Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Animals (Basel) ; 14(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38998033

RESUMEN

Presence-absence variations (PAVs) are important structural variations, wherein a genomic segment containing one or more genes is present in some individuals but absent in others. While PAVs have been extensively studied in plants, research in cattle remains limited. This study identified PAVs in 173 Holstein bulls using whole-genome sequencing data and assessed their associations with 46 economically important traits. Out of 28,772 cattle genes (from the longest transcripts), a total of 26,979 (93.77%) core genes were identified (present in all individuals), while variable genes included 928 softcore (present in 95-99% of individuals), 494 shell (present in 5-94%), and 371 cloud genes (present in <5%). Cloud genes were enriched in functions associated with hormonal and antimicrobial activities, while shell genes were enriched in immune functions. PAV-based genome-wide association studies identified associations between gene PAVs and 16 traits including milk, fat, and protein yields, as well as traits related to health and reproduction. Associations were found on multiple chromosomes, illustrating important associations on cattle chromosomes 7 and 15, involving olfactory receptor and immune-related genes, respectively. By examining the PAVs at the population level, the results of this research provided crucial insights into the genetic structures underlying the complex traits of Holstein cattle.

2.
Plant Biotechnol J ; 21(10): 2100-2112, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37431308

RESUMEN

Brassica rapa is grown worldwide as economically important vegetable and oilseed crop. However, its production is challenged by yield-limiting pathogens. The sustainable control of these pathogens mainly relies on the deployment of genetic resistance primarily driven by resistance gene analogues (RGAs). While several studies have identified RGAs in B. rapa, these were mainly based on a single genome reference and do not represent the full range of RGA diversity in B. rapa. In this study, we utilized the B. rapa pangenome, constructed from 71 lines encompassing 12 morphotypes, to describe a comprehensive repertoire of RGAs in B. rapa. We show that 309 RGAs were affected by presence-absence variation (PAV) and 223 RGAs were missing from the reference genome. The transmembrane leucine-rich repeat (TM-LRR) RGA class had more core gene types than variable genes, while the opposite was observed for nucleotide-binding site leucine-rich repeats (NLRs). Comparative analysis with the B. napus pangenome revealed significant RGA conservation (93%) between the two species. We identified 138 candidate RGAs located within known B. rapa disease resistance QTL, of which the majority were under negative selection. Using blackleg gene homologues, we demonstrated how these genes in B. napus were derived from B. rapa. This further clarifies the genetic relationship of these loci, which may be useful in narrowing-down candidate blackleg resistance genes. This study provides a novel genomic resource towards the identification of candidate genes for breeding disease resistance in B. rapa and its relatives.


Asunto(s)
Brassica napus , Brassica rapa , Brassica rapa/genética , Genes de Plantas/genética , Resistencia a la Enfermedad/genética , Leucina , Fitomejoramiento , Brassica napus/genética
3.
Genes (Basel) ; 13(8)2022 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-36011264

RESUMEN

The availability of large-scale genomic data resources makes it very convenient to mine and analyze genes that are related to important agricultural traits in rice. Pan-genomes have been constructed to provide insight into the genome diversity and functionality of different plants, which can be used in genome-assisted crop improvement. Thus, a pan-genome comprising all genetic elements is crucial for comprehensive variation study among the heat-resistant and -susceptible rice varieties. In this study, a rice pan-genome was firstly constructed by using 45 heat-tolerant and 15 heat-sensitive rice varieties. A total of 38,998 pan-genome genes were identified, including 37,859 genes in the reference and 1141 in the non-reference contigs. Genomic variation analysis demonstrated that a total of 76,435 SNPs were detected and identified as the heat-tolerance-related SNPs, which were specifically present in the highly heat-resistant rice cultivars and located in the genic regions or within 2 kbp upstream and downstream of the genes. Meanwhile, 3214 upregulated and 2212 downregulated genes with heat stress tolerance-related SNPs were detected in one or multiple RNA-seq datasets of rice under heat stress, among which 24 were located in the non-reference contigs of the rice pan-genome. We then mapped the DEGs with heat stress tolerance-related SNPs to the heat stress-resistant QTL regions. A total of 1677 DEGs, including 990 upregulated and 687 downregulated genes, were mapped to the 46 heat stress-resistant QTL regions, in which 2 upregulated genes with heat stress tolerance-related SNPs were identified in the non-reference sequences. This pan-genome resource is an important step towards the effective and efficient genetic improvement of heat stress resistance in rice to help meet the rapidly growing needs for improved rice productivity under different environmental stresses. These findings provide further insight into the functional validation of a number of non-reference genes and, especially, the two genes identified in the heat stress-resistant QTLs in rice.


Asunto(s)
Oryza , Termotolerancia , Genes de Plantas , Oryza/genética , Sitios de Carácter Cuantitativo/genética , Termotolerancia/genética , Transcriptoma
4.
Front Plant Sci ; 13: 835496, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35401600

RESUMEN

Melon (Cucumismelo L.) is an important vegetable crop that has been subjected to domestication and improvement. Several varieties of melons with diverse phenotypes have been produced. In this study, we constructed a melon pan-genome based on 297 accessions comprising 168 Mb novel sequences and 4,325 novel genes. Based on the results, there were abundant genetic variations among different melon groups, including 364 unfavorable genes in the IMP_A vs. LDR_A group, 46 favorable genes, and 295 unfavorable genes in the IMP_M vs. LDR_M group. The distribution of 709 resistance gene analogs (RGAs) was also characterized across 297 melon lines, of which 603 were core genes. Further, 106 genes were found to be variable, 55 of which were absent in the reference melon genome. Using gene presence/absence variation (PAV)-based genome-wide association analysis (GWAS), 13 gene PAVs associated with fruit length, fruit shape, and fruit width were identified, four of which were located in pan-genome additional contigs.

5.
Genome Biol ; 22(1): 119, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33892774

RESUMEN

BACKGROUND: Millennia of directional human selection has reshaped the genomic architecture of cultivated cotton relative to wild counterparts, but we have limited understanding of the selective retention and fractionation of genomic components. RESULTS: We construct a comprehensive genomic variome based on 1961 cottons and identify 456 Mb and 357 Mb of sequence with domestication and improvement selection signals and 162 loci, 84 of which are novel, including 47 loci associated with 16 agronomic traits. Using pan-genome analyses, we identify 32,569 and 8851 non-reference genes lost from Gossypium hirsutum and Gossypium barbadense reference genomes respectively, of which 38.2% (39,278) and 14.2% (11,359) of genes exhibit presence/absence variation (PAV). We document the landscape of PAV selection accompanied by asymmetric gene gain and loss and identify 124 PAVs linked to favorable fiber quality and yield loci. CONCLUSIONS: This variation repertoire points to genomic divergence during cotton domestication and improvement, which informs the characterization of favorable gene alleles for improved breeding practice using a pan-genome-based approach.


Asunto(s)
Domesticación , Genes de Plantas , Genoma de Planta , Genómica , Gossypium/genética , Selección Genética , Variaciones en el Número de Copia de ADN , Variación Genética , Genética de Población , Estudio de Asociación del Genoma Completo , Genómica/métodos , Mutación INDEL , Fenotipo , Fitomejoramiento , Polimorfismo de Nucleótido Simple
6.
Genome Biol ; 20(1): 149, 2019 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-31366358

RESUMEN

The human reference genome is still incomplete, especially for those population-specific or individual-specific regions, which may have important functions. Here, we developed a HUman Pan-genome ANalysis (HUPAN) system to build the human pan-genome. We applied it to 185 deep sequencing and 90 assembled Han Chinese genomes and detected 29.5 Mb novel genomic sequences and at least 188 novel protein-coding genes missing in the human reference genome (GRCh38). It can be an important resource for the human genome-related biomedical studies, such as cancer genome analysis. HUPAN is freely available at http://cgm.sjtu.edu.cn/hupan/ and https://github.com/SJTU-CGM/HUPAN .


Asunto(s)
Genoma Humano , Programas Informáticos , Pueblo Asiatico/genética , Población Negra/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Proteínas/genética , Análisis de Secuencia de ADN
7.
BMC Genomics ; 19(1): 119, 2018 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-29402214

RESUMEN

BACKGROUND: Maize is well known for its exceptional structural diversity, including copy number variants (CNVs) and presence/absence variants (PAVs), and there is growing evidence for the role of structural variation in maize adaptation. While PAVs have been described in this important crop species, they have been only scarcely characterized at the sequence level and the extent of presence/absence variation and relative chromosomal landscape of inbred-specific regions remain to be elucidated. RESULTS: De novo genome sequencing of the French F2 maize inbred line revealed 10,044 novel genomic regions larger than 1 kb, making up 88 Mb of DNA, that are present in F2 but not in B73 (PAV). This set of maize PAV sequences allowed us to annotate PAV content and to analyze sequence breakpoints. Using PAV genotyping on a collection of 25 temperate lines, we also analyzed Linkage Disequilibrium in PAVs and flanking regions, and PAV frequencies within maize genetic groups. CONCLUSIONS: We highlight the possible role of MMEJ-type double strand break repair in maize PAV formation and discover 395 new genes with transcriptional support. Pattern of linkage disequilibrium within PAVs strikingly differs from this of flanking regions and is in accordance with the intuition that PAVs may recombine less than other genomic regions. We show that most PAVs are ancient, while some are found only in European Flint material, thus pinpointing structural features that may be at the origin of adaptive traits involved in the success of this material. Characterization of such PAVs will provide useful material for further association genetic studies in European and temperate maize.


Asunto(s)
Cromosomas de las Plantas , Variación Genética , Genoma de Planta , Endogamia , Zea mays/genética , Biología Computacional/métodos , Variaciones en el Número de Copia de ADN , Elementos Transponibles de ADN , Evolución Molecular , Genómica/métodos , Desequilibrio de Ligamiento , Poaceae/genética , Análisis de Secuencia de ADN
8.
BMC Plant Biol ; 16: 101, 2016 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-27101874

RESUMEN

BACKGROUND: The ability to grow in phosphorus-depleted soils is an important trait for rice cultivation in many world regions, especially in the tropics. The Phosphorus Starvation Tolerance 1 (PSTOL1) gene has been identified as underlying the ability of some cultivated rice varieties to grow under low-phosphorus conditions; however, the gene is absent from other varieties. We assessed PSTOL1 presence/absence in a geographically diverse sample of wild, domesticated and weedy rice and sequenced the gene in samples where it is present. RESULTS: We find that the presence/absence polymorphism spans cultivated, weedy and wild Asian rice groups. For the subset of samples that carry PSTOL1, haplotype sequences suggest long-term selective maintenance of functional alleles, but with repeated evolution of loss-of-function alleles through premature stops and frameshift mutations. The loss-of-function alleles have evolved convergently in multiple rice species and cultivated rice varieties. Greenhouse assessments of plant growth under low- and high-phosphorus conditions did not reveal significant associations with PSTOL1 genotype variation; however, the striking signature of balancing selection at this locus suggests that further phenotypic characterizations of PSTOL1 allelic variants is warranted and may be useful for crop improvement. CONCLUSIONS: These findings suggest balancing selection for both functional and non-functional PSTOL1 alleles that predates and transcends Asian rice domestication, a pattern that may reflect fitness tradeoffs associated with geographical variation in soil phosphorus content.


Asunto(s)
Adaptación Fisiológica/genética , Genes de Plantas/genética , Oryza/genética , Fósforo/metabolismo , Alelos , Codón sin Sentido , Evolución Molecular , Mutación del Sistema de Lectura , Genotipo , Geografía , Oryza/clasificación , Filogenia , Polimorfismo Genético , Selección Genética , Análisis de Secuencia de ADN , Suelo/química , Especificidad de la Especie , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA