTM-level quantification and differential analysis have yet to catch up. This absence can partly be explained by statistical challenges inherent to the data, such as the confounding of PTM intensities with its parent protein abundance. Therefore, we have developed msqrob2PTM, a new workflow in the msqrob2 universe capable of differential abundance analysis at the PTM and at the peptidoform level. The latter is important for validating PTMs found as significantly differential. Indeed, as our method can deal with multiple PTMs per peptidoform, there is a possibility that significant PTMs stem from one significant peptidoform carrying another PTM, hinting that it might be the other PTM driving the perceived differential abundance. Our workflows can flag both differential peptidoform abundance (DPA) and differential peptidoform usage (DPU). This enables a distinction between direct assessment of differential abundance of peptidoforms (DPA) and differences in the relative usage of peptidoforms corrected for corresponding protein abundances (DPU). For DPA, we directly model the log2-transformed peptidoform intensities, while for DPU, we correct for parent protein abundance by an intermediate normalization step which calculates the log2-ratio of the peptidoform intensities to their summarized parent protein intensities. We demonstrated the utility and performance of msqrob2PTM by applying it to datasets with known ground truth, as well as to biological PTM-rich datasets. Our results show that msqrob2PTM is on par with, or surpassing the performance of, the current state-of-the-art methods. Moreover, msqrob2PTM is currently unique in providing output at the peptidoform level.


Asunto(s)
Proteómica , Espectrometría de Masas en Tándem , Proteómica/métodos , Cromatografía Liquida , Procesamiento Proteico-Postraduccional , Proteínas
2.
Proteomics ; 23(20): e2300188, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37488995

RESUMEN

Relative and absolute intensity-based protein quantification across cell lines, tissue atlases and tumour datasets is increasingly available in public datasets. These atlases enable researchers to explore fundamental biological questions, such as protein existence, expression location, quantity and correlation with RNA expression. Most studies provide MS1 feature-based label-free quantitative (LFQ) datasets; however, growing numbers of isobaric tandem mass tags (TMT) datasets remain unexplored. Here, we compare traditional intensity-based absolute quantification (iBAQ) proteome abundance ranking to an analogous method using reporter ion proteome abundance ranking with data from an experiment where LFQ and TMT were measured on the same samples. This new TMT method substitutes reporter ion intensities for MS1 feature intensities in the iBAQ framework. Additionally, we compared LFQ-iBAQ values to TMT-iBAQ values from two independent large-scale tissue atlas datasets (one LFQ and one TMT) using robust bottom-up proteomic identification, normalisation and quantitation workflows.

3.
J Cheminform ; 15(1): 34, 2023 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-36935498

RESUMEN

Toxicological evaluation of substances in regulation still often relies on animal experiments. Understanding the substances' mode-of-action is crucial to develop alternative test strategies. Omics methods are promising tools to achieve this goal. Until now, most attention was focused on transcriptomics, while proteomics is not yet routinely applied in toxicology despite the large number of datasets available in public repositories. Exploiting the full potential of these datasets is hampered by differences in measurement procedures and follow-up data processing. Here we present the tool PROTEOMAS, which allows meta-analysis of proteomic data from public origin. The workflow was designed for analyzing proteomic studies in a harmonized way and to ensure transparency in the analysis of proteomic data for regulatory purposes. It agrees with the Omics Reporting Framework guidelines of the OECD with the intention to integrate proteomics to other omic methods in regulatory toxicology. The overarching aim is to contribute to the development of AOPs and to understand the mode of action of substances. To demonstrate the robustness and reliability of our workflow we compared our results to those of the original studies. As a case study, we performed a meta-analysis of 25 proteomic datasets to investigate the toxicological effects of nanomaterials at the lung level. PROTEOMAS is an important contribution to the development of alternative test strategies enabling robust meta-analysis of proteomic data. This workflow commits to the FAIR principles (Findable, Accessible, Interoperable and Reusable) of computational protocols.

4.
J Proteome Res ; 22(2): 350-358, 2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36648107

RESUMEN

Reliable peptide identification is key in mass spectrometry (MS) based proteomics. To this end, the target decoy approach (TDA) has become the cornerstone for extracting a set of reliable peptide-to-spectrum matches (PSMs) that will be used in downstream analysis. Indeed, TDA is now the default method to estimate the false discovery rate (FDR) for a given set of PSMs, and users typically view it as a universal solution for assessing the FDR in the peptide identification step. However, the TDA also relies on a minimal set of assumptions, which are typically never verified in practice. We argue that a violation of these assumptions can lead to poor FDR control, which can be detrimental to any downstream data analysis. We here therefore first clearly spell out these TDA assumptions, and introduce TargetDecoy, a Bioconductor package with all the necessary functionality to control the TDA quality and its underlying assumptions for a given set of PSMs.


Asunto(s)
Péptidos , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Péptidos/análisis , Proteómica/métodos , Análisis de Datos , Control de Calidad , Bases de Datos de Proteínas , Algoritmos
5.
Methods Mol Biol ; 2426: 1-24, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36308682

RESUMEN

In proteomic differential analysis, FDR control is often performed through a multiple test correction (i.e., the adjustment of the original p-values). In this protocol, we apply a recent and alternative method, based on so-called knockoff filters. It shares interesting conceptual similarities with the target-decoy competition procedure, classically used in proteomics for FDR control at peptide identification. To provide practitioners with a unified understanding of FDR control in proteomics, we apply the knockoff procedure on real and simulated quantitative datasets. Leveraging these comparisons, we propose to adapt the knockoff procedure to better fit the specificities of quantitative proteomic data (mainly very few samples). Performances of knockoff procedure are compared with those of the classical Benjamini-Hochberg procedure, hereby shedding a new light on the strengths and weaknesses of target-decoy competition.


Asunto(s)
Péptidos , Proteómica , Proteómica/métodos , Algoritmos
6.
Proteomics ; 23(7-8): e2200014, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36074795

RESUMEN

Data independent acquisition (DIA) proteomics techniques have matured enormously in recent years, thanks to multiple technical developments in, for example, instrumentation and data analysis approaches. However, there are many improvements that are still possible for DIA data in the area of the FAIR (Findability, Accessibility, Interoperability and Reusability) data principles. These include more tailored data sharing practices and open data standards since public databases and data standards for proteomics were mostly designed with DDA data in mind. Here we first describe the current state of the art in the context of FAIR data for proteomics in general, and for DIA approaches in particular. For improving the current situation for DIA data, we make the following recommendations for the future: (i) development of an open data standard for spectral libraries; (ii) make mandatory the availability of the spectral libraries used in DIA experiments in ProteomeXchange resources; (iii) improve the support for DIA data in the data standards developed by the Proteomics Standards Initiative; and (iv) improve the support for DIA datasets in ProteomeXchange resources, including more tailored metadata requirements.


Asunto(s)
Proteoma , Proteómica , Proteómica/métodos , Espectrometría de Masas/métodos , Biología Computacional/métodos
7.
Expert Rev Proteomics ; 19(7-12): 297-310, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36529941

RESUMEN

INTRODUCTION: The creation of ProteomeXchange data workflows in 2012 transformed the field of proteomics, consisting of the standardization of data submission and dissemination and enabling the widespread reanalysis of public MS proteomics data worldwide. ProteomeXchange has triggered a growing trend toward public dissemination of proteomics data, facilitating the assessment, reuse, comparative analyses, and extraction of new findings from public datasets. By 2022, the consortium is integrated by PRIDE, PeptideAtlas, MassIVE, jPOST, iProX, and Panorama Public. AREAS COVERED: Here, we review and discuss the current ecosystem of resources, guidelines, and file formats for proteomics data dissemination and reanalysis. Special attention is drawn to new exciting quantitative and post-translational modification-oriented resources. The challenges and future directions on data depositions including the lack of metadata and cloud-based and high-performance software solutions for fast and reproducible reanalysis of the available data are discussed. EXPERT OPINION: The success of ProteomeXchange and the amount of proteomics data available in the public domain have triggered the creation and/or growth of other protein knowledgebase resources. Data reuse is a leading, active, and evolving field; supporting the creation of new formats, tools, and workflows to rediscover and reshape the public proteomics data.


