Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
1.
Cancers (Basel) ; 16(17)2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39272896

RESUMEN

Prostate cancer, a leading cause of cancer-related mortality among men, is characterized by complex genetic and epigenetic alterations, dysregulation of oncogenic pathways, and a dynamic tumor microenvironment. Advances in molecular diagnostics and targeted therapies have significantly transformed the management of this disease. Prostate-specific membrane antigen (PSMA) has emerged as a critical biomarker, enhancing the precision of prostate cancer diagnosis and treatment. Theranostics, which integrates PSMA-targeted imaging with radioligand therapies, has shown remarkable efficacy in detecting and treating advanced prostate cancer. By leveraging the dual capabilities of PSMA-based diagnostics and therapeutic agents, theranostics offers a personalized approach that improves patient outcomes. This comprehensive review explores the latest developments in PSMA-targeted theranostics and their impact on the future of prostate cancer management, highlighting key clinical trials and emerging therapeutic strategies.

2.
Jpn J Radiol ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225954

RESUMEN

Recognition of the importance of prostate-specific membrane antigen (PSMA) PET/CT in the diagnosis of prostate cancer has steadily increased following the publication of extensive data on its diagnostic accuracy and impact on patient management over the past decade. Several recent clinical trials and investigations regarding PSMA PET/CT have been ongoing in our country, and this examination is expected to become increasingly widespread in the future. This review explains the characteristics of PSMA PET/CT, its diagnostic capabilities and superiority over other modalities, the three proposed PSMA PET/CT interpretation criteria (the European Association of Nuclear Medicine [EANM], the Prostate Cancer Molecular Imaging Standardized Evaluation [PROMISE], and the PSMA Reporting and Data System [PSMA-RADS]), and the application of PSMA PET/CT to prostate cancer treatment (improvement of local control, irradiation of oligometastases, and salvage radiotherapy), incorporating actual clinical images and the latest findings.

3.
Urol Oncol ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39299895

RESUMEN

Conventionally, transrectal ultrasound guided prostate biopsy (TRUS-Bx) was the main technique used for the diagnosis of prostate cancer since it was first described in 1989 [1]. However, the PROMIS trial showed that this random, nontargeted approach could miss up to 18% of clinically significant cancer (csPCa) [2]. Furthermore, risk of sepsis post TRUS-Bx can be as high as 2.4% [3]. Understanding the demerits of TR-biopsy have led to the introduction of transperineal prostate biopsy (TP-Bx). The incorporation of mpMRI revolutionized prostate cancer diagnostics, allowing visualization of areas likely to harbor csPCa whilst permitting some men to avoid an immediate biopsy. Furthermore, the advent of prostate specific membrane antigen-positron emission tomography (PSMA-PET) is highly promising, because of its role in primary diagnosis of prostate cancer and its higher diagnostic accuracy over conventional imaging in detecting nodal and metastatic lesions. Our narrative review provides an overview on prostate biopsy techniques and an update on prostate imaging, with particular focus on PSMA-PET.

4.
Malays J Med Sci ; 31(4): 213-217, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39247120

RESUMEN

Prostate-specific membrane antigen (PSMA) has proven to be an important target for diagnostic imaging in prostate cancer. As PSMA is overexpressed on the surface of prostate cancer cells, numerous targeted PSMA ligands have been developed. The emergence of PSMA targeting based on small molecules, such as the PSMA-11 ligand (or PSMA-HBED-CC), has led to breakthroughs, such as [68Ga]Ga-PSMA-11, for positron emission tomography (PET) imaging of biochemically recurrent or metastatic castration-resistant prostate cancer (mCRPC). In addition, the recent approval of [177Lu]Lu-PSMA-617 for the treatment of adult patients with PSMA-positive mCRPC represents an important milestone in prostate cancer therapy. These advances underscore the growing confidence in the use of PSMA-targeted radiopharmaceuticals for the diagnosis and treatment of prostate cancer patients. PSMA-targeted radiopharmaceuticals have been shown to significantly impact treatment planning and clinical decision-making and facilitate the customisation of treatment regimens.

5.
Bioorg Chem ; 153: 107803, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39270526

RESUMEN

Prostate-specific membrane antigen (PSMA) is a type II membrane glycoprotein overexpressed in a variety of tumors, especially in nearly all prostate cancers, which makes it a potentially attractive antigen for targeted cancer therapies. More importantly, PSMA, due to no shedding into circulation and efficient internalization after antibody binding, becomes a potential target for antibody-drug conjugates (ADCs), a valid and emerging paradigm of cancer treatment. Four and eight PSMA-directed ADCs have been or are currently being investigated in clinical trials (three of which failed to confirm the promising results while one is currently being evaluated in an ongoing clinical study) and preclinical studies, respectively, for the treatment of PSMA-positive solid tumors, especially prostate cancer. The present study aims to completely review clinical- and preclinical-stage PSMA-directed ADCs.

6.
Curr Oncol ; 31(8): 4165-4177, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39195294

RESUMEN

Prostate cancer represents a significant public health challenge, with its management requiring precise diagnostic and prognostic tools. Prostate-specific membrane antigen (PSMA), a cell surface enzyme overexpressed in prostate cancer cells, has emerged as a pivotal biomarker. PSMA's ability to increase the sensitivity of PET imaging has revolutionized its application in the clinical management of prostate cancer. The advancements in PET-PSMA imaging technologies and methodologies, including the development of PSMA-targeted radiotracers and optimized imaging protocols, led to diagnostic accuracy and clinical utility across different stages of prostate cancer. This highlights its superiority in staging and its comparative effectiveness against conventional imaging modalities. This paper analyzes the impact of PET-PSMA on prostate cancer management, discussing the existing challenges and suggesting future research directions. The integration of recent studies and reviews underscores the evolving understanding of PET-PSMA imaging, marking its significant but still expanding role in clinical practice. This comprehensive review serves as a crucial resource for clinicians and researchers involved in the multifaceted domains of prostate cancer diagnosis, treatment, and management.


Asunto(s)
Tomografía de Emisión de Positrones , Neoplasias de la Próstata , Humanos , Masculino , Neoplasias de la Próstata/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Pronóstico , Glutamato Carboxipeptidasa II , Antígenos de Superficie , Biomarcadores de Tumor
7.
Cancers (Basel) ; 16(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39123398

RESUMEN

The aim of this retrospective study was to identify pre-therapeutic predictive laboratory and molecular imaging biomarkers for response and overall survival (OS) in patients with metastatic castration-resistant prostate cancer (mCRPC) treated with prostate-specific membrane antigen (PSMA)-targeted radioligand therapy (RLT). Pre-therapeutic laboratory and [68Ga]Ga-PSMA-11 PET/CT data of n = 102 mCRPC patients receiving [177Lu]Lu-PSMA-617 RLT within a prospective registry (REALITY Study, NCT04833517) were analyzed including laboratory parameters such as alkaline phosphatase (ALP), prostate-specific antigen (PSA), gamma glutamyl transferase (GGT), glutamate oxaloacetate transaminase (GOT), glutamate pyruvate transaminase (GPT), neuron specific enolase (NSE), hemoglobin (Hb), and imaging parameters such as maximum standardized uptake value of the tumor lesions (SUVmax), the mean standardized uptake value of all tumor lesions (SUVmean), the whole-body molecular tumor volume (MTV), and the whole-body total lesion PSMA (TLP). Mann-Whitney U test, univariate and multivariable Cox-regression were performed to test for association of the parameters with response and OS. The SUVmean of all lesions was significantly different between responders and non-responders (SUVmean responders 8.95 ± 2.83 vs. non-responders 7.88 ± 4.46, p = 0.003), whereas all other tested biochemical and imaging parameters did not reveal significant differences. Hb and the molecular imaging parameters MTV and TLP showed a significant association with OS (p = 0.013, p = 0.005; p = 0.009) in univariant Cox regression; however, only TLP remained significant in multivariable analysis (Hazard ratio 1.033, p = 0.009). This study demonstrates a statistically significant association between the quantitative PET/CT imaging parameter SUVmean and PSA response, as well as between the baseline TLP and OS of mCRPC patients undergoing RLT.

8.
EJNMMI Rep ; 8(1): 25, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39155339

RESUMEN

OBJECTIVE: Bone metastases are very common in advanced prostate cancer and can sensitively be detected utilizing PSMA-PET/CT. Therefore, our goal was to evaluate the suitability of PSMA-PET/CT-guided metastasis-directed external beam radiotherapy (MDT) as treatment option for patients with biochemical recurrence and oligometastatic bone lesions. MATERIALS & METHODS: We retrospectively examined 32 prostate cancer patients with biochemical recurrence and PSMA-positive oligometastatic disease limited to the bone (n = 1-3). A total of 49 bone lesions were treated with MDT. All patients received a post-radiotherapy PSMA-PET/CT-Scan. Changes in SUVmax, PSMA-positive tumor volume per lesion and PSA, as well as the correlation between the PET/CT-interval and SUVmax response were calculated. RESULTS: MDT lead to a SUVmax decrease in 46/49 (94%) of the lesions. The median relative decline of SUVmax was 60.4%, respectively. Based on PSMA-positive lesion volume with a SUV cut-off of 4, 46/49 (94%) of lesions showed complete response, two (4%) partial response and one lesion (2%) was stable on PSMA-PET/CT after MDT. Most of the treated patients (56.3%) showed an initial PSA decline at three months and a PSA nadir of median 0.14 ng/ml after a median time of 3.6 months after MDT. The median relative PSA change at three months after MDT was 3.9%. CONCLUSION: MDT is a very effective treatment modality for prostate cancer bone oligometastases and lesion response to MDT can be assessed using the (semi-)quantitative parameters SUVmax and PSMA-positive lesion volume with established SUV cut-offs.

9.
Ann Transl Med ; 12(4): 67, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39118950

RESUMEN

The first alpha emitting radiopharmaceutical, 223RaCl2, radium dichloride, was approved 10 years ago into the clinical armament of treating bone metastases in metastatic castration-resistant prostate cancer (mCRPC). In addition to this, the first beta-emitting radionuclide Lu-177 chelated with a prostate-specific membrane antigen (PSMA) compound, got last year its marketing approval for the third line treatment of mCRPC. Therefore, there is great excitement about combining alpha-emitters and prostate cancer targeting PSMA compounds. This review describes the clinical history of alpha-emitting PSMA in treating mCRPC. Here, we present the potential, current status, and opportunities for 225Ac-PSMA therapy. The work reviews the basic concepts, current treatment outcome, and toxicity, and areas requiring further investigations such as dosimetric aspects in clinical studies covering more than 400 patients. In general, approximately two-thirds of the patients benefit from this third-line therapy. There is also successful evidence of using 225Ac-PSMA in the second-line of prostate cancer management. The future potential of 225Ac-PSMA therapy and targeted alpha therapy (TAT) of cancer in general is enormous. According to our overview the clinical experience with 225Ac-PSMA therapy to date has shown great benefit and physicians dedicated to theragnostics are anxiously waiting for new applications. Hopefully, this review helps in deeper understanding of the strengths and limitations of TAT and may help in creating effective therapy protocols.

10.
Front Oncol ; 14: 1397790, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39011478

RESUMEN

Purpose: Bibliometric and scientometric analyses provide a structured approach to large amounts of data, enabling the prediction of research theme trends over time, the detection of shifts in the boundaries of disciplines, and the identification of the most productive countries, institutions and scholars. In the context of prostate-specific membrane antigen (PSMA)-targeted radiotheranostics, no bibliometric or scientometric analysis has been published thus far. Therefore, this study was conducted to identify key contributors to the literature, assess the global scientific production of related research, and possibly predict future development patterns. Methods: Scientometrics and bibliometrics were utilized to analyze the current body of knowledge while tracking its evolution to support scientific decision-making comprehensively and systematically. Science mapping techniques were employed to visualize research activities. Two different tools, Tableau and VOSviewer, were utilized, with VOSviewer being deemed the most suitable for the research objectives. The Web of Science (WoS) was used as the principal database for the searches. Results: Through the search process over a period of 30 years (January 1993-January 2023), 694 original studies in the English language were subjected to comprehensive analysis. By employing bibliometric and scientometric methods, multiple networks were created that mapped various concepts, such as publication trends, leading countries, cocitations, coauthorship among researchers and scientists, as well as coauthorship among organizations and funding agencies. This study revealed the evolutionary patterns, trends, outliers, and key players in the PSMA field, which enabled a more nuanced understanding of the research landscape. Conclusion: This research contributes to the enrichment of knowledge on PSMA-targeted radiotheranostics through detailed global bibliometric and scientometric analyses. It stresses the necessity for the development of communication platforms, the establishment of supportive infrastructures, and the implementation of proactive solutions to address emerging challenges. This study offers a significant resource for delineating effective strategies and identifying prominent funding bodies essential for continuous advancements in the field of PSMA-based diagnosis and therapy for prostate cancer. It is vital to sustain this momentum to ensure further progress in this pioneering area.

11.
Eur J Med Chem ; 274: 116545, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38823263

RESUMEN

Prostate cancer (PCa) is one of the most common tumors in men, with the overexpression of prostate-specific membrane. In this study, we developed four new 68Ga-labeled PSMA-targeting tracers by introducing quinoline, phenylalanine and decanoic acid groups to enhance their lipophilicity, strategically limiting their metabolic pathway through the urinary system. Four radiotracers were synthesized with radiochemical purity >95 %, and exhibited high stability in vivo and in vitro. The inhibition constants (Ki) of SDTWS01-04 to PSMA were in the nanomolar range (<10 nM). Micro PET/CT imaging and biodistribution analysis revealed that 68Ga-SDTWS01 enabled clear tumor visualization in PET images at 1.5 h post-injection, with excellent pharmacokinetic properties. Notably, the kidney uptake of 68Ga-SDTWS01 significantly reduced, with higher tumor-to-kidney ratio (0.36 ± 0.02), tumor-to-muscle ratio (24.31 ± 2.10), compared with 68Ga-PSMA-11 (T/K: 0.15 ± 0.01; T/M: 14.97 ± 1.40), suggesting that 68Ga-SDTWS01 is a promising radiotracer for the diagnosis of PCa. Moreover, SDTWS01 with a chelator DOTA could also label 177Lu and 225Ac, which could be used for the treatment of PCa.


Asunto(s)
Radioisótopos de Galio , Glutamato Carboxipeptidasa II , Tomografía Computarizada por Tomografía de Emisión de Positrones , Neoplasias de la Próstata , Radioisótopos de Galio/química , Humanos , Masculino , Animales , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/tratamiento farmacológico , Glutamato Carboxipeptidasa II/metabolismo , Glutamato Carboxipeptidasa II/antagonistas & inhibidores , Distribución Tisular , Ratones , Radiofármacos/síntesis química , Radiofármacos/química , Radiofármacos/farmacología , Antígenos de Superficie/metabolismo , Estructura Molecular , Línea Celular Tumoral
12.
Cancers (Basel) ; 16(10)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38791912

RESUMEN

Prostate cancer is one of the most challenging malignancies due to its high incidence and prevalence, as it is the most frequently diagnosed non-skin cancer in men. The timely identification of prostate cancer and its metastasis is paramount for ensuring favorable outcomes for patients. Prostate-specific membrane antigen (PSMA) emerges as a promising biomarker for its detection, due to its specificity. This makes it an ideal target for the early identification of a metastatic phenotype. Situated on the membrane of tumor cells, PSMA facilitates the attachment of PSMA-targeting particles, enabling their detection through positron emission tomography (PET) scans with relative ease. Utilizing these imaging agents in conjunction with PET scans enhances the accuracy of prostate cancer tumor detection compared to PET scans alone. The advancement in prostate cancer imaging has paved the way for innovative treatment modalities. Prostate-specific membrane antigen-targeted radionuclide therapies (PSMA-TRT) exploit PSMA imaging agents to target identified prostate cancer malignancies with precise radiation, thereby reducing or eliminating the tumor mass. PSMA-TRT exhibits significant promise in prostate cancer therapy, evident from the notable declines in prostate-specific antigen (PSA) levels post treatment. However, PSMA-TRT carries both beneficial and adverse effects. While it represents a substantial leap forward in tumor cell imaging, PSMA-based antigens, being larger particles than ligands, offer prolonged imaging capabilities. Yet, the long-term effects of PSMA-TRT remain unknown, with the short-term adverse ones including fatigue, nausea, pain flares, and potential radiation exposure to others.

13.
Bioorg Med Chem ; 106: 117753, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38749342

RESUMEN

The expression of prostate-specific membrane antigen (PSMA) in prostate cancer is 100-1000 times higher than that in normal tissues, and it has shown great advantages in the diagnosis and treatment of prostate cancer. The combination of PSMA and PET imaging technology based on the principle of metabolic imaging can achieve high sensitivity and high specificity for diagnosis. Due to its suitable half-life (109 min) and good positron abundance (97%), as well as its cyclotron accelerated generation, 18F has the potential to be commercialize, which has attracted much attention. In this article, we synthesized a series of fluorosulfate PET tracers targeting PSMA. All four analogues have shown high affinity to PSMA (IC50 = 1.85-5.15 nM). After the radioisotope exchange labeling, [18F]L9 and [18F]L10 have PSMA specific cellular uptake (0.65 ± 0.04% AD and 1.19 ± 0.03% AD) and effectively accumulated in 22Rv1 xenograft mice model. This study demonstrates that PSMA-1007-based PSMA-targeted aryl [18F]fluorosulfate novel tracers have the potential for PET imaging in tumor tissues.


Asunto(s)
Antígenos de Superficie , Diseño de Fármacos , Radioisótopos de Flúor , Tomografía de Emisión de Positrones , Radiofármacos , Animales , Humanos , Masculino , Radioisótopos de Flúor/química , Ratones , Antígenos de Superficie/metabolismo , Radiofármacos/síntesis química , Radiofármacos/química , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/metabolismo , Glutamato Carboxipeptidasa II/metabolismo , Estructura Molecular , Línea Celular Tumoral , Neoplasias Experimentales/diagnóstico por imagen , Neoplasias Experimentales/metabolismo , Relación Estructura-Actividad
14.
Adv Healthc Mater ; 13(19): e2304618, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38700450

RESUMEN

The tumor uptake of large non-targeted nanocarriers primarily occurs through passive extravasation, known as the enhanced permeability and retention (EPR) effect. Prior studies demonstrated improved tumor uptake and retention of 4-arm 40 kDa star polyethylene glycol (StarPEG) polymers for cancer imaging by adding prostate-specific membrane antigen (PSMA) targeting small molecule ligands. To test PSMA-targeted delivery and therapeutic efficacy, StarPEG nanodrugs with/without three copies of PSMA-targeting ligands, ACUPA, are designed and synthesized. For single-photon emission computed tomography (SPECT) imaging and therapy, each nanocarrier is labeled with 177Lu using DOTA radiometal chelator. The radiolabeled nanodrugs, [177Lu]PEG-(DOTA)1 and [177Lu]PEG-(DOTA)1(ACUPA)3, are evaluated in vitro and in vivo using PSMA+ PC3-Pip and/or PSMA- PC3-Flu cell lines, subcutaneous xenografts and disseminated metastatic models. The nanocarriers are efficiently radiolabeled with 177Lu with molar activities 10.8-15.8 MBq/nmol. Besides excellent in vitro PSMA binding affinity (kD = 51.7 nM), the targeted nanocarrier, [177Lu]PEG-(DOTA)1(ACUPA)3, demonstrated excellent in vivo SPECT imaging contrast with 21.3% ID/g PC3-Pip tumors uptake at 192 h. Single doses of 18.5 MBq [177Lu]PEG-(DOTA)1(ACUPA)3 showed complete resolution of the PC3-Pip xenografts observed up to 138 days. Along with PSMA-targeted excellent imaging contrast, these results demonstrated high treatment efficacy of [177Lu]PEG-(DOTA)1(ACUPA)3 for prostate cancer, with potential for clinical translation.


Asunto(s)
Glutamato Carboxipeptidasa II , Polietilenglicoles , Neoplasias de la Próstata , Tomografía Computarizada de Emisión de Fotón Único , Masculino , Polietilenglicoles/química , Animales , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Humanos , Ratones , Línea Celular Tumoral , Glutamato Carboxipeptidasa II/metabolismo , Tomografía Computarizada de Emisión de Fotón Único/métodos , Antígenos de Superficie/metabolismo , Nanopartículas/química , Lutecio/química , Portadores de Fármacos/química , Radioisótopos/química , Distribución Tisular , Ratones Desnudos , Compuestos Heterocíclicos con 1 Anillo/química
15.
Ann Nucl Med ; 38(8): 587-595, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38750331

RESUMEN

BACKGROUND: Prostate-specific membrane antigen (PSMA)-targeted radiopharmaceuticals allow whole-body imaging to detect prostate cancer (PC). Positron emission tomography imaging using gallium-68 (68Ga)-PSMA-11 has been shown to have a favorable safety and tolerability profile and high diagnostic performance. The study evaluates the safety and pharmacokinetics of 68Ga-PSMA-11 in Japanese patients with primary, recurrent, or suspected recurrent prostate cancer. METHODS: This single arm study enrolled Japanese patients with primary PC (n = 3), suspected recurrent PC following radical prostatectomy (n = 4), or suspected recurrent PC following radical radiotherapy (n = 3). All patients received a single intravenous dose of 68Ga-PSMA-11 2.0 MBq/kg (±10%) followed by PSMA PET imaging and safety and pharmacokinetic evaluations. Based on the blood concentrations of 68Ga-PSMA-11 and the radioactivity distribution rate in each organ/tissue, the absorbed doses in major organs/tissues and the whole-body effective dose were calculated by the Medical Internal Radiation Dose method. RESULTS: Ten patients were enrolled. Mean age was 73.3 ± 4.8 years, and median prostate-specific antigen was 8.250 ng/mL. Five patients (50%) experienced a total of 6 adverse events, and no grade ≥ 2 adverse events or serious adverse events were reported. No clinically significant changes in vital signs, haematology parameters, or blood chemistry or ECG abnormalities were observed. The estimated whole body effective dose of 68Ga-PSMA-11 (mean ± standard deviation) was 2.524 × 10-2 ± 2.546 × 10-3 mSv/MBq. Time to maximum concentration (1.16 × 10-4 ± 1.3 × 10-5% ID/mL) in whole blood was 2.15 ± 0.33 min. CONCLUSIONS: 68Ga-PSMA-11 has a favourable safety and tolerability profile in Japanese patients with primary, recurrent, or suspected recurrent prostate cancer, which is comparable to previous observations in other populations.


Asunto(s)
Ácido Edético , Isótopos de Galio , Radioisótopos de Galio , Oligopéptidos , Tomografía Computarizada por Tomografía de Emisión de Positrones , Neoplasias de la Próstata , Humanos , Masculino , Neoplasias de la Próstata/diagnóstico por imagen , Anciano , Ácido Edético/análogos & derivados , Oligopéptidos/farmacocinética , Persona de Mediana Edad , Recurrencia , Recurrencia Local de Neoplasia/diagnóstico por imagen , Japón , Pueblos del Este de Asia
16.
Theranostics ; 14(7): 2736-2756, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38773975

RESUMEN

Radical prostatectomy (RP) combined with pelvic lymph node dissection (PLND) is the first step in multimodal treatment of prostate cancer (PCa) without distant metastases. For a long time, the surgical resection range has been highly dependent on the surgeon's visualization and experience with preoperative imaging. With the rapid development of prostate-specific membrane antigen positron emission tomography and single-photon emission computed tomography (PSMA-PET and PSMA-SPECT), PSMA-targeted surgery has been introduced for a more accurate pathological diagnosis and complete resection of positive surgical margins (PSMs) and micro-lymph node metastases (LNMs). We reviewed PSMA-targeted surgeries, including PSMA-PET-guided prostatic biopsy (PSMA-TB), PSMA-targeted radio-guided surgery (PSMA-RGS), PSMA-targeted fluorescence-guided surgery (PSMA-FGS), and multi-modality/multi-targeted PSMA-targeted surgery. We also discuss the strengths and challenges of PSMA-targeted surgery, and propose that PSMA-targeted surgery could be a great addition to existing surgery protocols, thereby improving the accuracy and convenience of surgery for primary and recurrent PCa in the near future.


Asunto(s)
Antígenos de Superficie , Glutamato Carboxipeptidasa II , Prostatectomía , Neoplasias de la Próstata , Humanos , Masculino , Neoplasias de la Próstata/cirugía , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/patología , Glutamato Carboxipeptidasa II/metabolismo , Antígenos de Superficie/metabolismo , Prostatectomía/métodos , Cirugía Asistida por Computador/métodos , Tomografía de Emisión de Positrones/métodos , Tomografía Computarizada de Emisión de Fotón Único/métodos , Escisión del Ganglio Linfático/métodos
17.
Transl Androl Urol ; 13(3): 454-457, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38590956
18.
Ann Nucl Med ; 38(7): 574-583, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38676906

RESUMEN

OBJECTIVE: The marked success of prostate-specific membrane antigen (PSMA)-targeting radioligands with albumin binder (ALB) is attributed to the improvement of blood retention and tumor accumulation. [111In]In-PNT-DA1, our PSMA-targeting radioligand with ALB, also achieved improved tumor accumulation due to its prolonged blood retention. Although the advantage of ALBs is related to their reversible binding to albumin, the relationship between albumin-binding and tumor accumulation of PSMA-targeting radioligands remains unclear because of the lack of information about radioligands with stronger albumin-binding than ALBs. In this study, we designed and synthesized [111In]In-PNT-DM-HSA, a new radioligand that consists of a PSMA-targeting radioligand covalently bound to albumin. The pharmacokinetics of [111In]In-PNT-DM-HSA was compared with those of [111In]In-PNT-DA1 and [111In]In-PSMA-617, a non-ALB-conjugated radioligand, to evaluate the relationship between albumin-binding and tumor accumulation. METHOD: The [111In]In-PNT-DM-HSA was prepared by incubation of [111In]In-PNT-DM, a PSMA-targeting radioligand including a maleimide group, and human serum albumin (HSA). The ability of [111In]In-PNT-DM-HSA was evaluated by in vitro assays. A biodistribution study using LNCaP tumor-bearing mice was conducted to compare the pharmacokinetics of [111In]In-PNT-DM-HSA, [111In]In-PNT-DA1, and [111In]In-PSMA-617. RESULTS: The [111In]In-PNT-DM-HSA was obtained at a favorable radiochemical yield and high radiochemical purity. In vitro assays revealed that [111In]In-PNT-DM-HSA had fundamental characteristics as a PSMA-targeting radioligand interacting with albumin covalently. In a biodistribution study, [111In]In-PNT-DM-HSA and [111In]In-PNT-DA1 showed higher blood retention than [111In]In-PSMA-617. On the other hand, the tumor accumulation of [111In]In-PNT-DA1 was much higher than [111In]In-PNT-DM-HSA and [111In]In-PSMA-617. CONCLUSIONS: These results indicate that the moderate reversible binding of ALB with albumin, not covalent binding, may play a critical role in enhancing the tumor accumulation of PSMA-targeting radioligands.


Asunto(s)
Antígenos de Superficie , Glutamato Carboxipeptidasa II , Animales , Ratones , Glutamato Carboxipeptidasa II/metabolismo , Antígenos de Superficie/metabolismo , Humanos , Masculino , Ligandos , Línea Celular Tumoral , Distribución Tisular , Unión Proteica , Albúminas/metabolismo , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/diagnóstico por imagen , Albúmina Sérica/metabolismo , Albúmina Sérica/química , Dipéptidos/farmacocinética , Dipéptidos/química , Dipéptidos/metabolismo , Radioisótopos de Indio
19.
Eur J Nucl Med Mol Imaging ; 51(9): 2819-2832, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38683349

RESUMEN

PURPOSE: A series of new 68Ga-labeled tracers based on [68Ga]Ga-PSMA-617 were developed to augment the tumor-to-kidney ratio and reduce the activity accumulation in bladder, ultimately minimize radiation toxicity to the urinary system. METHODS: We introduced quinoline group, phenylalanine and decanoic acid into different tracers to enhance their lipophilicity, strategically limiting their metabolic pathway through the urinary system. Their binding affinity onto LNCaP cells was determined through in vitro saturation assays and competition binding assays. In vivo metabolic study, PET imaging and biodistribution experiment were performed in LNCaP tumor-bearing B-NSG male mice. The most promising tracer was selected for first-in-human study. RESULTS: Four radiotracers were synthesized with radiochemical purity (RCP) > 95% and molar activity in a range of 20.0-25.5 GBq/µmol. The binding affinities (Ki) of TWS01, TWS02 to PSMA were in the low nanomolar range (< 10 nM), while TWS03 and TWS04 exhibited binding affinities with Ki > 20 nM (59.42 nM for TWS03 and 37.14 nM for TWS04). All radiotracers exhibited high stability in vivo except [68Ga]Ga-TWS03. Micro PET/CT imaging and biodistribution analysis revealed that [68Ga]Ga-TWS02 enabled clear tumor visualization in PET images at 1.5 h post-injection, with higher tumor-to-kidney ratio (T/K, 0.93) and tumor-to-muscle ratio (T/M, 107.62) compared with [68Ga]Ga-PSMA-617 (T/K: 0.39, T/M: 15.01) and [68Ga]Ga-PSMA-11 (T/K: 0.15, T/M: 24.00). In first-in-human study, [68Ga]Ga-TWS02 effectively detected PCa-associated lesions including primary and metastatic lesions, with lower accumulation in urinary system, suggesting that [68Ga]Ga-TWS02 might be applied in the detection of bladder invasion, with minimized radiation toxicity to the urinary system. CONCLUSION: Introduction of quinoline group, phenylalanine and decanoic acid into different tracers can modulate the binding affinity and pharmacokinetics of PSMA in vivo. [68Ga]Ga-TWS02 showed high binding affinity to PSMA, excellent pharmacokinetic properties and clear imaging of PCa-associated lesions, making it a promising radiotracer for the clinical diagnosis of PCa. Moreover, TWS02 with a chelator DOTA could also label 177Lu and 225Ac, which could be used for PCa treatment without significant side effects. TRIAL REGISTRATION: The clinical evaluation of this study was registered On October 30, 2021 at https://www.chictr.org.cn/ (No: ChiCTR2100052545).


Asunto(s)
Glutamato Carboxipeptidasa II , Tomografía de Emisión de Positrones , Humanos , Masculino , Ratones , Animales , Distribución Tisular , Línea Celular Tumoral , Glutamato Carboxipeptidasa II/metabolismo , Tomografía de Emisión de Positrones/métodos , Trazadores Radiactivos , Radioisótopos de Galio/farmacocinética , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/radioterapia , Antígenos de Superficie/metabolismo , Radiofármacos/farmacocinética , Radiofármacos/química , Radioquímica , Dipéptidos/farmacocinética , Dipéptidos/química , Compuestos Heterocíclicos con 1 Anillo/química , Compuestos Heterocíclicos con 1 Anillo/farmacocinética , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos
20.
Eur J Nucl Med Mol Imaging ; 51(9): 2794-2805, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38658392

RESUMEN

PURPOSE: Prostate-specific membrane antigen (PSMA) is a promising target for diagnosis and radioligand therapy (RLT) of prostate cancer. Two novel PSMA-targeting radionuclide therapy agents, [177Lu]Lu-P17-087, and its albumin binder modified derivative, [177Lu]Lu-P17-088, were evaluated in metastatic castration-resistant prostate cancer (mCRPC) patients. The primary endpoint was dosimetry evaluation, the second endpoint was radiation toxicity assessment (CTCAE 5.0) and PSA response (PCWG3). METHODS: Patients with PSMA-positive tumors were enrolled after [68Ga]Ga-PSMA-11 PET/CT scan. Five mCRPC patients received [177Lu]Lu-P17-087 and four other patients received [177Lu]Lu-P17-088 (1.2 GBq/patient). Multiple whole body planar scintigraphy was performed at 1.5, 4, 24, 48, 72, 120 and 168 h after injection and one SPECT/CT imaging was performed at 24 h post-injection for each patient. Dosimetry evaluation was compared in both patient groups. RESULTS: Patients showed no major clinical side-effects under this low dose treatment. As expected [177Lu]Lu-P17-088 with longer blood circulation (due to its albumin binding) exhibited higher effective doses than [177Lu]Lu-P17-087 (0.151 ± 0.036 vs. 0.056 ± 0.019 mGy/MBq, P = 0.001). Similarly, red marrow received 0.119 ± 0.068 and 0.048 ± 0.020 mGy/MBq, while kidney doses were 0.119 ± 0.068 and 0.046 ± 0.022 mGy/MBq, respectively. [177Lu]Lu-P17-087 demonstrated excellent tumor uptake and faster kinetics; while [177Lu]Lu-P17-088 displayed a slower washout and higher average dose (7.75 ± 4.18 vs. 4.72 ± 2.29 mGy/MBq, P = 0.018). After administration of [177Lu]Lu-P17-087 and [177Lu]Lu-P17-088, 3/5 and 3/4 patients showed reducing PSA values, respectively. CONCLUSION: [177Lu]Lu-P17-088 and [177Lu]Lu-P17-087 displayed different pharmacokinetics but excellent PSMA-targeting dose delivery in mCRPC patients. These two agents are promising RLT agents for personalized treatment of mCRPC. Further studies with increased dose and frequency of RLT are warranted to evaluate the potential therapeutic efficacy. TRIAL REGISTRATION: 177Lu-P17-087/177Lu-P17-088 in Patients with Metastatic Castration-resistant Prostate Cancer (NCT05603559, Registered at 25 October, 2022). URL OF REGISTRY: https://classic. CLINICALTRIALS: gov/ct2/show/NCT05603559 .


Asunto(s)
Antígenos de Superficie , Glutamato Carboxipeptidasa II , Lutecio , Metástasis de la Neoplasia , Neoplasias de la Próstata Resistentes a la Castración , Humanos , Masculino , Neoplasias de la Próstata Resistentes a la Castración/radioterapia , Neoplasias de la Próstata Resistentes a la Castración/diagnóstico por imagen , Anciano , Glutamato Carboxipeptidasa II/metabolismo , Lutecio/uso terapéutico , Antígenos de Superficie/metabolismo , Persona de Mediana Edad , Albúminas , Radiofármacos/uso terapéutico , Radiofármacos/farmacocinética , Anciano de 80 o más Años , Radioisótopos/uso terapéutico , Radiometría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA