Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemphyschem ; : e202400231, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39119765

RESUMEN

Aqueous zinc ion batteries (ZIBs) hold promises as a safer, more cost-effective, and environmental-friendly alternative to lithium-ion batteries, especially for stationary energy storage. Recent advancements in protective anode coatings, which fine-tune zinc ion solvation structure, have yielded significant improvements in the aqueous ZIB performance, addressing dendrite formation and side reactions, thereby prolonging cycle lifetime. Understanding the underlying mechanisms of these coatings as ions sieves is crucial for further optimization and achieving long-term stability, which is a key requirement for practical applications. This concept explores recent developments in ZIB anode coatings from the view of molecular mechanisms and points out future research directions.

2.
Int J Mol Sci ; 25(10)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38791532

RESUMEN

The development of photocurable compositions is in high demand for the manufacture of functional materials for electronics, optics, medicine, energy, etc. The properties of the final photo-cured material are primarily determined by the initial mixture, which needs to be tuned for each application. In this study we propose to use simple systems based on di(meth)acrylate, polyimide and photoinitiator for the preparation of new photo-curable compositions. It was established that a fluorinated cardo copolyimide (FCPI) based on 2,2-bis-(3,4-dicarboxydiphenyl)hexafluoropropane dianhydride, 9,9-bis-(4-aminophenyl)fluorene and 2,2-bis-(4-aminophenyl)hexafluoropropane (1.00:0.75:0.25 mol) has excellent solubility in di(met)acrylates. This made it possible to prepare solutions of FCPI in such monomers, to study the effect of FCPI on the kinetics of their photopolymerization in situ and the properties of the resulting polymers. According to the obtained data, the solutions of FCPI (23 wt.%) in 1,4-butanediol diacrylate (BDDA) and FCPI (15 wt.%) in tetraethylene glycol diacrylate were tested for the formation of the primary protective coatings of the silica optical fibers. It was found that the new coating of poly(BDDA-FCPI23%) can withstand prolonged annealing at 200 °C (72 h), which is comparable or superior to the known most thermally stable photo-curable coatings. The proposed approach can be applied to obtain other functional materials.


Asunto(s)
Fibras Ópticas , Polimerizacion , Dióxido de Silicio , Dióxido de Silicio/química , Solubilidad , Imidas/química , Temperatura , Acrilatos/química , Polímeros/química , Halogenación , Procesos Fotoquímicos
3.
Gels ; 10(3)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38534586

RESUMEN

The latest advances in technology and materials science have catalyzed a transformative shift towards the adoption of environmentally conscious and lightweight materials across key sectors such as aeronautics, biomedical, and automotive industries. Noteworthy among these innovations are the magnesium-aluminum (Mg-Al) alloys employed in aeronautical applications, contributing to the overall reduction in aircraft weight and subsequently diminishing fuel consumption and mitigating atmospheric emissions. The present work delves into a study of the anti-corrosive properties inherent in various sol-gel coatings, leveraging a range of environmentally friendly corrosion inhibitors, specifically tailored for samples of the AZ61 alloy. Methodologically, the work involves the synthesis and application of sol-gel coatings on AZ61 alloy containing eco-friendly inhibitors: L-cysteine, N-acetyl-cysteine, curcumin and methylene blue. Subsequently, an accelerated corrosion test in a simulated saline environment is performed. Through microstructural and compositional analyses, the best inhibitors responses are achieved with inhibitors containing S, N heteroatoms and conjugated double bonds in their structure, probably due to the creation of a continuous MgCl2 layer. This research contributes to the ongoing discourse on protective eco-coatings, aligning with the broader paradigm shift towards sustainable and lightweight materials in key industries.

4.
ACS Appl Mater Interfaces ; 15(41): 48645-48659, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37791906

RESUMEN

Organic coatings lack durability in marine corrosive environments. Herein, we designed a self-healing coating with a novel nanofiber network filler for enhanced protection. Using electrospinning, we created a core-shell structure nanofiber network consisting of polyvinyl butyral (PVB) as the shell material and gallic acid (GA) and phenanthroline (Phen) as the core material. The PVB@GA-Phen nanofiber network, which includes synergistic corrosion inhibitors (GA-Phen), was embedded in an epoxy coating (PVB@GA-Phen/epoxy) and applied to carbon steel. Density functional theory (DFT) calculations and molecular dynamics (MD) simulations demonstrated that the GA-Phen combination, through hydrogen bond interaction, facilitated inhibitor adsorption on the steel surface. The GA-Phen combination diagnosed corrosion and formed a protective film on the scratched areas. The sustained release of Phen-GA combination inhibitors for up to 240 h resulted in an 88.63% healing efficiency of the PVB@GA-Phen/epoxy (PGP/EP) coating. The long-term corrosion resistance tests confirmed the effective barrier performance of the PGP/EP coating in 3.5 wt % NaCl solution. Moreover, the incorporation of the nanofiber network in the epoxy coating provided passive barrier, corrosion-diagnosing, and anticorrosion properties for carbon steel protection. The designed coating has the potential to continuously monitor the coating/metal system and could serve as a foundation for developing new anticorrosion coatings.

5.
ACS Appl Mater Interfaces ; 15(41): 48810-48817, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37802500

RESUMEN

A flexible, dense, defect-free, highly adhesive, and highly dissociation energy-rich protective coating is essential to enhance the atomic oxygen (AO) resistance of polymeric materials in a low Earth orbit (LEO). In this work, a dense, defect-free hybrid HMDSO/SiO2 thin film coating with compositional gradients on the surface of polyimide was synthesized using vacuum-ultraviolet (VUV) irradiation. The effects of VUV irradiation on the morphology, optical transmittance, and chemical components of plasma-polymerized HMDSO (pp-HMDSO) thin-film coatings deposited on the polyimide surface were investigated in depth. There were no defects such as cracks and holes in the surface morphology of pp-HMDSO films after VUV irradiation, but the surface roughness increased slightly, and the corresponding optical transmittance decreased slightly. The chemical components of pp-HMDSO films were changed in the depth direction starting from the top of the surface, forming hybrid HMDSO/SiO2 thin films with compositional gradients. The component gradient HMDSO/SiO2 composite coating further enhanced the atomic oxygen resistance of the polyimide due to the surface layer of the UV-modified coating enriched with high dissociation energy SiOx material. Therefore, this work provides a facile UV-induced synthesis method to prepare dense, defect-free, and highly dissociation energy-rich protective gradient coatings, which are promising not only for excellent AO protection in LEO but also for potential application in water-oxygen barrier films.

6.
ACS Appl Mater Interfaces ; 15(33): 39198-39210, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37552207

RESUMEN

Li3N is an excellent protective coating material for lithium electrodes with very high lithium-ion conductivity and low electronic conductivity, but the formation of stable and homogeneous coatings is technically very difficult. Here, we show that protective Li3N coatings can be simply formed by the direct reaction of electrodeposited lithium electrodes with N2 gas, whereas using battery-grade lithium foil is problematic due to the presence of a native passivation layer that hampers that reaction. The protective Li3N coating is effective at preventing lithium dendrite formation, as found from unidirectional plating and plating-stripping measurements in Li-Li cells. The Li3N coating also efficiently suppresses the parasitic reactions of polysulfides and other electrolyte species with the lithium electrode, as demonstrated by scanning transmission X-ray microscopy, X-ray photoelectron spectroscopy, and optical microscopy. The protection of the lithium electrode against corrosion by polysulfides and other electrolyte species, as well as the promotion of smooth deposits without dendrites, makes the Li3N coating highly promising for applications in lithium metal batteries, such as lithium-sulfur batteries. The present findings show that the formation of Li3N can be achieved with lithium electrodes covered by a secondary electrolyte interface layer, which proves that the in situ formation of Li3N coatings inside the batteries is attainable.

7.
Polymers (Basel) ; 15(14)2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37514424

RESUMEN

A novel approach to surface modification was developed to improve the corrosion performance of biodegradable magnesium alloys. Additively manufactured magnesium samples and Mg-Mn-based magnesium alloys were used in this study. This method involves the combination of plasma electrolytic oxidation to create a porous ceramic-like matrix, followed by treatment with protective biocompatible agents. The most efficient method for the PEO-layer impregnation using sodium oleate and polycaprolactone was selected and optimized. The correlation between the structure, composition, and protective properties of the hybrid coatings was established. The composition of the formed polymer-containing layers was established using XPS and Raman microspectroscopy. The presence of sodium oleate and its distribution across the coating surface was confirmed at the microscale. The corrosion-protection level of the hybrid layers was assessed using potentiodynamic polarization measurements, electrochemical impedance spectroscopy, hydrogen evolution testing, and gravimetry (mass-loss tests) in vitro. The oleate-containing polycaprolactone layers (HC-SO 0.1-2) demonstrated stable corrosion behavior even after 7 days of immersion in Hank's balanced salt solution. The corrosion-current density and impedance modulus measured at a frequency of 0.1 Hz for the samples with hybrid coating after 7 days of exposure were equal to 5.68 × 10-8 A∙cm-2 and 2.03 × 106 Ω∙cm2, respectively. The developed method of surface modification demonstrates the coating's self-healing properties. The effectiveness of employing hybrid anticorrosive bioactive PEO coatings for biomedical products made from magnesium and its alloys was demonstrated.

8.
Nano Lett ; 23(13): 6156-6163, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37379517

RESUMEN

Zinc (Zn) metal anodes suffer from the dendrite growth and hydrogen evolution reaction (HER) in classical aqueous electrolytes, which severely limit their lifespan. We propose a rational design of AgxZny protective coatings with selective binding to Zn2+ against H+ to simultaneously regulate the Zn growth pattern and the HER kinetics. We further demonstrate that by tuning the composition of the AgxZny coating the Zn deposition behavior can be readily tuned from the conventional plating/stripping (on Zn-AgZn3 coating) to alloying/dealloying (on Ag-AgZn coating), resulting in precise control of the Zn growth pattern. Moreover, the synergy of Ag and Zn further suppresses the competitive HER. As a result, the modified Zn anodes possess a significantly enhanced lifespan. This work provides a new strategy for enhancing the stability of Zn and potentially other metal anodes by precisely manipulating the binding strength of protons and metal charge carriers in aqueous batteries.

9.
Materials (Basel) ; 16(11)2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37297040

RESUMEN

A review on ceramics, glasses and glass-ceramics as thin film protective coatings for solar cells is given. The different preparation techniques and the physical and chemical properties are presented in a comparative way. This study is useful for technologies involving solar cells and solar panel cell development at the industrial scale, because protective coatings and encapsulation play a major role in increasing the lifetime of solar panels and environmental protection. The aim of this review article is to give a summary of existing ceramic, glass, and glass-ceramic protective coatings and how they apply to solar cell technology: silicon, organic or perovskite cells. Moreover, some of these ceramic, glass or glass-ceramic layers were found to have dual functionality, such as providing anti-reflectivity or scratch resistance to give a two-fold improvement to the lifetime and efficiency of the solar cell.

10.
Gels ; 9(4)2023 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-37102905

RESUMEN

Today's environmental needs require the reduction of the weight of vehicles, thus reducing fuel consumption and associated emissions. For this reason, the use of light alloys is being studied, which, due to their reactivity, must be protected before use. In this work, the effectiveness of a hybrid sol-gel coating doped with various organic environmentally friendly corrosion inhibitors applied to an AA2024 lightweight aluminium alloy is evaluated. Some of the inhibitors tested are pH indicators, acting as both corrosion inhibitors and optical sensors for the surface of the alloy. Samples are subjected to a corrosion test in a simulated saline environment and characterised before and after the test. The experimental results regarding their best inhibitor performance for their potential application in the transport industry are evaluated.

11.
Molecules ; 28(5)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36903443

RESUMEN

Over the centuries, humans have developed different systems to protect surfaces from the influence of environmental factors. Protective paints are the most used ones. They have undergone considerable development over the years, especially at the turn of the 19th and 20th centuries. Indeed, between the two centuries, new binders and pigments have been introduced in the constituent materials of paints. The years in which these compounds have been introduced and spread in the paint market allow them to be defined as markers for the dating of paints and painted artifacts. The present work is focused on the study of the paints of two vehicles of the Frankfurt Museum of Communication, i.e., a carriage and a cart, that was designed for the German Postal and Telecommunications Service roughly between 1880 and 1920. The characterization of the paints was performed through in situ non-invasive techniques, i.e., portable optical microscopy and multispectral imaging, and laboratory non-destructive techniques, i.e., FT-IR ATR spectroscopy and SEM-EDS. The analytical investigation and the comparison with the data reported in the literature allowed us to determine the historicity of the paints, which are all dated before the 1950s.

12.
Materials (Basel) ; 16(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36769923

RESUMEN

Results of studying the properties of composite fluoropolymer-containing coatings formed by the cold spray (CS) method on the surface of constructional steel are presented. Different ways of protective coating formation are proposed. The composition of coatings was studied using SEM/EDX analysis. The incorporation of super-dispersed polytetrafluoroethylene (SPTFE) into the coating increases the corrosion resistance of the copper-zinc-based cold-sprayed coating. Analysis of the electrochemical properties obtained using EIS (electrochemical impedance spectroscopy) and PDP (potentiodynamic polarization) indicates that samples treated with SPTFE on a base copper-zinc coating showed lower corrosion current density and higher impedance modulus (jc = 8.5 × 10-7 A cm-2, |Z|f=0.1 Hz = 5.3 × 104 Ω∙cm2) than the specimen with cold-sprayed SPTFE (jc = 6.1 × 10-6 A cm-2, |Z|f=0.1 Hz = 8.1 × 103 Ω∙cm2). The best anticorrosion properties were revealed for the sample with a cold-sprayed base Cu-Zn layer annealed at 500 °C for 1 h, followed by SPTFE friction treatment and re-annealed at 350 °C for 1 h. The corrosion current density jc of such a coating is 25 times lower than that for the base Cu-Zn coating. The antifriction properties and hydrophobicity of the formed layers are described. Obtained results indicate that cold-sprayed polymer-containing coatings effectively improve the corrosion and wear resistivity of the treated material.

13.
Polymers (Basel) ; 15(23)2023 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-38232042

RESUMEN

This article considers the deformation behavior of Panda optical fiber using different models of material behavior for the tasks of predicting residual stresses after drawing when cooling from 2000 °C to room temperature (23 °C) and indenting the fiber into an aluminum half-space at different parameters. These studies were conducted for single- and double-layer protective coatings (PCs), at different values of external load and thickness of single-layer PC. This paper determined the fields of residual stresses in the fiber formed during the drawing process. They are taken into account in modeling the fiber performance in the further process of this research. This article investigated two variants of PC behavior. The influence of behavior models and the number of covering layers on the deformation of the "fiber-half-space" system was analyzed. This paper establishes qualitative and quantitative regularities of the influence of the external load magnitude and relaxation properties of PCs on the deformation and optical characteristics of Panda optical fiber.

14.
ACS Nano ; 16(12): 21152-21162, 2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36459093

RESUMEN

Interface engineering of zinc metal anodes is a promising remedy to relieve their inferior stability caused by dendrite growth and side reactions. Nevertheless, the low affinity and additional weight of the protective coating remain obstacles to their further implementation. Here, aroused by DFT simulation, self-assembled monolayers (SAMs) are selectively constructed to enhance the stability of zinc metal anodes in dilute aqueous electrolytes. It is found that the monolayer thiol molecules relatively prefer to selectively graft onto the unstable zinc crystal facets through strong Zn-S chemical interactions to engineer a covalent interface, enabling the uniform deposition of Zn2+ onto (002) crystal facets. Therefore, dendrite-free anodes with suppressed side reactions can be achieved, proven by in situ optical visualization and differential electrochemical mass spectrometry (DEMS). In particular, the thiol endows the symmetric cells with a 4000 h ultrastable plating/stripping at a specific current density of 1.0 mA cm-2, much superior to those of bare zinc anodes. Additionally, the full battery of modified anodes enables stable cycling of 87.2% capacity retention after 3300 cycles. By selectively capping unstable crystal facets with inert molecules, this work provides a promising design strategy at the molecular level for stable metal anodes.

15.
Polymers (Basel) ; 14(18)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36145982

RESUMEN

The article discusses the effects of thermal-force on the Panda-type optical fiber. The studies used a wide temperature range. The research used two thermal cycles with exposures to temperatures of 23, 60 and -60 °C. The field of residual stresses in the fiber formed during the drawing process was determined and applied. Panda was considered taking into account a two-layer viscoelastic polymer coating under conditions of tension winding on an aluminum coil in the framework of a contact problem. The paper investigated three variants of coil radius to analyze the effect of bending on fiber behavior. The effect of the coating thickness ratio on the system deformation and optical characteristics was analyzed. Qualitative and quantitative patterns of the effect of temperature, bending, thickness of individual polymer coating layers and relaxation transitions of their materials on the Panda optical fiber deformation and optical characteristics were established. Assessment of approaches to the calculation of optical characteristics (values of the refractive indices and fiber birefringence) are given in the framework of the study. The patterns of deformation and optical behavior of the Panda-type fiber with a protective coating, taking into account the nonlinear behavior of the system materials, were original results.

16.
Nanomaterials (Basel) ; 12(17)2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36079955

RESUMEN

While great effort has been focused on bulk material design for high-performance All Solid-State Batteries (ASSBs), solid-solid interfaces, which typically extend over a nanometer regime, have been identified to severely impact cell performance. Major challenges are Li dendrite penetration along the grain boundary network of the Solid-State Electrolyte (SSE) and reductive decomposition at the electrolyte/electrode interface. A naturally forming nanoscale complexion encapsulating ceramic Li1+xAlxTi2-x(PO4)3 (LATP) SSE grains has been shown to serve as a thin protective layer against such degradation mechanisms. To further exploit this feature, we study the interfacial doping of divalent Mg2+ into LATP grain boundaries. Molecular Dynamics simulations for a realistic atomistic model of the grain boundary reveal Mg2+ to be an eligible dopant candidate as it rarely passes through the complexion and thus does not degrade the bulk electrolyte performance. Tuning the interphase stoichiometry promotes the suppression of reductive degradation mechanisms by lowering the Ti4+ content while simultaneously increasing the local Li+ conductivity. The Mg2+ doping investigated in this work identifies a promising route towards active interfacial engineering at the nanoscale from a computational perspective.

17.
Materials (Basel) ; 15(11)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35683067

RESUMEN

In the interest of solving the resource and environmental problems of the construction industry, low-carbon geopolymer coating ensures great durability and extends the service life of existing infrastructure. This paper presents a multidisciplinary assessment of the protective performance and environmental impacts of geopolymer coating. Various parameters, such as main substance, water-solid (W/S) ratio, activator type and curing time, were investigated for their effects on interface characterization in terms of contact angle, surface energy, mechanical properties and microstructure. These parameters had negligible effects on the amounts and types of hydrophilic functional groups of geopolymer surfaces. A combination of organic surface modifiers and geopolymer coatings was shown to ensure hydrophobic surface conditions and great durability. Silicon-based modifiers exhibited better wetting performance than capillary crystalline surfactants by eliminating hydroxyl groups and maintaining structural backbone Si-O-T (Si, Al) on geopolymers' surfaces. Finally, life-cycle analysis was conducted to investigate the environmental performance. Geopolymer coating yielded substantially lower environmental impacts (50-80% lower in most impact categories) than ordinary Portland cement (OPC) coating. Silicon-based modifiers had negligible influence due to their minimal usage. Increasing the W/S ratio diluted the geopolymer coating and decreased the environmental impacts, and slag-based geopolymer coating achieved lower environmental impacts than FA-based and MK-based varietie.

18.
Polymers (Basel) ; 14(10)2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35631895

RESUMEN

Generally, microcapsule-based self-healing materials have the limitation of single local self-healing. A few studies have reported repeatable self-healing in these microcapsular materials, but there is a challenge to develop multi-cycle self-healing materials that have the advantages of easier preparation and a more efficient operation. In this work, a mixture of two vegetable oils, soybean and olive oil, was used as a healing agent. The atmospheric oxygen-induced reaction behavior (in the presence of a catalyst) was investigated for various compositions of the vegetable oil mixtures; infrared spectroscopy, recovery testing, and viscoelasticity measurement were performed to find an optimum composition of the healing agent. Microcapsules loaded with soybean oil and catalyst-containing olive oil were separately prepared and used to prepare a dual-capsule self-healing coating. It was demonstrated through optical and scanning electron microscopy that, upon scribing the self-healing coating, the vegetable oils flowed out from microcapsules to self-heal the damaged area. When the healed area of the self-healing coating was re-scribed, self-healing was repeated, which was confirmed by scanning electron microscopy (SEM) and anticorrosion and electrochemical testing. Our new repeatable self-healing coating provides the merits of easy preparation, no need for external intervention such as light irradiation, and an environmentally-friendly nature.

19.
Small ; 18(21): e2200006, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35261146

RESUMEN

Rechargeable zinc-ion batteries (ZIBs) have shown great potential as an alternative to lithium-ion batteries. The ZIBs utilize Zn metal as the anode, which possesses many advantages such as low cost, high safety, eco-friendliness, and high capacity. However, on the other hand, the Zn anode also suffers from many issues, including dendritic growth, corrosion, and passivation. These issues are largely related to the surface and interface properties of the Zn anode. Many efforts have therefore been devoted to the modification of the Zn anode, aiming to eliminate the above-mentioned problems. This review gives a comprehensive summary on the mechanism behind these issues as well as the recent progress on Zn anode modification with focus on the strategies of surface and interface engineering, covering the design and application of both the Zn anode supports and surface protective layers, along with abundant examples. In addition, the promising research directions and perspective on these strategies are also presented.

20.
Polymers (Basel) ; 13(21)2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34771383

RESUMEN

This paper presents the results of an evaluation of anti-icing properties of samples obtained by plasma electrolytic oxidation (PEO) with a subsequent application of superdispersed polytetrafluoroethylene (SPTFE) and polyvinylidenefluoride (PVDF). A combined treatment of the samples with SPTFE and PVDF is also presented. It is revealed that impregnation of a PEO layer with fluoropolymer materials leads to a significant increase in surface relief uniformity. Combined PVDF-SPFTE layers with a ratio of PVDF to SPTFE of 1:4 reveal the best electrochemical characteristics, hydrophobicity and icephobic properties among all of the studied samples. It is shown that the decrease in corrosion current density Ic for PVDF-SPFTE coatings is higher by more than five orders of magnitude in comparison with uncoated aluminum alloy. The contact angle for PVDF-SPFTE coatings attain 160.5°, which allows us to classify the coating as superhydrophobic with promising anti-icing performance. A treatment of a PEO layer with PVDF-SPFTE leads to a decrease in ice adhesion strength by 22.1 times compared to an untreated PEO coating.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA