Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Ann Biomed Eng ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38969956

RESUMEN

As full-scale detailed hemodynamic simulations of the entire vasculature are not feasible, numerical analysis should be focused on specific regions of the cardiovascular system, which requires the identification of lumped parameters to represent the patient behavior outside the simulated computational domain. We present a novel technique for estimating cardiovascular model parameters using gappy Proper Orthogonal Decomposition (g-POD). A POD basis is constructed with FSI simulations for different values of the lumped model parameters, and a linear operator is applied to retain information that can be compared to the available patient measurements. Then, the POD coefficients of the reconstructed solution are computed either by projecting patient measurements or by solving a minimization problem with constraints. The POD reconstruction is then used to estimate the model parameters. In the first test case, the parameter values of a 3-element Windkessel model are approximated using artificial patient measurements, obtaining a relative error of less than 4.2%. In the second case, 4 sets of 3-element Windkessel are approximated in a patient's aorta geometry, resulting in an error of less than 8% for the flow and less than 5% for the pressure. The method shows accurate results even with noisy patient data. It automatically calculates the delay between measurements and simulations and has flexibility in the types of patient measurements that can handle (at specific points, spatial or time averaged). The method is easy to implement and can be used in simulations performed in general-purpose FSI software.

2.
Ann Biomed Eng ; 52(2): 208-225, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37962675

RESUMEN

Computational modeling can be a critical tool to predict deployment behavior for transcatheter aortic valve replacement (TAVR) in patients with aortic stenosis. However, due to the mechanical complexity of the aortic valve and the multiphysics nature of the problem, described by partial differential equations (PDEs), traditional finite element (FE) modeling of TAVR deployment is computationally expensive. In this preliminary study, a PDEs-based reduced order modeling (ROM) framework is introduced for rapidly simulating structural deformation of the Medtronic Evolut R valve stent frame. Using fifteen probing points from an Evolut model with parametrized loads enforced, 105 FE simulations were performed in the so-called offline phase, creating a snapshot library. The library was used in the online phase of the ROM for a new set of applied loads via the proper orthogonal decomposition-Galerkin (POD-Galerkin) approach. Simulations of small radial deformations of the Evolut stent frame were performed and compared to full order model (FOM) solutions. Linear elastic and hyperelastic constitutive models in steady and unsteady regimes were implemented within the ROM. Since the original POD-Galerkin method is formulated for linear problems, specific methods for the nonlinear terms in the hyperelastic case were employed, namely, the Discrete Empirical Interpolation Method. The ROM solutions were in strong agreement with the FOM in all numerical experiments, with a speed-up of at least 92% in CPU Time. This framework serves as a first step toward real-time predictive models for TAVR deployment simulations.


Asunto(s)
Estenosis de la Válvula Aórtica , Dietilestilbestrol/análogos & derivados , Prótesis Valvulares Cardíacas , Reemplazo de la Válvula Aórtica Transcatéter , Humanos , Válvula Aórtica/cirugía , Estenosis de la Válvula Aórtica/cirugía , Stents , Diseño de Prótesis , Resultado del Tratamiento
3.
Int J Numer Method Biomed Eng ; 40(1): e3785, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37877140

RESUMEN

The reconstruction of blood velocity in a vessel from contrast enhanced x-ray computed tomography projections is a complex inverse problem. It can be formulated as reconstruction problem with a partial differential equation constraint. A solution can be estimated with the a variational adjoint method and proper orthogonal decomposition (POD) basis. In this work, we investigate new inversion approaches based on PODs coupled with deep learning methods. The effectiveness of the reconstruction methods is shown with simulated realistic stationary blood flows in a vessel. The methods outperform the reduced adjoint method and show large speed-up at the online stage.


Asunto(s)
Aprendizaje Profundo , Tomografía Computarizada por Rayos X/métodos , Hemodinámica , Rayos X , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos
4.
Bioinspir Biomim ; 19(1)2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-37976535

RESUMEN

In this paper, a deep learning based framework has been developed to predict hydrodynamic forces on a mantle-undulated propulsion robot (MUPRo). A multiple proper orthogonal decomposition (MPOD) algorithm has been proposed to efficiently identify fluid features near the undulating mantle of the MUPRo globally and locally. The results indicate that theL2error of the solution states near the undulating boundary of the proposed MPOD algorithm converges almost linearly to 0.2%. Furthermore, a hydrodynamics prediction framework has been developed based on the proposed MPOD algorithm, where a long short-term memory neural network predicts the temporal coefficients of the MPOD spatial modes. The developed framework achieves economical and reliable predictions of hydrodynamic forces acting on the undulating boundary compared to simulations and experiments. Moreover, theL2error of the developed framework is one to two orders of magnitude lower than that of the frameworks based on the classical POD algorithm when the degrees of freedom are consistent. Finally, the reliability of the proposed MPOD-NIROM is discussed through an offline parameter planning case of an aquatic-inspired robot. The model presented in this paper can provide support for the offline parameter planning of aquatic-inspired robots.


Asunto(s)
Robótica , Hidrodinámica , Memoria a Corto Plazo , Reproducibilidad de los Resultados , Redes Neurales de la Computación
5.
Biomimetics (Basel) ; 8(7)2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37999164

RESUMEN

FSI simulations of flapping motions have been widely investigated to develop a flapping-wing micro air vehicle. Because an intensive parametric study is important for the product design, a computationally efficient model is required. The purpose of the present study was to develop a reduced-order model of flapping motion. Among the various methods available to solve FSI problems, we employed the Dirichlet-Neumann partitioned iterative method, in which three sub-systems (fluid mesh update, fluid analysis, and structural analysis) are executed. In the proposed analysis system, first, snapshot data of structural displacement, fluid velocity, fluid pressure, and displacement for the fluid mesh update were collected from a high-fidelity FSI analysis. Then, the snapshot data were used to create low-dimensional surrogate systems of the above three sub-systems based on the POD under Galerkin projection (i.e., the POD-Galerkin method). In numerical examples, we considered a two-dimensional FSI problem of simplified flapping motion. The problem was described via two parameters: frequency and amplitude of flapping motion. We demonstrated the effectiveness of the presented reduced-order model in significantly reducing computational time while preserving the desired accuracy.

6.
Heliyon ; 9(11): e20930, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37928036

RESUMEN

The estimation of fluid flows inside a centrifugal pump in realtime is a challenging task that cannot be achieved with long-established methods like CFD due to their computational demands. We use a projection-based reduced order model (ROM) instead. Based on this ROM, a realtime observer can be devised that estimates the temporally and spatially resolved velocity and pressure fields inside the pump. The entire fluid-solid domain is treated as a fluid in order to be able to consider moving rigid bodies in the reduction method. A greedy algorithm is introduced for finding suitable and as few measurement locations as possible. Robust observability is ensured with an extended Kalman filter, which is based on a time-variant observability matrix obtained from the nonlinear velocity ROM. We present the results of the velocity and pressure ROMs based on a unsteady Reynolds-averaged Navier-Stokes CFD simulation of a 2D centrifugal pump, as well as the results for the extended Kalman filter.

7.
Cardiovasc Eng Technol ; 14(6): 743-754, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37783950

RESUMEN

PURPOSE: Intraventricular blood flow dynamics are associated with cardiac function. Accurate, noninvasive, and easy assessments of hemodynamic quantities (such as velocity, vortex, and pressure) could be an important addition to the clinical diagnosis and treatment of heart diseases. However, the complex time-varying flow brings many challenges to the existing noninvasive image-based hemodynamic assessments. The development of reliable techniques and analysis tools is essential for the application of hemodynamic biomarkers in clinical practice. METHODS: In this study, a time-resolved particle tracking method, Shake-the-Box, was applied to reconstruct the flow in a realistic left ventricle (LV) silicone model with biological valves. Based on the obtained velocity, 4D pressure field was calculated using a Poisson equation-based pressure solver. Furthermore, flow analysis by proper orthogonal decomposition (POD) of the 4D velocity field has been performed. RESULTS: As a result of the Shake-the-Box algorithm, we have extracted: (i) particle positions, (ii) particle tracks, and finally, (iii) 4D velocity fields. From the latter, the temporal evolution of the 3D pressure field during the full cardiac cycle was obtained. The obtained maximal pressure difference extracted along the base-to-apex was about 2.7 mmHg, which is in good agreement with those reported in vivo. The POD analysis results showed a clear picture of different scale of vortices in the pulsatile LV flow, together with their time-varying information and corresponding kinetic energy content. To reconstruct 95% of the kinetic energy of the LV flow, only the first six POD modes would be required, leading to significant data reduction. CONCLUSIONS: This work demonstrated Shake-the-Box is a promising technique to accurately reconstruct the left ventricle flow field in vitro. The good spatial and temporal resolutions of the velocity measurements enabled a 4D reconstruction of the pressure field in the left ventricle. The application of POD analysis showed its potential in reducing the complexity of the high-resolution left ventricle flow measurements. For future work, image analysis, multi-modality flow assessments, and the development of new flow-derived biomarkers can benefit from fast and data-reducing POD analysis.


Asunto(s)
Ventrículos Cardíacos , Hemodinámica , Ventrículos Cardíacos/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador , Presión , Biomarcadores , Velocidad del Flujo Sanguíneo
8.
J Biomech ; 158: 111759, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37657234

RESUMEN

Data driven, reduced order modelling has shown promise in tackling the challenges associated with computational and experimental haemodynamic models. In this work, we focus on the use of Reduced Order Models (ROMs) to reconstruct velocity fields in a patient-specific dissected aorta, with the objective being to compare the ROMs obtained from Robust Proper Orthogonal Decomposition (RPOD) to those obtained from the traditional Proper Orthogonal Decomposition (POD). POD and RPOD are applied to in vitro, haemodynamic data acquired by Particle Image Velocimetry and compare the decomposed flows to those derived from Computational Fluid Dynamics (CFD) data for the same geometry and flow conditions. In this work, PIV and CFD results act as surrogates for clinical haemodynamic data e.g. MR, helping to demonstrate the potential use of ROMS in real clinical scenarios. The flow is reconstructed using different numbers of POD modes and the flow features obtained throughout the cardiac cycle are compared to the original Full Order Models (FOMs). Robust Principal Component Analysis (RPCA), the first step of RPOD, has been found to enhance the quality of PIV data, allowing POD to capture most of the kinetic energy of the flow in just two modes similar to the numerical data that are free from measurement noise. The reconstruction errors differ along the cardiac cycle with diastolic flows requiring more modes for accurate reconstruction. In general, modes 1-10 are found sufficient to represent the flow field. The results demonstrate that the coherent structures that characterise this aortic dissection flow are described by the first few POD modes suggesting that it is possible to represent the macroscale behaviour of aortic flow in a low-dimensional space; thus significantly simplifying the problem, and allowing for more computationally efficient flow simulations or machine learning based flow predictions that can pave the way for translation of such models to the clinic.


Asunto(s)
Aorta , Disección Aórtica , Humanos , Corazón , Hemodinámica , Hidrodinámica
9.
MethodsX ; 10: 102204, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37424764

RESUMEN

A simulation methodology derived from a learning algorithm based on Proper Orthogonal Decomposition (POD) is presented to solve partial differential equations (PDEs) for physical problems of interest. Using the developed methodology, a physical problem of interest is projected onto a functional space described by a set of basis functions (or POD modes) that are trained via the POD by solution data collected from direct numerical simulations (DNSs) of the PDE. The Galerkin projection of the PDE is then performed to account for physical principles guided by the PDE. The procedure to construct the physics-driven POD-Galerkin simulation methodology is presented in detail, together with demonstrations of POD-Galerkin simulations of dynamic thermal analysis on a microprocessor and the Schrödinger equation for a quantum nanostructure. The physics-driven methodology allows a reduction of several orders in degrees of freedom (DoF) while maintaining high accuracy. This leads to a drastic decrease in computational effort when compared with DNS. The major steps for implementing the methodology include:•Solution data collection from DNSs of the physical problem subjected to parametric variations of the system.•Calculations of POD modes and eigenvalues from the collected data using the method of snapshots.•Galerkin projection of the governing equation onto the POD space to derive the model.

10.
Biomimetics (Basel) ; 8(2)2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37366832

RESUMEN

Inspired by nature, oscillating foils offer viable options as alternate energy resources to harness energy from wind and water. Here, we propose a proper orthogonal decomposition (POD)-based reduced-order model (ROM) of power generation by flapping airfoils in conjunction with deep neural networks. Numerical simulations are performed for incompressible flow past a flapping NACA-0012 airfoil at a Reynolds number of 1100 using the Arbitrary Lagrangian-Eulerian approach. The snapshots of the pressure field around the flapping foil are then utilized to construct the pressure POD modes of each case, which serve as the reduced basis to span the solution space. The novelty of the current research relates to the identification, development, and employment of long-short-term neural network (LSTM) models to predict temporal coefficients of the pressure modes. These coefficients, in turn, are used to reconstruct hydrodynamic forces and moment, leading to computations of power. The proposed model takes the known temporal coefficients as inputs and predicts the future temporal coefficients followed by previously estimated temporal coefficients, very similar to traditional ROM. Through the new trained model, we can predict the temporal coefficients for a long time duration that can be far beyond the training time intervals more accurately. It may not be attained by traditional ROMs that lead to erroneous results. Consequently, the flow physics including the forces and moment exerted by fluids can be reconstructed accurately using POD modes as the basis set.

11.
J Appl Crystallogr ; 56(Pt 3): 750-763, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37284262

RESUMEN

An equiatomic nickel-titanium shape-memory alloy specimen subjected to a uniaxial tensile load undergoes a two-step phase transformation under stress, from austenite (A) to a rhombohedral phase (R) and further to martensite (M) variants. The pseudo-elasticity that goes accompanies the phase transformation induces spatial inhomogeneity. To unravel the spatial distribution of the phases, in situ X-ray diffraction analyses are performed while the sample is under tensile load. However, the diffraction spectra of the R phase, as well as the extent of potential martensite detwinning, are not known. A novel algorithm, based on a proper orthogonal decomposition and incorporating inequality constraints, is proposed in order to map out the different phases and simultaneously yield the missing diffraction spectral information. An experimental case study illustrates the methodology.

12.
J Sci Comput ; 94(1): 4, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36437820

RESUMEN

In this manuscript a POD-Galerkin based Reduced Order Model for unsteady Fluid-Structure Interaction problems is presented. The model is based on a partitioned algorithm, with semi-implicit treatment of the coupling conditions. A Chorin-Temam projection scheme is applied to the incompressible Navier-Stokes problem, and a Robin coupling condition is used for the coupling between the fluid and the solid. The coupled problem is based on an Arbitrary Lagrangian Eulerian formulation, and the Proper Orthogonal Decomposition procedure is used for the generation of the reduced basis. We extend existing works on a segregated Reduced Order Model for Fluid-Structure Interaction to unsteady problems that couple an incompressible, Newtonian fluid with a linear elastic solid, in two spatial dimensions. We consider three test cases to assess the overall capabilities of the method: an unsteady, non-parametrized problem, a problem that presents a geometrical parametrization of the solid domain, and finally, a problem where a parametrization of the solid's shear modulus is taken into account.

13.
Int J Numer Methods Fluids ; 94(10): 1611-1640, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36248246

RESUMEN

This work explores the development and the analysis of an efficient reduced order model for the study of a bifurcating phenomenon, known as the Coanda effect, in a multi-physics setting involving fluid and solid media. Taking into consideration a fluid-structure interaction problem, we aim at generalizing previous works towards a more reliable description of the physics involved. In particular, we provide several insights on how the introduction of an elastic structure influences the bifurcating behavior. We have addressed the computational burden by developing a reduced order branch-wise algorithm based on a monolithic proper orthogonal decomposition. We compared different constitutive relations for the solid, and we observed that a nonlinear hyper-elastic law delays the bifurcation w.r.t. the standard model, while the same effect is even magnified when considering linear elastic solid.

14.
Int J Numer Methods Eng ; 123(14): 3148-3178, 2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35912036

RESUMEN

Numerical stabilization is often used to eliminate (alleviate) the spurious oscillations generally produced by full order models (FOMs) in under-resolved or marginally-resolved simulations of convection-dominated flows. In this article, we investigate the role of numerical stabilization in reduced order models (ROMs) of marginally-resolved, convection-dominated incompressible flows. Specifically, we investigate the FOM-ROM consistency, that is, whether the numerical stabilization is beneficial both at the FOM and the ROM level. As a numerical stabilization strategy, we focus on the evolve-filter-relax (EFR) regularization algorithm, which centers around spatial filtering. To investigate the FOM-ROM consistency, we consider two ROM strategies: (i) the EFR-noEFR, in which the EFR stabilization is used at the FOM level, but not at the ROM level; and (ii) the EFR-EFR, in which the EFR stabilization is used both at the FOM and at the ROM level. We compare the EFR-noEFR with the EFR-EFR in the numerical simulation of a 2D incompressible flow past a circular cylinder in the convection-dominated, marginally-resolved regime. We also perform model reduction with respect to both time and Reynolds number. Our numerical investigation shows that the EFR-EFR is more accurate than the EFR-noEFR, which suggests that FOM-ROM consistency is beneficial in convection-dominated, marginally-resolved flows.

15.
Ann Biomed Eng ; 50(12): 1872-1881, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35816265

RESUMEN

A proper orthogonal decomposition (POD) order reduction method was implemented to reduce the full high dimensional dynamical system associated with a wound healing cell migration assay to a low-dimensional approximation that identified the prevailing cell trajectories. The POD analysis generated POD modes that were representative of the prevalent cell trajectories. The shapes of the POD modes depended on the location of the cells with respect to the wound and exposure to disturbed (DF) or undisturbed (UF) fluid flow where the net flow was in the antegrade direction with a retrograde component or fully antegrade, respectively. For DF and UF, the POD modes of the downstream cells identified trajectories that moved upstream against the flow, while upstream POD modes exhibited sideways cell migrations. In the absence of flow, no major shape differences were observed in the POD modes on either side of the wound. The POD modes also served to reconstruct the cell migration of individual cells. With as few as three modes, the predominant cell migration trajectories were reconstructed, while the level of accuracy increased with the inclusion of more POD modes. The POD order reduction method successfully identified the predominant cell migratory trajectories under static and varying pulsatile fluid flow conditions serving as a first step in the development of artificial intelligence models of cell migration in disease and development.


Asunto(s)
Inteligencia Artificial , Cicatrización de Heridas , Movimiento Celular , Flujo Pulsátil
16.
Philos Trans A Math Phys Eng Sci ; 380(2229): 20210206, 2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35719065

RESUMEN

This paper presents data-driven learning of localized reduced models. Instead of a global reduced basis, the approach employs multiple local approximation subspaces. This localization permits adaptation of a reduced model to local dynamics, thereby keeping the reduced dimension small. This is particularly important for reduced models of nonlinear systems of partial differential equations, where the solution may be characterized by different physical regimes or exhibit high sensitivity to parameter variations. The contribution of this paper is a non-intrusive approach that learns the localized reduced model from snapshot data using operator inference. In the offline phase, the approach partitions the state space into subregions and solves a regression problem to determine localized reduced operators. During the online phase, a local basis is chosen adaptively based on the current system state. The non-intrusive nature of localized operator inference makes the method accessible, portable and applicable to a broad range of scientific problems, including those that use proprietary or legacy high-fidelity codes. We demonstrate the potential for achieving large computational speedups while maintaining good accuracy for a Burgers' equation governing shock propagation in a one-dimensional domain and a phase-field problem governed by the Cahn-Hilliard equation. This article is part of the theme issue 'Data-driven prediction in dynamical systems'.

17.
Med Phys ; 49(8): 4955-4970, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35717578

RESUMEN

BACKGROUND: During resonance frequency (RF) hyperthermia treatment, the temperature of the tumor tissue is elevated to the range of 39-44°C. Accurate temperature monitoring is essential to guide treatments and ensure precise heat delivery and treatment quality. Magnetic resonance (MR) thermometry is currently the only clinical method to measure temperature noninvasively in a volume during treatment. However, several studies have shown that this approach is not always sufficiently accurate for thermal dosimetry in areas with motion, such as the pelvic region. Model-based temperature estimation is a promising approach to correct and supplement 3D online temperature estimation in regions where MR thermometry is unreliable or cannot be measured. However, complete 3D temperature modeling of the pelvic region is too complex for online usage. PURPOSE: This study aimed to evaluate the use of proper orthogonal decomposition (POD) model reduction combined with Kalman filtering to improve temperature estimation using MR thermometry. Furthermore, we assessed the benefit of this method using data from hyperthermia treatment where there were limited and unreliable MR thermometry measurements. METHODS: The performance of POD-Kalman filtering was evaluated in several heating experiments and for data from patients treated for locally advanced cervical cancer. For each method, we evaluated the mean absolute error (MAE) concerning the temperature measurements acquired by the thermal probes, and we assessed the reproducibility and consistency using the standard deviation of error (SDE). Furthermore, three patient groups were defined according to susceptibility artifacts caused by the level of intestinal gas motion to assess if the POD-Kalman filtering could compensate for missing and unreliable MR thermometry measurements. RESULTS: First, we showed that this method is beneficial and reproducible in phantom experiments. Second, we demonstrated that the combined method improved the match between temperature prediction and temperature acquired by intraluminal thermometry for patients treated for locally advanced cervical cancer. Considering all patients, the POD-Kalman filter improved MAE by 43% (filtered MR thermometry = 1.29°C, POD-Kalman filtered temperature = 0.74°C). Moreover, the SDE was improved by 47% (filtered MR thermometry = 1.16°C, POD-Kalman filtered temperature = 0.61°C). Specifically, the POD-Kalman filter reduced the MAE by approximately 60% in patients whose MR thermometry was unreliable because of the great amount of susceptibilities caused by the high level of intestinal gas motion. CONCLUSIONS: We showed that the POD-Kalman filter significantly improved the accuracy of temperature monitoring compared to MR thermometry in heating experiments and hyperthermia treatments. The results demonstrated that POD-Kalman filtering can improve thermal dosimetry during RF hyperthermia treatment, especially when MR thermometry is inaccurate.


Asunto(s)
Hipertermia Inducida , Termometría , Neoplasias del Cuello Uterino , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética , Reproducibilidad de los Resultados , Temperatura , Termometría/métodos , Neoplasias del Cuello Uterino/diagnóstico por imagen , Neoplasias del Cuello Uterino/terapia
18.
Theor Comput Fluid Dyn ; 36(3): 517-543, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35756536

RESUMEN

This work presents a robust method that minimises the impact of user-selected parameter on the identification of generic models to study the coherent dynamics in turbulent flows. The objective is to gain insight into the flow dynamics from a data-driven reduced order model (ROM) that is developed from measurement data of the respective flow. For an efficient separation of the coherent dynamics, spectral proper orthogonal decomposition (SPOD) is used, projecting the flow field onto a low-dimensional subspace, so that the dominating dynamics can be represented with a minimal number of modes. A function library is defined using polynomial combinations of the temporal modal coefficients to describe the flow dynamics with a system of nonlinear ordinary differential equations. The most important library functions are identified in a two-stage cross-validation procedure (conservative and restrictive sparsification) and combined in the final model. In the first stage, the process uses a simple approximation of the derivative to match the model with the data. This stage delivers a reduced set of possible library function candidates for the model. In the second, more complex stage, the model of the entire flow is integrated over a short time and compared with the progression of the measured data. This restrictive stage allows a robust identification of nonlinearities and modal interactions in the data and their representation in the model. The method is demonstrated using data from particle image velocimetry (PIV) measurements of a circular cylinder undergoing vortex-induced vibration (VIV) at Re = 4000 . It delivers a reduced order model that reproduces the average dynamics of the flow and reveals the interaction of coexisting flow dynamics by the model structure.

19.
Sensors (Basel) ; 22(10)2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35632186

RESUMEN

This study presents iterative optimal sensor placement (OSP) techniques using the modal assurance criterion (MAC) and the effective independence (EI) algorithm. The algorithms use the proper orthogonal mode (POM) extracted from the frequency response functions (FRFs) of dynamic systems within a wide range of frequencies. The FRF-based OSP method proposed in this study has the merit of reflecting dynamic characteristics, unlike the mode shape-based method. Evaluating the MAC values and the EI indices at each iteration, the DOFs of low contribution to the objective function of candidate sensor DOFs are deleted from master DOFs and moved to slave DOFs. This process is repeated until the sensor number corresponds with the master DOFs. The validity of the proposed methods is illustrated in an example, the sensor layouts by the proposed methods are compared, and the layout inconsistency between the MAC and the EI techniques is analyzed.

20.
Biomech Model Mechanobiol ; 21(4): 1099-1115, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35511308

RESUMEN

Scaffolds are microporous biocompatible structures that serve as material support for cells to proliferate, differentiate and form functional tissue. In particular, in the field of bone regeneration, insertion of scaffolds in a proper physiological environment is known to favour bone formation by releasing calcium ions, among others, triggering differentiation of mesenchymal cells into osteoblasts. Computational simulation of molecular distributions through scaffolds is a potential tool to study the scaffolds' performance or optimal designs, to analyse their impact on cell differentiation, and also to move towards reduction in animal experimentation. Unfortunately, the required numerical models are often highly complex and computationally too costly to develop parametric studies. In this context, we propose a computational parametric reduced-order model to obtain the distribution of calcium ions in the interstitial fluid flowing through scaffolds, depending on several physical parameters. We use the well-known Proper Orthogonal Decomposition (POD) with two different variations: local POD and POD with quadratic approximations. Computations are performed using two realistic geometries based on a foamed and a 3D-printed scaffolds. The location of regions with high concentration of calcium in the numerical simulations is in fair agreement with regions of bone formation shown in experimental observations reported in the literature. Besides, reduced-order solutions accurately approximate the reference finite element solutions, with a significant decrease in the number of degrees of freedom, thus avoiding computationally expensive simulations, especially when performing a parametric analysis. The proposed reduced-order model is a competitive tool to assist the design of scaffolds in osteoinduction research.


Asunto(s)
Células Madre Mesenquimatosas , Andamios del Tejido , Animales , Regeneración Ósea , Calcio , Osteogénesis , Impresión Tridimensional , Ingeniería de Tejidos , Andamios del Tejido/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA