Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
mBio ; : e0183924, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39248567

RESUMEN

Dental caries is associated with microbial dysbiosis caused by the excessive proliferation of Streptococcus mutans in dental biofilms, where oxidative stress serves as the major stressor to microbial communities. The adaptability of S. mutans to oxidative stress is a prerequisite for its proliferation and even for exerting its virulence. Protein acetylation is a reversible and conserved regulatory mechanism enabling bacteria to rapidly respond to external environmental stressors. However, the functions of protein acetylation in regulating oxidative stress adaptability of S. mutans are still unknown. Here, we unveil the impact of acetyltransferase ActA-mediated acetylation on regulating the oxidative stress response of S. mutans. actA overexpression increased the sensitivity of S. mutans to hydrogen peroxide and diminished its competitive ability against Streptococcus sanguinis. In contrast, actA deletion enhanced oxidative stress tolerance and competitiveness of S. mutans. The mass spectrometric analysis identified pyruvate kinase (PykF) as a substrate of ActA, with its acetylation impairing its enzymatic activity and reducing pyruvate production. Supplementation with exogenous pyruvate mitigated oxidative stress sensitivity and restored competitiveness in multi-species biofilms. In vitro acetylation analysis further confirmed that ActA directly acetylates PykF, negatively affecting its enzymatic activity. Moreover, 18 potential lysine-acetylated sites on PykF were identified in vitro, which account for 75% of lysine-acetylated sites detected in vivo. Taken together, our study elucidates a novel regulatory mechanism of ActA-mediated acetylation of PykF in modulating oxidative stress adaptability of S. mutans by influencing pyruvate production, providing insights into the importance of protein acetylation in microbial environmental adaptability and interspecies interactions within dental biofilms. IMPORTANCE: Dental caries poses a significant challenge to global oral health, driven by microbial dysbiosis within dental biofilms. The pathogenicity of Streptococcus mutans, a major cariogenic bacterium, is closely linked to its ability to adapt to changing environments and cellular stresses. Our investigation into the protein acetylation mechanisms, particularly through the acetyltransferase ActA, reveals a critical pathway by which S. mutans modulates its adaptability to oxidative stress, the dominant stressor within dental biofilms. By elucidating how ActA affects the oxidative stress adaptability and competitiveness of S. mutans through the regulatory axis of ActA-PykF-pyruvate, our findings provide insights into the dynamic interplay between cariogenic and commensal bacteria within dental biofilms. This work emphasizes the significance of protein acetylation in bacterial stress response and competitiveness, opening avenues for the development of novel strategies to maintain oral microbial balance within dental biofilms.

2.
Crit Rev Biotechnol ; : 1-19, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39266266

RESUMEN

Acetyl-CoA is an intermediate metabolite in cellular central metabolism. It's a precursor for various valuable commercial products, including: terpenoids, fatty acids, and polyketides. With the advancement of metabolic and synthetic biology tools, microbial cell factories have been constructed for the efficient synthesis of acetyl-CoA and derivatives, with the Saccharomyces cerevisiae and Yarrowia lipolytica as two prominent chassis. This review summarized the recent developments in the biosynthetic pathways and metabolic engineering approaches for acetyl-CoA and its derivatives synthesis in these two yeasts. First, the metabolic routes involved in the biosynthesis of acetyl-CoA and derived products were outlined. Then, the advancements in metabolic engineering strategies for channeling acetyl-CoA toward the desired products were summarized, with particular emphasis on: enhancing metabolic flux in different organelles, refining precursor CoA synthesis, optimizing substrate utilization, and modifying protein acetylation level. Finally, future developments in advancing the metabolic engineering strategies for acetyl-CoA and related derivatives synthesis, including: reducing CO2 emissions, dynamically regulating metabolic pathways, and exploring the regulatory functions between acetyl-CoA levels and protein acetylation, are highlighted. This review provided new insights into regulating acetyl-CoA synthesis to create more effective microbial cell factories for bio-manufacturing.