Asunto(s)
Ecosistema , Proteómica , Humanos , Bases de Datos de Proteínas , Programas Informáticos , Proteínas/metabolismo
8.
Front Mol Biosci ; 9: 1062031, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36523653

RESUMEN

Multi-omics approaches including proteomics analyses are becoming an integral component of precision medicine. As clinical proteomics studies gain momentum and their sensitivity increases, research on identifying individuals based on their proteomics data is here examined for risks and ethics-related issues. A great deal of work has already been done on this topic for DNA/RNA sequencing data, but it has yet to be widely studied in other omics fields. The current state-of-the-art for the identification of individuals based solely on proteomics data is explained. Protein sequence variation analysis approaches are covered in more detail, including the available analysis workflows and their limitations. We also outline some previous forensic and omics proteomics studies that are relevant for the identification of individuals. Following that, we discuss the risks of patient reidentification using other proteomics data types such as protein expression abundance and post-translational modification (PTM) profiles. In light of the potential identification of individuals through proteomics data, possible legal and ethical implications are becoming increasingly important in the field.

9.
Front Immunol ; 13: 963357, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36189295

RESUMEN

The ACE2 receptors essential for SARS-CoV-2 infections are expressed not only in the lung but also in many other tissues in the human body. To better understand the disease mechanisms and progression, it is essential to understand how the virus affects and alters molecular pathways in the different affected tissues. In this study, we mapped the proteomics data obtained from Nie X. et al. (2021) to the pathway models of the COVID-19 Disease Map project and WikiPathways. The differences in pathway activities between COVID-19 and non-COVID-19 patients were calculated using the Wilcoxon test. As a result, 46% (5,235) of the detected proteins were found to be present in at least one pathway. Only a few pathways were altered in multiple tissues. As an example, the Kinin-Kallikrein pathway, an important inflammation regulatory pathway, was found to be less active in the lung, spleen, testis, and thyroid. We can confirm previously reported changes in COVID-19 patients such as the change in cholesterol, linolenic acid, and arachidonic acid metabolism, complement, and coagulation pathways in most tissues. Of all the tissues, we found the thyroid to be the organ with the most changed pathways. In this tissue, lipid pathways, energy pathways, and many COVID-19 specific pathways such as RAS and bradykinin pathways, thrombosis, and anticoagulation have altered activities in COVID-19 patients. Concluding, our results highlight the systemic nature of COVID-19 and the effect on other tissues besides the lung.


Asunto(s)
COVID-19 , Enzima Convertidora de Angiotensina 2 , Anticoagulantes , Ácido Araquidónico , Bradiquinina/metabolismo , Humanos , Calicreínas/metabolismo , Masculino , Peptidil-Dipeptidasa A/metabolismo , Sistema Renina-Angiotensina , Estudios Retrospectivos , SARS-CoV-2 , Ácido alfa-Linolénico
10.
Front Cell Dev Biol ; 9: 739715, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34790662

RESUMEN

Gastric cancer is a common malignant tumor of the digestive system with no specific symptoms. Due to the limited knowledge of pathogenesis, patients are usually diagnosed in advanced stage and do not have effective treatment methods. Proteome has unique tissue and time specificity and can reflect the influence of external factors that has become a potential biomarker for early diagnosis. Therefore, discovering gastric cancer-related proteins could greatly help researchers design drugs and develop an early diagnosis kit. However, identifying gastric cancer-related proteins by biological experiments is time- and money-consuming. With the high speed increase of data, it has become a hot issue to mine the knowledge of proteomics data on a large scale through computational methods. Based on the hypothesis that the stronger the association between the two proteins, the more likely they are to be associated with the same disease, in this paper, we constructed both disease similarity network and protein interaction network. Then, Graph Convolutional Networks (GCN) was applied to extract topological features of these networks. Finally, Xgboost was used to identify the relationship between proteins and gastric cancer. Results of 10-cross validation experiments show high area under the curve (AUC) (0.85) and area under the precision recall (AUPR) curve (0.76) of our method, which proves the effectiveness of our method.

11.
J Med Signals Sens ; 11(2): 108-119, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34268099

RESUMEN

BACKGROUND: Mass spectrometry is a method for identifying proteins and could be used for distinguishing between proteins in healthy and nonhealthy samples. This study was conducted using mass spectrometry data of ovarian cancer with high resolution. Usually, diagnostic and monitoring tests are done according to sensitivity and specificity rates; thus, the aim of this study is to compare mass spectrometry of healthy and cancerous samples in order to find a set of biomarkers or indicators with a reasonable sensitivity and specificity rates. METHODS: Therefore, combination methods were used for choosing the optimum feature set as t-test, entropy, Bhattacharya, and an imperialist competitive algorithm with K-nearest neighbors classifier. The resulting feature from each method was feed to the C5 decision tree with 10-fold cross-validation to classify data. RESULTS: The most important variables using this method were identified and a set of rules were extracted. Similar to most frequent features, repetitive patterns were not obtained; the generalized rule induction method was used to identify the repetitive patterns. CONCLUSION: Finally, the resulting features were introduced as biomarkers and compared with other studies. It was found that the resulting features were very similar to other studies. In the case of the classifier, higher sensitivity and specificity rates with a lower number of features were achieved when compared with other studies.

12.
Comput Struct Biotechnol J ; 18: 1695-1703, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32670509

RESUMEN

ProTExA is a web-tool that provides a post-processing workflow for the analysis of protein and gene expression datasets. Using network-based bioinformatics approaches, ProTExA facilitates differential expression analysis and co-expression network analysis as well as pathway and post-pathway analysis. Specifically, for a given set of protein-gene expression data across samples, ProTExA: (1) performs statistical analysis and filtering to highlight the differentially expressed proteins-genes, (2) performs enrichment analysis to identify top-scored pathways, (3) generates pathway-to-pathway and pathway-to-gene networks (4) generates protein and gene co-expression networks using a variety of methodologies, and (5) applies clustering methodologies to identify sub-networks of co-expressed proteins-genes. The proposed web-tool is a simple yet informative tool, towards understanding and exploitation of protein and gene expression datasets, especially for those that do not have the expertise and local resources to replicate specific analyses in the context of collaborative and scientific data exchanging.

13.
J Proteome Res ; 18(2): 732-740, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30277078

RESUMEN

Technical biases are introduced in omics data sets during data generation and interfere with the ability to study biological mechanisms. Several normalization approaches have been proposed to minimize the effects of such biases, but fluctuations in the electrospray current during liquid chromatography-mass spectrometry gradients cause local and sample-specific bias not considered by most approaches. Here we introduce a software named NormalyzerDE that includes a generic retention time (RT)-segmented approach compatible with a wide range of global normalization approaches to reduce the effects of time-resolved bias. The software offers straightforward access to multiple normalization methods, allows for data set evaluation and normalization quality assessment as well as subsequent or independent differential expression analysis using the empirical Bayes Limma approach. When evaluated on two spike-in data sets the RT-segmented approaches outperformed conventional approaches by detecting more peptides (8-36%) without loss of precision. Furthermore, differential expression analysis using the Limma approach consistently increased recall (2-35%) compared to analysis of variance. The combination of RT-normalization and Limma was in one case able to distinguish 108% (2597 vs 1249) more spike-in peptides compared to traditional approaches. NormalyzerDE provides widely usable tools for performing normalization and evaluating the outcome and makes calculation of subsequent differential expression statistics straightforward. The program is available as a web server at http://quantitativeproteomics.org/normalyzerde .


Asunto(s)
Sesgo , Interpretación Estadística de Datos , Internet , Proteómica/métodos , Programas Informáticos , Cromatografía Liquida , Perfilación de la Expresión Génica , Espectrometría de Masas , Proteómica/estadística & datos numéricos , Estándares de Referencia
14.
J Proteome Res ; 18(2): 623-632, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30450911

RESUMEN

Protein networks have become a popular tool for analyzing and visualizing the often long lists of proteins or genes obtained from proteomics and other high-throughput technologies. One of the most popular sources of such networks is the STRING database, which provides protein networks for more than 2000 organisms, including both physical interactions from experimental data and functional associations from curated pathways, automatic text mining, and prediction methods. However, its web interface is mainly intended for inspection of small networks and their underlying evidence. The Cytoscape software, on the other hand, is much better suited for working with large networks and offers greater flexibility in terms of network analysis, import, and visualization of additional data. To include both resources in the same workflow, we created stringApp, a Cytoscape app that makes it easy to import STRING networks into Cytoscape, retains the appearance and many of the features of STRING, and integrates data from associated databases. Here, we introduce many of the stringApp features and show how they can be used to carry out complex network analysis and visualization tasks on a typical proteomics data set, all through the Cytoscape user interface. stringApp is freely available from the Cytoscape app store: http://apps.cytoscape.org/apps/stringapp .


Asunto(s)
Análisis de Datos , Proteómica/métodos , Programas Informáticos , Biología Computacional/métodos , Internet , Mapas de Interacción de Proteínas , Interfaz Usuario-Computador
15.
J Proteome Res ; 18(2): 633-641, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30565464

RESUMEN

Integrating spatiotemporal proteomics data with protein-protein interaction (PPI) data can help researchers make an in-depth exploration of their proteins of interest in a dynamic manner. However, there is still a lack of proper tools for the biologists who usually have few programming skills to construct a PPI network for a protein list, visualize active PPI subnetworks, and then select key nodes for further study. We propose a web-based platform named PPIExp that can automatically construct a PPI network, perform clustering analysis according to protein abundances, and perform functional enrichment analysis. More importantly, it provides multiple effective visualization interfaces, such as the interface to display the PPI network map, the interface to display a dendrogram and heatmap for the clustering result, and the interface to display the expression pattern of a selected protein. To visualize the active PPI subnetworks in specific space or time, it provides buttons to highlight the differentially expressed proteins under each condition on the network map. Additionally, to help researchers determine which proteins are worth further attention, PPIExp provides extensive one-click interactive operations to map node centrality measures to node size on the network and highlight three types of proteins, that is, the proteins in an enriched functional term, the coexpressed proteins selected from the dendgrogram and heatmap, and the proteins input by users. PPIExp is available at http://www.fgvis.com/expressvis/PPIExp .


Asunto(s)
Internet , Mapas de Interacción de Proteínas , Proteómica/métodos , Análisis Espacio-Temporal , Análisis por Conglomerados , Programas Informáticos , Interfaz Usuario-Computador
16.
J Comput Biol ; 25(10): 1123-1127, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29993281

RESUMEN

Deciphering and visualizing proteomics data are a big challenge for high-throughput proteomics research. In this work, we develop a free interactive web software platform, MixProTool, for processing multigroup proteomics data sets. This tool provides integrated data analysis workflow, including quality control assessment, normalization, soft independent modeling of class analogy, statistics, gene ontology enrichment, and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. This software is also highly compatible with the identification and quantification results of various frequently used search engines, such as MaxQuant, Proteome Discoverer, or Mascot. Moreover, all analyzed results can be visualized as vector graphs and tables for further analysis. MixProTool can be conveniently operated by users, even those without bioinformatics training, and it is extremely useful for mining the most relevant features among different samples. MixProTool is deployed at the public shinyapps io server.


Asunto(s)
Gráficos por Computador , Proteoma/análisis , Programas Informáticos , Neoplasias de la Mama Triple Negativas/metabolismo , Biomarcadores de Tumor/metabolismo , Biología Computacional/métodos , Humanos , Espectrometría de Masas , Neoplasias de la Mama Triple Negativas/patología , Flujo de Trabajo
17.
J Med Syst ; 42(7): 129, 2018 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-29869179

RESUMEN

The use of data issued from high throughput technologies in drug target problems is widely widespread during the last decades. This study proposes a meta-heuristic framework using stochastic local search (SLS) combined with random forest (RF) where the aim is to specify the most important genes and proteins leading to the best classification of Acute Myeloid Leukemia (AML) patients. First we use a stochastic local search meta-heuristic as a feature selection technique to select the most significant proteins to be used in the classification task step. Then we apply RF to classify new patients into their corresponding classes. The evaluation technique is to run the RF classifier on the training data to get a model. Then, we apply this model on the test data to find the appropriate class. We use as metrics the balanced accuracy (BAC) and the area under the receiver operating characteristic curve (AUROC) to measure the performance of our model. The proposed method is evaluated on the dataset issued from DREAM 9 challenge. The comparison is done with a pure random forest (without feature selection), and with the two best ranked results of the DREAM 9 challenge. We used three types of data: only clinical data, only proteomics data, and finally clinical and proteomics data combined. The numerical results show that the highest scores are obtained when using clinical data alone, and the lowest is obtained when using proteomics data alone. Further, our method succeeds in finding promising results compared to the methods presented in the DREAM challenge.


Asunto(s)
Leucemia Mieloide Aguda/diagnóstico , Proteómica , Algoritmos , Área Bajo la Curva , Humanos , Curva ROC
18.
BMC Bioinformatics ; 19(Suppl 2): 59, 2018 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-29536824

RESUMEN

BACKGROUND: During the last years, several approaches were applied on biomedical data to detect disease specific proteins and genes in order to better target drugs. It was shown that statistical and machine learning based methods use mainly clinical data and improve later their results by adding omics data. This work proposes a new method to discriminate the response of Acute Myeloid Leukemia (AML) patients to treatment. The proposed approach uses proteomics data and prior regulatory knowledge in the form of networks to predict cancer treatment outcomes by finding out the different Boolean networks specific to each type of response to drugs. To show its effectiveness we evaluate our method on a dataset from the DREAM 9 challenge. RESULTS: The results are encouraging and demonstrate the benefit of our approach to distinguish patient groups with different response to treatment. In particular each treatment response group is characterized by a predictive model in the form of a signaling Boolean network. This model describes regulatory mechanisms which are specific to each response group. The proteins in this model were selected from the complete dataset by imposing optimization constraints that maximize the difference in the logical response of the Boolean network associated to each group of patients given the omic dataset. This mechanistic and predictive model also allow us to classify new patients data into the two different patient response groups. CONCLUSIONS: We propose a new method to detect the most relevant proteins for understanding different patient responses upon treatments in order to better target drugs using a Prior Knowledge Network and proteomics data. The results are interesting and show the effectiveness of our method.


Asunto(s)
Algoritmos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/terapia , Proteómica , Bases de Datos de Proteínas , Humanos , Lógica , Mapas de Interacción de Proteínas , Reproducibilidad de los Resultados
19.
J Proteome Res ; 17(4): 1547-1558, 2018 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-29558135

RESUMEN

Mass-spectrometry-based proteomics has evolved into a high-throughput technology in which numerous large-scale data sets are generated from diverse analytical platforms. Furthermore, several scientific journals and funding agencies have emphasized the storage of proteomics data in public repositories to facilitate its evaluation, inspection, and reanalysis. (1) As a consequence, public proteomics data repositories are growing rapidly. However, tools are needed to integrate multiple proteomics data sets to compare different experimental features or to perform quality control analysis. Here, we present a new Java stand-alone tool, Proteomics Assay COMparator (PACOM), that is able to import, combine, and simultaneously compare numerous proteomics experiments to check the integrity of the proteomic data as well as verify data quality. With PACOM, the user can detect source of errors that may have been introduced in any step of a proteomics workflow and that influence the final results. Data sets can be easily compared and integrated, and data quality and reproducibility can be visually assessed through a rich set of graphical representations of proteomics data features as well as a wide variety of data filters. Its flexibility and easy-to-use interface make PACOM a unique tool for daily use in a proteomics laboratory. PACOM is available at https://github.com/smdb21/pacom .


Asunto(s)
Conjuntos de Datos como Asunto , Espectrometría de Masas , Proteómica/métodos , Programas Informáticos , Exactitud de los Datos , Bases de Datos de Proteínas , Internet , Reproducibilidad de los Resultados , Flujo de Trabajo
20.
Adv Exp Med Biol ; 919: 203-215, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27975218

RESUMEN

Since mass spectrometry was introduced as the core technology for large-scale analysis of the proteome, the speed of data acquisition, dynamic ranges of measurements, and data quality are continuously improving. These improvements are triggered by regular launches of new methodologies and instruments.


Asunto(s)
Biología Computacional/métodos , Minería de Datos/métodos , Bases de Datos de Proteínas , Espectrometría de Masas/métodos , Proteínas/análisis , Proteoma , Proteómica/métodos , Algoritmos , Animales , Ensayos Analíticos de Alto Rendimiento , Humanos , Programas Informáticos , Flujo de Trabajo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA