RESUMEN
This nested case-control study identified broad dysregulation of the circulating proteome in neonates receiving postoperative extracorporeal membrane oxygenation support after congenital heart disease surgery, including differential responses in those not surviving to hospital discharge. Tissue hypoxia and mitochondrial-associated proteins may represent novel candidate biomarkers for poor extracorporeal membrane oxygenation outcomes.
RESUMEN
Systemic lupus erythematosus (SLE) is the prototypical autoimmune disease that can affect any organ of the body. Multiple mechanisms may contribute to the pathophysiology of systemic lupus, including failure to remove apoptotic bodies, hyperactivity of self-reactive B and T lymphocytes, abnormal exposure to autoantigens, and increased levels of B-cell stimulatory cytokines. The involvement of the kidney, called lupus nephritis (LN), during the course of the disease affects between 30% and 60% of adult SLE patients, and up to 70% of children. LN is an immune-mediated glomerulonephritis that is a common and serious finding in patients with SLE. Nowadays, renal biopsy is considered the gold standard for classifying LN, besides its degree of activity or chronicity. Nevertheless, renal biopsy lacks the ability to predict which patients will respond to immunosuppressive therapy and is a costly and risky procedure that is not practical in the monitoring of LN because serial repetitions would be necessary. Consequently, many serum and urinary biomarkers have been studied in SLE patients for the complementary study of LN, existing conventional biomarkers like proteinuria, protein/creatinine ratio in spot urine, 24 âh urine proteinuria, creatinine clearance, among others and non-conventional biomarkers, like Monocyte chemoattractant protein-1 (MCP-1), have been correlated with the histological findings of the different types of LN. In this article, we review the advances in lupus nephritis urinary biomarkers. Such markers ideally should be capable of predicting early sub-clinical flares and could be used to follow response to therapy. In addition, some of these markers have been found to be involved in the pathogenesis of lupus nephritis.
RESUMEN
Respiratory diseases are highly prevalent and affect humankind worldwide, causing extensive morbidity and mortality with the environment playing an important role. Given the complex structure of the airways, sophisticated tools are required for early diagnosis; initial symptoms are nonspecific, and the clinical diagnosis is made frequently late. Over the past few years, proteomics has made high technological progress in mass-spectrometry-based protein identification and has allowed us to gain new insights into disease mechanisms and identify potential novel therapeutic targets. This review will highlight the contributions of proteomics toward the understanding of the respiratory proteome listing potential biomarkers and its potential application to the clinic. We also outline the contributions of proteomics to creating a personalized approach in respiratory medicine.