3.
J Pineal Res ; 76(6): e13007, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39269018

RESUMEN

Intestinal barrier dysfunction with high serum endotoxin is common in patients with liver fibrosis, but the mechanisms underlying liver fibrosis remain unclear. Melatonin is a well-recognized antioxidant and an anti-inflammatory agent that benefits multiple organs. However, the beneficial effects of melatonin on gut leakiness-associated liver fibrosis have not been systemically studied. Here, we investigated the protective mechanisms of melatonin against thioacetamide (TAA)-induced gut barrier dysfunction and hepatic fibrosis by focusing on posttranslational protein modifications through the gut-liver axis. Our results showed that gut leakiness markers, including decreased gut tight/adherens junction proteins (TJ/AJs) with increased intestinal deformation, apoptosis, and serum endotoxin, were observed early at 1 week after TAA exposure. Liver injury, apoptosis, and fibrosis were prominent at 2 and 4 weeks. Mechanistically, we found that gut TJ/AJs were hyper-acetylated, followed by ubiquitin-dependent proteolysis, leading to their degradation and gut leakiness. Gut dysbiosis, hepatic protein hyper-acetylation, and SIRT1 downregulation were also observed. Consistently, intestinal Sirt1 deficiency greatly enhanced protein hyper-acetylation, gut leakiness, endotoxemia, and liver fibrosis. Pretreatment with melatonin prevented or improved all these changes in both the gut and liver. Furthermore, melatonin blunted protein acetylation and injury in TAA-exposed T84 human intestinal and AML12 mouse liver cells. Overall, this study demonstrated novel mechanisms by which melatonin prevents gut leakiness and liver fibrosis through the gut-liver axis by attenuating the acetylation of intestinal and hepatic proteins. Thus, melatonin consumption can become a potentially safe supplement for liver fibrosis patients by preventing protein hyper-acetylation and gut leakiness.


Asunto(s)
Cirrosis Hepática , Melatonina , Sirtuina 1 , Tioacetamida , Tioacetamida/toxicidad , Sirtuina 1/metabolismo , Melatonina/farmacología , Animales , Cirrosis Hepática/metabolismo , Cirrosis Hepática/inducido químicamente , Ratones , Hígado/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Ratones Endogámicos C57BL , Acetilación/efectos de los fármacos , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/patología
4.
Cells ; 13(17)2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-39272992

RESUMEN

BACKGROUND: Aging and comorbidities like type 2 diabetes and obesity contribute to the development of chronic systemic inflammation, which impacts the development of heart failure and vascular disease. Increasing evidence suggests a role of pro-inflammatory M1 macrophages in chronic inflammation. A shift of metabolism from mitochondrial oxidation to glycolysis is essential for the activation of the pro-inflammatory M1 phenotype. Thus, reprogramming the macrophage metabolism may alleviate the pro-inflammatory phenotype and protect against cardiovascular diseases. In the present study, we hypothesized that the activation of estrogen receptors leads to the elevation of the mitochondrial deacetylase Sirt3, which supports mitochondrial function and mitigates the pro-inflammatory phenotype in macrophages. MATERIALS AND METHODS: Experiments were performed using the mouse macrophage cell line RAW264.7, as well as primary male or female murine bone marrow macrophages (BMMs). Macrophages were treated for 24 h with estradiol (E2) or vehicle (dextrin). The effect of E2 on Sirt3 expression was investigated in pro-inflammatory M1, anti-inflammatory/immunoregulatory M2, and naïve M0 macrophages. Mitochondrial respiration was measured by Seahorse assay, and protein expression and acetylation were determined by western blotting. RESULTS: E2 treatment upregulated mitochondrial Sirt3, reduced mitochondrial protein acetylation, and increased basal mitochondrial respiration in naïve RAW264.7 macrophages. Similar effects on Sirt3 expression and mitochondrial protein acetylation were observed in primary female but not in male murine BMMs. Although E2 upregulated Sirt3 in naïve M0, pro-inflammatory M1, and anti-inflammatory/immunoregulatory M2 macrophages, it reduced superoxide dismutase 2 acetylation and suppressed mitochondrial reactive oxygen species formation only in pro-inflammatory M1 macrophages. E2 alleviated the pro-inflammatory phenotype in M1 RAW264.7 cells. CONCLUSIONS: The study suggests that E2 treatment upregulates Sirt3 expression in macrophages. In primary BMMs, female-specific Sirt3 upregulation was observed. The Sirt3 upregulation was accompanied by mitochondrial protein deacetylation and the alleviation of the oxidative and pro-inflammatory phenotype in M1 macrophages. Thus, the E2-Sirt3 axis might be used in a therapeutic strategy to fight chronic systemic inflammation and prevent the development of inflammation-linked diseases.


Asunto(s)
Estrógenos , Inflamación , Macrófagos , Mitocondrias , Sirtuina 3 , Regulación hacia Arriba , Animales , Femenino , Masculino , Ratones , Acetilación/efectos de los fármacos , Estradiol/farmacología , Estrógenos/farmacología , Inflamación/patología , Inflamación/metabolismo , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Fenotipo , Células RAW 264.7 , Sirtuina 3/metabolismo , Regulación hacia Arriba/efectos de los fármacos
5.
Cell Rep ; 43(9): 114682, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39207899

RESUMEN

Signaling-dependent changes in protein phosphorylation are critical to enable coordination of transcription and metabolism during macrophage activation. However, the role of acetylation in signal transduction during macrophage activation remains obscure. Here, we identify the redox signaling regulator peroxiredoxin 1 (PRDX1) as a substrate of the lysine acetyltransferase MOF. MOF acetylates PRDX1 at lysine 197, preventing hyperoxidation and thus maintaining its activity under stress. PRDX1 K197ac responds to inflammatory signals, decreasing rapidly in mouse macrophages stimulated with bacterial lipopolysaccharides (LPSs) but not with interleukin (IL)-4 or IL-10. The LPS-induced decrease of PRDX1 K197ac elevates cellular hydrogen peroxide accumulation and augments ERK1/2, but not p38 or AKT, phosphorylation. Concomitantly, diminished PRDX1 K197ac stimulates glycolysis, potentiates H3 serine 28 phosphorylation, and ultimately enhances the production of pro-inflammatory mediators such as IL-6. Our work reveals a regulatory role for redox protein acetylation in signal transduction and coordinating metabolic and transcriptional programs during inflammatory macrophage activation.

6.
Cell Signal ; 121: 111273, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38950874

RESUMEN

Diabetes-associated periodontitis (DP) presents severe inflammation and resistance to periodontal conventional treatment, presenting a significant challenge in clinical management. In this study, we investigated the underlying mechanism driving the hyperinflammatory response in gingival epithelial cells (GECs) of DP patients. Our findings indicate that lysosomal dysfunction under high glucose conditions leads to the blockage of autophagy flux, exacerbating inflammatory response in GECs. Single-cell RNA sequencing and immunohistochemistry analyses of clinical gingival epithelia revealed dysregulation in the lysosome pathway characterized by reduced levels of lysosome-associated membrane glycoprotein 2 (LAMP2) and V-type proton ATPase 16 kDa proteolipid subunit c (ATP6V0C) in subjects with DP. In vitro stimulation of human gingival epithelial cells (HGECs) with a hyperglycemic microenvironment showed elevated release of proinflammatory cytokines, compromised lysosomal acidity and blocked autophagy. Moreover, HGECs with deficiency in ATP6V0C demonstrated impaired autophagy and heightened inflammatory response, mirroring the effects of high glucose stimulation. Proteomic analysis of acetylation modifications identified altered acetylation levels in 28 autophagy-lysosome pathway-related proteins and 37 sites in HGECs subjected to high glucose stimulation or siATP6V0C. Overall, our finding highlights the pivotal role of lysosome impairment in autophagy obstruction in DP and suggests a potential impact of altered acetylation of relevant proteins on the interplay between lysosome dysfunction and autophagy blockage. These insights may pave the way for the development of effective therapeutic strategies against DP.


Asunto(s)
Autofagia , Células Epiteliales , Encía , Lisosomas , Periodontitis , Humanos , Lisosomas/metabolismo , Acetilación , Células Epiteliales/metabolismo , Células Epiteliales/patología , Encía/metabolismo , Encía/patología , Periodontitis/metabolismo , Periodontitis/patología , Periodontitis/complicaciones , Masculino , Femenino , ATPasas de Translocación de Protón Vacuolares/metabolismo , Persona de Mediana Edad , Glucosa/farmacología , Adulto
7.
Am J Physiol Cell Physiol ; 327(3): C737-C749, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39069827

RESUMEN

The mitochondrial citrate shuttle, which relies on the solute carrier family 25 member 1 (SLC25A1), plays a pivotal role in transporting citrate from the mitochondria to the cytoplasm. This shuttle supports glycolysis, lipid biosynthesis, and protein acetylation. Previous research has primarily focused on SLC25A1 in pathological models, particularly high-fat diet (HFD)-induced obesity. However, the impact of SLC25A1 inhibition on nutrient metabolism under HFD remains unclear. To address this gap, we used zebrafish (Danio rerio) and Nile tilapia (Oreochromis niloticus) to evaluate the effects of inhibiting Slc25a1. In zebrafish, we administered Slc25a1-specific inhibitors (CTPI-2) for 4 wk, whereas Nile tilapia received intraperitoneal injections of dsRNA to knock down slc25a1b for 7 days. Inhibition of the mitochondrial citrate shuttle effectively protected zebrafish from HFD-induced obesity, hepatic steatosis, and insulin resistance. Of note, glucose tolerance was unaffected. Inhibition of Slc25a1 altered hepatic protein acetylation patterns, with decreased cytoplasmic acetylation and increased mitochondrial acetylation. Under HFD conditions, Slc25a1 inhibition promoted fatty acid oxidation and reduced hepatic triglyceride (TAG) accumulation by deacetylating carnitine palmitoyltransferase 1a (Cpt1a). In addition, Slc25a1 inhibition triggered acetylation-induced inactivation of Pdhe1α, leading to a reduction in glucose oxidative catabolism. This was accompanied by enhanced glucose uptake and storage in zebrafish livers. Furthermore, Slc25a1 inhibition under HFD conditions activated the SIRT1/PGC1α pathway, promoting mitochondrial proliferation and enhancing oxidative phosphorylation for energy production. Our findings provide new insights into the role of nonhistone protein acetylation via the mitochondrial citrate shuttle in the development of hepatic lipid deposition and hyperglycemia caused by HFD.NEW & NOTEWORTHY The mitochondrial citrate shuttle is a crucial physiological process for maintaining metabolic homeostasis. In the present study, we found that inhibition of mitochondrial citrate shuttle (Slc25a1) could alleviate metabolic syndromes induced by high-fat diet (HFD) through remodeling hepatic protein acetylation modification. Briefly, Slc25a1 inhibition reduces hepatic triglyceride deposition by deacetylating Cpt1a and reduces glucose oxidative catabolism by acetylating Pdhe1α. Our study provides new insights into the treatment of diet-induced metabolic syndromes.


Asunto(s)
Ácido Cítrico , Dieta Alta en Grasa , Pez Cebra , Animales , Dieta Alta en Grasa/efectos adversos , Ácido Cítrico/metabolismo , Síndrome Metabólico/metabolismo , Síndrome Metabólico/prevención & control , Síndrome Metabólico/genética , Síndrome Metabólico/etiología , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Carnitina O-Palmitoiltransferasa/metabolismo , Carnitina O-Palmitoiltransferasa/genética , Obesidad/metabolismo , Obesidad/prevención & control , Obesidad/genética , Obesidad/etiología , Acetilación , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Hígado/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Resistencia a la Insulina , Hígado Graso/metabolismo , Hígado Graso/prevención & control , Hígado Graso/patología , Hígado Graso/etiología , Metabolismo de los Lípidos/efectos de los fármacos
8.
bioRxiv ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38826225

RESUMEN

Cysteine is a reactive amino acid central to the catalytic activities of many enzymes. It is also a common target of post-translational modifications (PTMs), such as palmitoylation. This longchain acyl PTM can modify cysteine residues and induce changes in protein subcellular localization. We hypothesized that cysteine could also be modified by short-chain acyl groups, such as cysteine S-acetylation. To test this, we developed sample preparation and non-targeted mass spectrometry protocols to analyze the mouse liver proteome for cysteine acetylation. Our findings revealed hundreds of sites of cysteine acetylation across multiple tissue types, revealing a previously uncharacterized cysteine acetylome. Cysteine acetylation shows a marked cytoplasmic subcellular localization signature, with tissue-specific acetylome patterns and specific changes upon metabolic stress. This study uncovers a novel aspect of cysteine biochemistry, highlighting short-chain modifications alongside known long-chain acyl PTMs. These findings enrich our understanding of the landscape of acyl modifications and suggest new research directions in enzyme activity regulation and cellular signaling in metabolism.

9.
J Nutr Biochem ; 131: 109678, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38844080

RESUMEN

The solute carrier family 25 member 1 (Slc25a1)-dependent mitochondrial citrate shuttle is responsible for exporting citrate from the mitochondria to the cytoplasm for supporting lipid biosynthesis and protein acetylation. Previous studies on Slc25a1 concentrated on pathological models. However, the importance of Slc25a1 in maintaining metabolic homeostasis under normal nutritional conditions remains poorly understood. Here, we investigated the mechanism of mitochondrial citrate shuttle in maintaining lipid metabolism homeostasis in male Nile tilapia (Oreochromis niloticus). To achieve the objective, we blocked the mitochondrial citrate shuttle by inhibiting Slc25a1 under normal nutritional conditions. Slc25a1 inhibition was established by feeding Nile tilapia with 250 mg/kg 1,2,3-benzenetricarboxylic acid hydrate for 6 weeks or intraperitoneal injecting them with dsRNA to knockdown slc25a1b for 7 days. The Nile tilapia with Slc25a1 inhibition exhibited an obesity-like phenotype accompanied by fat deposition, liver damage and hyperglycemia. Moreover, Slc25a1 inhibition decreased hepatic citrate-derived acetyl-CoA, but increased hepatic triglyceride levels. Furthermore, Slc25a1 inhibition replenished cytoplasmic acetyl-CoA through enhanced acetate pathway, which led to hepatic triglycerides accumulation. However, acetate-derived acetyl-CoA caused by hepatic Slc25a1 inhibition did not activate de novo lipogenesis, but rather modified protein acetylation. In addition, hepatic Slc25a1 inhibition enhanced fatty acids esterification through acetate-derived acetyl-CoA, which increased Lipin1 acetylation and its protein stability. Collectively, our results illustrate that inhibiting mitochondrial citrate shuttle triggers lipid anabolic remodeling and results in lipid accumulation, indicating the importance of mitochondrial citrate shuttle in maintaining lipid metabolism homeostasis.


Asunto(s)
Cíclidos , Ácido Cítrico , Metabolismo de los Lípidos , Hígado , Triglicéridos , Animales , Triglicéridos/metabolismo , Hígado/metabolismo , Masculino , Cíclidos/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Ácido Cítrico/metabolismo , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Lipogénesis/efectos de los fármacos , Proteínas de Peces/metabolismo , Acetilcoenzima A/metabolismo
10.
J Agric Food Chem ; 72(20): 11724-11732, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38718268

RESUMEN

Protein post-translational modifications (PTMs) play an essential role in meat quality development. However, the effect of specific PTM sites on meat proteins has not been investigated yet. The characteristics of pyruvate kinase M (PKM) were found to exhibit a close correlation with final meat quality, and thus, serine 99 (S99) and lysine 137 (K137) in PKM were mutated to study their effect on PKM function. The structural and functional properties of five lamb PKM variants, including wild-type PKM (wtPKM), PKM_S99D (S99 phosphorylation), PKM_S99A (PKM S99 dephosphorylation), PKM_K137Q (PKM K137 acetylation), and PKM_K137R (PKM K137 deacetylation), were evaluated. The results showed that the secondary structure, tertiary structure, and polymer formation were affected among different PKM variants. In addition, the glycolytic activity of PKM_K137Q was decreased because of its weakened binding with phosphoenolpyruvate. In the PKM_K137R variant, the actin phosphorylation level exhibited a decrease, suggesting a low kinase activity of PKM_K137R. The results of molecular simulation showed a 42% reduction in the interface area between PKM_K137R and actin, in contrast to wtPKM and actin. These findings are significant for revealing the mechanism of how PTMs regulate PKM function and provide a theoretical foundation for the development of precise meat quality preservation technology.


Asunto(s)
Glucólisis , Piruvato Quinasa , Piruvato Quinasa/metabolismo , Piruvato Quinasa/genética , Piruvato Quinasa/química , Fosforilación , Animales , Acetilación , Ovinos , Procesamiento Proteico-Postraduccional , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/química , Carne/análisis
11.
Acta Pharmacol Sin ; 45(9): 1898-1911, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38760545

RESUMEN

Tacrolimus, one of the macrolide calcineurin inhibitors, is the most frequently used immunosuppressant after transplantation. Long-term administration of tacrolimus leads to dyslipidemia and affects liver lipid metabolism. In this study, we investigated the mode of action and underlying mechanisms of this adverse reaction. Mice were administered tacrolimus (2.5 mg·kg-1·d-1, i.g.) for 10 weeks, then euthanized; the blood samples and liver tissues were collected for analyses. We showed that tacrolimus administration induced significant dyslipidemia and lipid deposition in mouse liver. Dyslipidemia was also observed in heart or kidney transplantation patients treated with tacrolimus. We demonstrated that tacrolimus did not directly induce de novo synthesis of fatty acids, but markedly decreased fatty acid oxidation (FAO) in AML12 cells. Furthermore, we showed that tacrolimus dramatically decreased the expression of HMGCS2, the rate-limiting enzyme of ketogenesis, with decreased ketogenesis in AML12 cells, which was responsible for lipid deposition in normal hepatocytes. Moreover, we revealed that tacrolimus inhibited forkhead box protein O1 (FoxO1) nuclear translocation by promoting FKBP51-FoxO1 complex formation, thus reducing FoxO1 binding to the HMGCS2 promoter and its transcription ability in AML12 cells. The loss of HMGCS2 induced by tacrolimus caused decreased ketogenesis and increased acetyl-CoA accumulation, which promoted mitochondrial protein acetylation, thereby resulting in FAO function inhibition. Liver-specific HMGCS2 overexpression via tail intravenous injection of AAV8-TBG-HMGCS2 construct reversed tacrolimus-induced mitochondrial protein acetylation and FAO inhibition, thus removing the lipid deposition in hepatocytes. Collectively, this study demonstrates a novel mechanism of liver lipid deposition and hyperlipidemia induced by long-term administration of tacrolimus, resulted from the loss of HMGCS2-mediated ketogenesis and subsequent FAO inhibition, providing an alternative target for reversing tacrolimus-induced adverse reaction.


Asunto(s)
Hidroximetilglutaril-CoA Sintasa , Hígado , Ratones Endogámicos C57BL , Tacrolimus , Animales , Tacrolimus/farmacología , Ratones , Masculino , Hidroximetilglutaril-CoA Sintasa/metabolismo , Hidroximetilglutaril-CoA Sintasa/genética , Humanos , Hígado/metabolismo , Hígado/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Proteína Forkhead Box O1/metabolismo , Inmunosupresores/farmacología , Trastornos del Metabolismo de los Lípidos/metabolismo , Trastornos del Metabolismo de los Lípidos/inducido químicamente , Trastornos del Metabolismo de los Lípidos/tratamiento farmacológico , Línea Celular
12.
Nutrients ; 16(5)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38474865

RESUMEN

Obesity entails metabolic alterations across multiple organs, highlighting the role of inter-organ communication in its pathogenesis. Extracellular vesicles (EVs) are communication agents in physiological and pathological conditions, and although they have been associated with obesity comorbidities, their protein cargo in this context remains largely unknown. To decipher the messages encapsulated in EVs, we isolated plasma-derived EVs from a diet-induced obese murine model. Obese plasma EVs exhibited a decline in protein diversity while control EVs revealed significant enrichment in protein-folding functions, highlighting the importance of proper folding in maintaining metabolic homeostasis. Previously, we revealed that gut-derived EVs' proteome holds particular significance in obesity. Here, we compared plasma and gut EVs and identified four proteins exclusively present in the control state of both EVs, revealing the potential for a non-invasive assessment of gut health by analyzing blood-derived EVs. Given the relevance of post-translational modifications (PTMs), we observed a shift in chromatin-related proteins from glycation to acetylation in obese gut EVs, suggesting a regulatory mechanism targeting DNA transcription during obesity. This study provides valuable insights into novel roles of EVs and protein PTMs in the intricate mechanisms underlying obesity, shedding light on potential biomarkers and pathways for future research.


Asunto(s)
Vesículas Extracelulares , Proteómica , Humanos , Ratones , Animales , Obesidad/metabolismo , Procesamiento Proteico-Postraduccional , Proteoma/metabolismo , Vesículas Extracelulares/metabolismo
13.
Int J Med Sci ; 21(4): 725-731, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38464830

RESUMEN

Spinal cord injury (SCI) leads to deficits of various normal functions and is difficult to return to a normal state. Histone and non-histone protein acetylation after SCI is well documented and regulates spinal cord plasticity, axonal growth, and sensory axon regeneration. However, our understanding of protein acetylation after SCI is still limited. In this review, we summarize current research on the role of acetylation of histone and non-histone proteins in regulating neuron growth and axonal regeneration in SCI. Furthermore, we discuss inhibitors and activators targeting acetylation-related enzymes, such as α-tubulin acetyltransferase 1 (αTAT1), histone deacetylase 6 (HDAC6), and sirtuin 2 (SIRT2), to provide promising opportunities for recovery from SCI. In conclusion, a comprehensive understanding of protein acetylation and deacetylation in SCI may contribute to the development of SCI treatment.


Asunto(s)
Axones , Traumatismos de la Médula Espinal , Humanos , Axones/metabolismo , Histonas/metabolismo , Acetilación , Regeneración Nerviosa , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/metabolismo , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/uso terapéutico
14.
J Biol Chem ; 300(2): 105617, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38176653

RESUMEN

Liver can sense the nutrient status and send signals to other organs to regulate overall metabolic homoeostasis. Herein, we demonstrate that ketone bodies act as signals released from the liver that specifically determine the distribution of excess lipid in epididymal white adipose tissue (eWAT) when exposed to a ketogenic diet (KD). An acute KD can immediately result in excess lipid deposition in the liver. Subsequently, the liver sends the ketone body ß-hydroxybutyrate (BHB) to regulate white adipose expansion, including adipogenesis and lipogenesis, to alleviate hepatic lipid accumulation. When ketone bodies are depleted by deleting 3-hydroxy-3-methylglutaryl-CoA synthase 2 gene in the liver, the enhanced lipid deposition in eWAT but not in inguinal white adipose tissue is preferentially blocked, while lipid accumulation in liver is not alleviated. Mechanistically, ketone body BHB can significantly decrease lysine acetylation of peroxisome proliferator-activated receptor gamma in eWAT, causing enhanced activity of peroxisome proliferator-activated receptor gamma, the key adipogenic transcription factor. These observations suggest that the liver senses metabolic stress first and sends a corresponding signal, that is, ketone body BHB, to specifically promote eWAT expansion to adapt to metabolic challenges.


Asunto(s)
Tejido Adiposo Blanco , Dieta Cetogénica , Hígado Graso , Cuerpos Cetónicos , Humanos , Tejido Adiposo Blanco/metabolismo , Hígado Graso/metabolismo , Cuerpos Cetónicos/metabolismo , Lípidos , Hígado/metabolismo , PPAR gamma/metabolismo
15.
Int J Biol Macromol ; 257(Pt 2): 128567, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38061521

RESUMEN

The study investigated the different effects between protein phosphorylation and acetylation on glycolytic enzyme activity and myofibrillar protein degradation. Lamb longissimus thoracis lumborum muscles were homogenized and then inhibitors were added for incubation at 4 °C. Phosphatase inhibitor was added to produce a high phosphorylation level (PI group) and lysine deacetylase inhibitor was added to produce a high acetylation level (DI group). The lactate and ATP content in the PI group was inhibited compared with that in the DI group (P < 0.05). Phosphofructokinase (PFK) activity was negatively related with the phosphorylation level and was positively related with the acetylation level in the DI group (P < 0.05). The degradation of troponin T and desmin of the DI group were restrained when compared to that in the PI group (P < 0.05). Compared with initial PFK and desmin, the simulation of phosphorylation and acetylation of PFK and desmin showed different electrostatic potential at the surface and a more unstable structure. The phosphorylation level of the DI group was increased, suggesting that the changes of protein acetylation altered protein phosphorylation. In conclusion, compared with protein phosphorylation, protein acetylation had a greater effect on promoting glycolysis and inhibiting protein degradation.


Asunto(s)
Glucólisis , Músculo Esquelético , Animales , Ovinos , Proteolisis , Fosforilación , Acetilación , Desmina/análisis , Desmina/metabolismo , Músculo Esquelético/metabolismo , Carne/análisis
16.
Pharmacol Res ; 197: 106950, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37820854

RESUMEN

Kidney disease can be caused by various internal and external factors that have led to a continual increase in global deaths. Current treatment methods can alleviate but do not markedly prevent disease development. Further research on kidney disease has revealed the crucial function of epigenetics, especially acetylation, in the pathology and physiology of the kidney. Histone acetyltransferases (HATs), histone deacetylases (HDACs), and acetyllysine readers jointly regulate acetylation, thus affecting kidney physiological homoeostasis. Recent studies have shown that acetylation improves mechanisms and pathways involved in various types of nephropathy. The discovery and application of novel inhibitors and activators have further confirmed the important role of acetylation. In this review, we provide insights into the physiological process of acetylation and summarise its specific mechanisms and potential therapeutic effects on renal pathology.


Asunto(s)
Enfermedades Renales , Humanos , Acetilación , Enfermedades Renales/tratamiento farmacológico , Riñón , Epigénesis Genética , Epigenómica
17.
Biomed Pharmacother ; 168: 115741, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37864899

RESUMEN

Acetyl-coenzyme A (acetyl-CoA), an essential metabolite, not only takes part in numerous intracellular metabolic processes, powers the tricarboxylic acid cycle, serves as a key hub for the biosynthesis of fatty acids and isoprenoids, but also serves as a signaling substrate for acetylation reactions in post-translational modification of proteins, which is crucial for the epigenetic inheritance of cells. Acetyl-CoA links lipid metabolism with histone acetylation to create a more intricate regulatory system that affects the growth, aggressiveness, and drug resistance of malignancies such as glioblastoma, breast cancer, and hepatocellular carcinoma. These fascinating advances in the knowledge of acetyl-CoA metabolism during carcinogenesis and normal physiology have raised interest regarding its modulation in malignancies. In this review, we provide an overview of the regulation and cancer relevance of main metabolic pathways in which acetyl-CoA participates. We also summarize the role of acetyl-CoA in the metabolic reprogramming and stress regulation of cancer cells, as well as medical application of inhibitors targeting its dysregulation in therapeutic intervention of cancers.


Asunto(s)
Glioblastoma , Histonas , Humanos , Histonas/metabolismo , Acetilcoenzima A/metabolismo , Transducción de Señal , Metabolismo de los Lípidos , Acetilación
18.
Biomed Pharmacother ; 167: 115519, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37729729

RESUMEN

Protein acetylation modifications play a central and pivotal role in a myriad of biological processes, spanning cellular metabolism, proliferation, differentiation, apoptosis, and beyond, by effectively reshaping protein structure and function. The metabolic state of cells is intricately connected to epigenetic modifications, which in turn influence chromatin status and gene expression patterns. Notably, pathological alterations in protein acetylation modifications are frequently observed in diseases such as metabolic syndrome, cardiovascular disorders, and cancer. Such abnormalities can result in altered protein properties and loss of function, which are closely associated with developing and progressing related diseases. In recent years, the advancement of precision medicine has highlighted the potential value of protein acetylation in disease diagnosis, treatment, and prevention. This review includes provocative and thought-provoking papers outlining recent breakthroughs in acetylation modifications as they relate to cardiovascular disease, mitochondrial metabolic regulation, liver health, neurological health, obesity, diabetes, and cancer. Additionally, it covers the molecular mechanisms and research challenges in understanding the role of acetylation in disease regulation. By summarizing novel targets and prognostic markers for the treatment of related diseases, we aim to contribute to the field. Furthermore, we discuss current hot topics in acetylation research related to health regulation, including N4-acetylcytidine and liquid-liquid phase separation. The primary objective of this review is to provide insights into the functional diversity and underlying mechanisms by which acetylation regulates proteins in disease contexts.


Asunto(s)
Cromatina , Neoplasias , Humanos , Acetilación , Epigénesis Genética , Procesamiento Proteico-Postraduccional , Neoplasias/genética , Neoplasias/terapia
19.
Biomolecules ; 13(9)2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37759701

RESUMEN

Neuroplasticity is a crucial property of the central nervous system to change its activity in response to intrinsic or extrinsic stimuli. This is mainly achieved through the promotion of changes in the epigenome. One of the epi-drivers priming this process is suberoylanilide hydroxamic acid (SAHA or Vorinostat), a pan-histone deacetylase inhibitor that modulates and promotes neuroplasticity in healthy and disease conditions. Knowledge of the specific molecular changes induced by this epidrug is an important area of neuro-epigenetics for the identification of new compounds to treat cognition impairment and/or epilepsy. In this review, we summarize the findings obtained in cellular and animal models of various brain disorders, highlighting the multiple mechanisms activated by SAHA, such as improvement of memory, learning and behavior, and correction of faulty neuronal functioning. Supporting this evidence, in vitro and in vivo data underline how SAHA positively regulates the expression of neuronal genes and microtubule dynamics, induces neurite outgrowth and spine density, and enhances synaptic transmission and potentiation. In particular, we outline studies regarding neurodevelopmental disorders with pharmaco-resistant seizures and/or severe cognitive impairment that to date lack effective drug treatments in which SAHA could ameliorate defective neuroplasticity.

20.
Acta Biochim Biophys Sin (Shanghai) ; 55(9): 1370-1379, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37580952

RESUMEN

Tumor metabolic reprogramming and epigenetic modification work together to promote tumorigenesis and development. Protein lysine acetylation, which affects a variety of biological functions of proteins, plays an important role under physiological and pathological conditions. Here, through immunoprecipitation and mass spectrum data, we show that phosphoglycerate mutase 5 (PGAM5) deacetylation enhances malic enzyme 1 (ME1) metabolic enzyme activity to promote lipid synthesis and proliferation of liver cancer cells. Mechanistically, we demonstrate that the deacetylase SIRT2 mediates PGAM5 deacetylation to activate ME1 activity, leading to ME1 dephosphorylation, subsequent lipid accumulation and the proliferation of liver cancer cells. Taken together, our study establishes an important role for the SIRT2-PGAM5-ME1 axis in the proliferation of liver cancer cells, suggesting a potential innovative cancer therapy.


Asunto(s)
Neoplasias Hepáticas , Sirtuina 2 , Humanos , Sirtuina 2/genética , Sirtuina 2/metabolismo , Metabolismo de los Lípidos , Fosfoglicerato Mutasa/genética , Fosfoglicerato Mutasa/metabolismo , Proliferación Celular , Lípidos , Acetilación , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Mitocondriales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA