Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 261
Filtrar
1.
Front Genet ; 15: 1464243, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39280099

RESUMEN

Human SULT2B1gene is responsible for expressing SULT2B1a and SULT2B1b enzymes, which are phase II metabolizing enzymes known as pregnenolone and cholesterol sulfotransferase (SULT), respectively. They are expressed in several tissues and contribute to steroids and hydroxysteroids homeostasis. Genetic variation of the SULT2B1 is reported to be associated with various pathological conditions, including autosomal recessive ichthyosis, cardiovascular disease, and different types of cancers. Understanding the pathological impact of SULT2B1 genetic polymorphisms in the human body is crucial to incorporating these findings in evaluating clinical conditions or improving therapeutic efficacy. Therefore, this paper summarized the most relevant reported studies concerning SULT2B1 expression, tissue distribution, substrates, and reported genetic polymorphisms and their mechanisms in enzyme activity and pathological conditions.

2.
Acta Pharmacol Sin ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39112769

RESUMEN

Our previous study shows that activation of pregnane X receptor (PXR) exerts hepatoprotection against lithocholic acid (LCA)-induced cholestatic liver injury. In this study we investigated whether PXR activation could inhibit hepatocyte pyroptosis, as well as the underlying mechanisms. Male mice were treated with mouse PXR agonist pregnenolone 16α-carbonitrile (PCN, 50 mg·kg-1·d-1, i.p.) for 7 days, and received LCA (125 mg/kg, i.p., bid) from D4, then sacrificed 12 h after the last LCA injection. We showed that LCA injection resulted in severe cholestatic liver injury characterized by significant increases in gallbladder size, hepatocellular necrosis, and neutrophil infiltration with a mortality rate of 68%; PCN treatment significantly inhibited hepatocyte pyroptosis during LCA-induced cholestatic liver injury, as evidenced by reduced serum lactic dehydrogenase (LDH) levels, TUNEL-positive cells and hepatocyte membrane damage. Furthermore, PXR activation suppressed both the NOD-like receptor protein 3 (NLRP3) inflammasome-induced canonical pyroptosis and the apoptosis protease activating factor-1 (APAF-1) pyroptosome-induced non-canonical pyroptosis. Inhibition of the nuclear factor kappa B (NF-κB) and forkhead box O1 (FOXO1) signaling pathways was also observed following PXR activation. Notably, dual luciferase reporter assay showed that PXR activation inhibited the transcriptional effects of NF-κB on NLRP3, as well as FOXO1 on APAF-1. Our results demonstrate that PXR activation protects against cholestatic liver injury by inhibiting the canonical pyroptosis through the NF-κB-NLRP3 axis and the non-canonical pyroptosis through the FOXO1-APAF-1 axis, providing new evidence for PXR as a prospective anti-cholestatic target.

3.
Neurosci Biobehav Rev ; 164: 105842, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39103066

RESUMEN

Imbalances in dopamine activity significantly contribute to the pathophysiology of several neuropsychiatric disorders, including addiction, ADHD, schizophrenia, impulse control disorders, and Parkinson's Disease. Neuro(active)steroids, comprising endogenous steroids that finely modulate neuronal activity, are considered crucial regulators of brain function and behavior, with implications in various physiological processes and pathological conditions. Specifically, subclasses of Neuro(active)steroids belonging to the 5α reductase pathway are prominently involved in brain disorders characterized by dopaminergic signaling imbalances. This review highlights the neuromodulatory effects of Neuro(active)steroids on the dopamine system and related aberrant behavioral phenotypes. We critically appraise the role of pregnenolone, progesterone, and allopregnanolone on dopamine signaling. Additionally, we discuss the impact of pharmacological interventions targeting 5α reductase activity in neuropsychiatric conditions characterized by excessive activation of the dopaminergic system, ranging from psychotic (endo)phenotypes and motor complications to decision-making problems and addiction.


Asunto(s)
Dopamina , Humanos , Animales , Dopamina/metabolismo , Neuroesteroides/farmacología , Neuroesteroides/metabolismo , Fenotipo , Trastornos Mentales/tratamiento farmacológico , Trastornos Mentales/metabolismo , Trastornos Mentales/fisiopatología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/fisiopatología
4.
J Appl Toxicol ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039701

RESUMEN

Hepatic enzyme induction, an inherent defense system against xenobiotics, is known to simultaneously affect endocrine system functions in mammals under specific conditions, particularly thyroid hormone (TH) regulation. While this phenomenon has been studied extensively, the pathway leading to this indirect thyroid effect in mammals has unclear applicability to amphibians, despite the importance of amphibian species in assessing thyroid-disruptive chemicals. Here, we investigated the effects of three well-known mammalian enzyme inducers-ß-naphthoflavone (BNF), pregnenolone carbonitrile (PCN), and sodium phenobarbital (NaPB)-on the gene expression of phase-I and phase-II metabolizing enzymes in Xenopus laevis tadpoles. Waterborne exposure to BNF and PCN significantly induced the expression of both phase-I (cytochrome P450, CYP) and phase-II enzymes (UDP-glucuronosyltransferase, UGT and sulfotransferase, SULT), but in different patterns, while NaPB exposure induced CYP2B expression without affecting phase-II enzymes in tadpoles, in contrast to mammals. Furthermore, an ex vivo hepatic enzyme activity assay confirmed that BNF treatment significantly increased phase-II metabolic activity (glucuronidation and sulfation) toward TH. These results suggest the potential for certain mammalian enzyme inducers to influence TH clearance in X. laevis tadpoles. Our findings provide insights into the profiles of xenosensing activity and enzyme induction in amphibians, which can facilitate a better understanding of the mechanisms of indirect effects on the thyroid system via hepatic enzyme induction in nonmammalian species.

5.
Mol Cell Endocrinol ; 592: 112293, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38838762

RESUMEN

CONTEXT: Adrenarche is a normal developmental event in mid-childhood characterized by increasing adrenal androgen secretion. The role of the classic androgen pathway has been well described in adrenarche, but the role of newer active androgens and additional androgen pathways is less clear. OBJECTIVE: To study the contribution of novel androgens and related steroid biosynthesis pathways to the development of adrenarche, and to identify additional steroid biomarkers of adrenarche. DESIGN: A longitudinal study of children aged 6-8 years at baseline, followed up at ages 8-10 and 14-16 years. A total of 34 children (20 girls) with clinical and/or biochemical signs of adrenarche (cases) and 24 children (11 girls) without these signs (controls) at age 8-10 years were included. Serum steroid profiling was performed by liquid chromatography high-resolution mass spectrometry. MAIN OUTCOME MEASURES: Thirty-two steroids compartmentalized in progestagens, gluco- and mineralocorticoid pathways, and four androgen related pathways, including the classic, backdoor, 11-oxy, and 11-oxy backdoor pathways. RESULTS: The classic and 11-oxy androgen pathways were more active, and serum concentrations of main androgens in the classic (dehydroepiandrosterone, dehydroepiandrosterone sulfate, androstenedione and androsterone) and 11-oxy (11ß-hydroxyandrostenedione, 11ß-hydroxytestosterone, 11-ketoandrostenedione, and 11-ketotestosterone) pathways were higher in cases at ages 6-8 and 8-10 years. Pregnenolone concentrations at adrenarchal age (8-10 years) and cortisol concentrations at adolescence (14-16 years) were higher in cases. 11ß-hydroxyandrosterone and 11-ketoandrosterone tended to be higher in cases with clinical signs compared to cases who had only biochemical evidence of adrenarche, albeit they were detected at low levels. In biomarker analyses, calculated steroid ratios with cortisol, cortisone, or 11-deoxycortisone as dividers were better classifiers for adrenarche than single steroids. Among these ratios, androstenedione/cortisone was the best. CONCLUSIONS: The classic and 11-oxy androgen pathways are active in adrenarche. Children with earlier timing of adrenarche have higher serum cortisol levels at late pubertal age, suggesting that early adrenarche might have long-term effects on adrenal steroidogenesis by increasing the activity of the glucocorticoid pathway. Future studies should employ comprehensive steroid profiling to define novel classifiers and biomarkers for adrenarche and premature adrenarche.


Asunto(s)
Adrenarquia , Andrógenos , Humanos , Adrenarquia/metabolismo , Adrenarquia/sangre , Niño , Femenino , Masculino , Andrógenos/sangre , Andrógenos/metabolismo , Adolescente , Estudios Longitudinales , Esteroides/sangre , Esteroides/metabolismo , Esteroides/biosíntesis , Biomarcadores/sangre , Biomarcadores/metabolismo
6.
Cell Mol Life Sci ; 81(1): 235, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38795169

RESUMEN

N-methyl-D-aspartate receptors (NMDARs emerging from GRIN genes) are tetrameric receptors that form diverse channel compositions in neurons, typically consisting of two GluN1 subunits combined with two GluN2(A-D) subunits. During prenatal stages, the predominant channels are di-heteromers with two GluN1 and two GluN2B subunits due to the high abundance of GluN2B subunits. Postnatally, the expression of GluN2A subunits increases, giving rise to additional subtypes, including GluN2A-containing di-heteromers and tri-heteromers with GluN1, GluN2A, and GluN2B subunits. The latter  emerge as the major receptor subtype at mature synapses in the hippocampus. Despite extensive research on purely di-heteromeric receptors containing two identical GRIN variants, the impact of a single variant on the function of other channel forms, notably tri-heteromers, is lagging. In this study, we systematically investigated the effects of two de novo GRIN2B variants (G689C and G689S) in pure, mixed di- and tri-heteromers. Our findings reveal that incorporating a single variant in mixed di-heteromers or tri-heteromers exerts a dominant negative effect on glutamate potency, although 'mixed' channels show improved potency compared to pure variant-containing di-heteromers. We show that a single variant within a receptor complex does not impair the response of all receptor subtypes to the positive allosteric modulator pregnenolone-sulfate (PS), whereas spermine completely fails to potentiate tri-heteromers containing GluN2A and -2B-subunits. We examined PS on primary cultured hippocampal neurons transfected with the variants, and observed a positive impact over current amplitudes and synaptic activity. Together, our study supports previous observations showing that mixed di-heteromers exhibit improved glutamate potency and extend these findings towards the exploration of the effect of Loss-of-Function variants over tri-heteromers. Notably, we provide an initial and crucial demonstration of the beneficial effects of GRIN2B-relevant potentiators on tri-heteromers. Our results underscore the significance of studying how different variants affect distinct receptor subtypes, as these effects cannot be inferred solely from observations made on pure di-heteromers. Overall, this study contributes to ongoing efforts to understand the pathophysiology of GRINopathies and provides insights into potential treatment strategies.


Asunto(s)
Pregnenolona , Receptores de N-Metil-D-Aspartato , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Pregnenolona/farmacología , Pregnenolona/metabolismo , Humanos , Animales , Células HEK293 , Hipocampo/metabolismo , Mutación con Pérdida de Función , Multimerización de Proteína , Neuronas/metabolismo , Subunidades de Proteína/metabolismo , Subunidades de Proteína/genética
7.
Toxicol Appl Pharmacol ; 486: 116942, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38692360

RESUMEN

Organotins have been widely used in various industrial applications. This study investigated the structure-activity relationship as inhibitors of human, pig, and rat gonadal 3ß-hydroxysteroid dehydrogenases (3ß-HSD). Human KGN cell, pig, and rat testis microsomes were utilized to assess the inhibitory effects of 18 organotins on the conversion of pregnenolone to progesterone. Among them, diphenyltin, triethyltin, and triphenyltin exhibited significant inhibitory activity against human 3ß-HSD2 with IC50 values of 114.79, 106.98, and 5.40 µM, respectively. For pig 3ß-HSD, dipropyltin, diphenyltin, triethyltin, tributyltin, and triphenyltin demonstrated inhibitory effects with IC50 values of 172.00, 100.19, 87.00, 5.75, and 1.65 µM, respectively. Similarly, for rat 3ß-HSD1, dipropyltin, diphenyltin, triethyltin, tributyltin, and triphenyltin displayed inhibitory activity with IC50 values of 81.35, 43.56, 55.55, 4.09, and 0.035 µM, respectively. They were mixed inhibitors of pig and rat 3ß-HSD, while triphenyltin was identified as a competitive inhibitor of human 3ß-HSD2. The mechanism underlying the inhibition of organotins on 3ß-HSD was explored, revealing that they may disrupt the enzyme activity by binding to cysteine residues in the catalytic sites. This proposition was supported by the observation that the addition of dithiothreitol reversed the inhibition caused by all organotins except for triethyltin, which was partially reversed. In conclusion, this study provides valuable insights into the structure-activity relationship of organotins as inhibitors of human, pig, and rat gonadal 3ß-HSD. The mechanistic investigation suggests that these compounds likely exert their inhibitory effects through binding to cysteine residues in the catalytic sites.


Asunto(s)
Inhibidores Enzimáticos , Compuestos Orgánicos de Estaño , Testículo , Animales , Humanos , Relación Estructura-Actividad , Compuestos Orgánicos de Estaño/farmacología , Compuestos Orgánicos de Estaño/química , Ratas , Masculino , Testículo/enzimología , Testículo/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Porcinos , 3-Hidroxiesteroide Deshidrogenasas/antagonistas & inhibidores , 3-Hidroxiesteroide Deshidrogenasas/metabolismo , Simulación del Acoplamiento Molecular , Progesterona/farmacología , Progesterona/metabolismo , Microsomas/enzimología , Microsomas/efectos de los fármacos , Ratas Sprague-Dawley
8.
Eur J Med Chem ; 272: 116460, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38704943

RESUMEN

It has been reported that 4,5-dihydropyrazole and thiazole derivatives have many biological functions, especially in the aspect of anti-inflammation. According to the strategy of pharmacophore combination, we introduced thiazolinone and dihydropyrazole moiety into steroid skeleton to design and synthesize a novel series of D-ring substituted steroidal 4,5-dihydropyrazole thiazolinone derivatives, and assessed their in vitro anti-inflammatory profiles against Lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 macrophage cells. The anti-inflammatory activities assay demonstrated that compound 12e was considered as the most effective anti-inflammatory drug, which suppressed the expression of pro-inflammatory mediators including nitric oxide (NO), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), it also dose-dependently inhibited the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in LPS-induced RAW 264.7 macrophage cells. Furthermore, the results of the Western blot analysis showed a correlation between the inhibition of the Nuclear factor-kappa B (NF-κB) and Mitogen-activated protein kinases (MAPKs) signaling pathways and the suppressive effects of compound 12e on pro-inflammatory cytokines. Molecular docking studies of compound 12e into the COX-2 protein receptor (PDB ID: 5IKQ) active site was performed to rationalize their COX-2 inhibitory potency. The results were found to be in line with the biological findings as they exerted more favorable interactions compared to that of dexamethasone (DXM), explaining their remarkable COX-2 inhibitory activity. The findings revealed that these candidates could be identified as potent anti-inflammatory agents, compound 12e could be a promising drug for the treatment of inflammatory diseases.


Asunto(s)
Ciclooxigenasa 2 , Regulación hacia Abajo , Diseño de Fármacos , Lipopolisacáridos , Macrófagos , FN-kappa B , Óxido Nítrico Sintasa de Tipo II , Pirazoles , Animales , Ratones , Lipopolisacáridos/farmacología , Lipopolisacáridos/antagonistas & inhibidores , Células RAW 264.7 , Ciclooxigenasa 2/metabolismo , FN-kappa B/metabolismo , FN-kappa B/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Relación Estructura-Actividad , Pirazoles/farmacología , Pirazoles/química , Pirazoles/síntesis química , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Estructura Molecular , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/síntesis química , Antiinflamatorios no Esteroideos/química , Modelos Moleculares , Relación Dosis-Respuesta a Droga , Inhibidores de la Ciclooxigenasa 2/farmacología , Inhibidores de la Ciclooxigenasa 2/síntesis química , Inhibidores de la Ciclooxigenasa 2/química , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Tiazoles/farmacología , Tiazoles/química , Tiazoles/síntesis química , Antiinflamatorios/farmacología , Antiinflamatorios/síntesis química , Antiinflamatorios/química , Esteroides/farmacología , Esteroides/química , Esteroides/síntesis química , Simulación del Acoplamiento Molecular
9.
Steroids ; 208: 109441, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38768743

RESUMEN

When investigating endocrine disorders, it is essential to assess a comprehensive quantitative profile of sex (pro)hormones in plasma including conjugates. Thus, the present study aimed to develop and validate a comprehensive mass spectrometry-based multimethod combining the direct analysis of unconjugated sex (pro)hormones and oxidation products thereof (by GC), as well as their sulfates and glucuronides present in higher concentrations (by LC) with the indirect quantification of glucuronides present in lower concentrations after selective glucuronide hydrolysis (by GC) and its application to plasma derived from ten pre- and postmenopausal women and men each. Even guideline-compliant validation experiments cannot completely reflect overestimation of analyte concentrations due to effects depending on the individual ratio of analytes (i.e. chemical formation of analytes or incomplete removal of interfering analytes). Thus, the extent of processes not accounted for by the calibration strategy were investigated and maximum over- or underestimations of analyte concentrations were assessed for each plasma sample individually. 34 analytes were successfully calibrated, validated (median accuracy 101.1 %, median inter-day precision 8.1 %) and 31 were detected above the detection limit in plasma samples. The sporadic maximum individual over- or underestimation of analyte concentrations amounted to less than 20 %.


Asunto(s)
Oxidación-Reducción , Espectrometría de Masas en Tándem , Humanos , Espectrometría de Masas en Tándem/métodos , Masculino , Cromatografía Liquida/métodos , Femenino , Hormonas Esteroides Gonadales/sangre , Hormonas Esteroides Gonadales/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Persona de Mediana Edad , Adulto , Calibración , Reproducibilidad de los Resultados , Límite de Detección , Cromatografía Líquida con Espectrometría de Masas
10.
Life (Basel) ; 14(5)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38792602

RESUMEN

Pregnane neuroactive steroids, notably allopregnanolone and pregnenolone, exhibit efficacy in mitigating inflammatory signals triggered by toll-like receptor (TLR) activation, thus attenuating the production of inflammatory factors. Clinical studies highlight their therapeutic potential, particularly in conditions like postpartum depression (PPD), where the FDA-approved compound brexanolone, an intravenous formulation of allopregnanolone, effectively suppresses TLR-mediated inflammatory pathways, predicting symptom improvement. Additionally, pregnane neurosteroids exhibit trophic and anti-inflammatory properties, stimulating the production of vital trophic proteins and anti-inflammatory factors. Androstane neuroactive steroids, including estrogens and androgens, along with dehydroepiandrosterone (DHEA), display diverse effects on TLR expression and activation. Notably, androstenediol (ADIOL), an androstane neurosteroid, emerges as a potent anti-inflammatory agent, promising for therapeutic interventions. The dysregulation of immune responses via TLR signaling alongside reduced levels of endogenous neurosteroids significantly contributes to symptom severity across various neuropsychiatric disorders. Neuroactive steroids, such as allopregnanolone, demonstrate efficacy in alleviating symptoms of various neuropsychiatric disorders and modulating neuroimmune responses, offering potential intervention avenues. This review emphasizes the significant therapeutic potential of neuroactive steroids in modulating TLR signaling pathways, particularly in addressing inflammatory processes associated with neuropsychiatric disorders. It advances our understanding of the complex interplay between neuroactive steroids and immune responses, paving the way for personalized treatment strategies tailored to individual needs and providing insights for future research aimed at unraveling the intricacies of neuropsychiatric disorders.

11.
Sci Rep ; 14(1): 8050, 2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580665

RESUMEN

Pregnenolone is a key intermediate in the biosynthesis of many steroid hormones and neuroprotective steroids. Sulfotransferase family cytosolic 2B member 1 (SULT2B1a) has been reported to be highly selective to sulfate pregnenolone. This study aimed to clarify the effect of missense single nucleotide polymorphisms (SNPs) of the human SULT2B1 gene on the sulfating activity of coded SULT2B1a allozymes toward Pregnenolone. To investigate the effects of single nucleotide polymorphisms of the SULT2B1 gene on the sulfation of pregnenolone by SULT2B1a allozymes, 13 recombinant SULT2B1a allozymes were generated, expressed, and purified using established procedures. Human SULT2B1a SNPs were identified by a comprehensive database search. 13 SULT2B1a nonsynonymous missense coding SNPs (cSNPs) were selected, and site-directed mutagenesis was used to generate the corresponding cDNAs, packaged in pGEX-2TK expression vector, encoding these 13 SULT2B1a allozymes, which were bacterially expressed in BL21 E. coli cells and purified by glutathione-Sepharose affinity chromatography. Purified SULT2B1a allozymes were analyzed for sulfating activities towards pregnenolone. In comparison with the wild-type SULT2B1a, of the 13 allozymes, 11 showed reduced activity toward pregnenolone at 0.1 µM. Specifically, P134L and R259Q allozymes, reported to be involved in autosomal-recessive congenital ichthyosis, displayed low activity (1-10%) toward pregnenolone. The findings of this study may demonstrate the impact of genetic polymorphism on the sulfation of pregnenolone in individuals with different SULT2B1 genotypes.


Asunto(s)
Isoenzimas , Pregnenolona , Humanos , Isoenzimas/metabolismo , Escherichia coli/metabolismo , Sulfotransferasas/metabolismo , Polimorfismo de Nucleótido Simple
12.
Microb Cell Fact ; 23(1): 105, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594656

RESUMEN

BACKGROUND: Pregnenolone and progesterone are the life-important steroid hormones regulating essential vital functions in mammals, and widely used in different fields of medicine. Microbiological production of these compounds from sterols is based on the use of recombinant strains expressing the enzyme system cholesterol hydroxylase/C20-C22 lyase (CH/L) of mammalian steroidogenesis. However, the efficiency of the known recombinant strains is still low. New recombinant strains and combination approaches are now needed to produce these steroid hormones. RESULTS: Based on Mycolicibacterium smegmatis, a recombinant strain was created that expresses the steroidogenesis system (CYP11A1, adrenodoxin reductase, adrenodoxin) of the bovine adrenal cortex. The recombinant strain transformed cholesterol and phytosterol to form progesterone among the metabolites. When 3-methoxymethyl ethers of sterols were applied as bioconversion substrates, the corresponding 3-ethers of pregnenolone and dehydroepiandrosterone (DHEA) were identified as major metabolites. Under optimized conditions, the recombinant strain produced 85.2 ± 4.7 mol % 3-methoxymethyl-pregnenolone within 48 h, while production of 3-substituted DHEA was not detected. After the 3-methoxymethyl function was deprotected by acid hydrolysis, crystalline pregnenolone was isolated in high purity (over 98%, w/w). The structures of steroids were confirmed using TLC, HPLC, MS and 1H- and 13C-NMR analyses. CONCLUSION: The use of mycolicybacteria as a microbial platform for the expression of systems at the initial stage of mammalian steroidogenesis ensures the production of valuable steroid hormones-progesterone and pregnenolone from cholesterol. Selective production of pregnenolone from cholesterol is ensured by the use of 3-substituted cholesterol as a substrate and optimization of the conditions for its bioconversion. The results open the prospects for the generation of the new microbial biocatalysts capable of effectively producing value-added steroid hormones.


Asunto(s)
Fitosteroles , Progesterona , Bovinos , Animales , Pregnenolona/metabolismo , Esteroles , Esteroides , Colesterol/metabolismo , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/genética , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/metabolismo , Mamíferos/metabolismo , Éteres
13.
Cell Rep ; 43(3): 113936, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38489269

RESUMEN

Osteoclasts play a central role in cancer-cell-induced osteolysis, but the molecular mechanisms of osteoclast activation during bone metastasis formation are incompletely understood. By performing RNA sequencing on a mouse breast carcinoma cell line with higher bone-metastatic potential, here we identify the enzyme CYP11A1 strongly upregulated in osteotropic tumor cells. Genetic deletion of Cyp11a1 in tumor cells leads to a decreased number of bone metastases but does not alter primary tumor growth and lung metastasis formation in mice. The product of CYP11A1 activity, pregnenolone, increases the number and function of mouse and human osteoclasts in vitro but does not alter osteoclast-specific gene expression. Instead, tumor-derived pregnenolone strongly enhances the fusion of pre-osteoclasts via prolyl 4-hydroxylase subunit beta (P4HB), identified as a potential interaction partner of pregnenolone. Taken together, our results demonstrate that Cyp11a1-expressing tumor cells produce pregnenolone, which is capable of promoting bone metastasis formation and osteoclast development via P4HB.


Asunto(s)
Neoplasias Óseas , Neoplasias de la Mama , Humanos , Femenino , Osteogénesis , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/metabolismo , Línea Celular Tumoral , Neoplasias Óseas/metabolismo , Osteoclastos/metabolismo , Pregnenolona/metabolismo , Neoplasias de la Mama/patología , Diferenciación Celular
14.
J Steroid Biochem Mol Biol ; 240: 106478, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38430971

RESUMEN

Inflammation, an important biological protective response to tissue damage or microbial invasion, is considered to be an alarming signal for the progress of varied biological complications. Based on the previous reports in the literature that proved the noticeable efficacy of pyrazole and thiazole scaffold as well as nitrogen heterocyclic based compounds against acute and chronic inflammatory disease, a new set of novel D-ring substituted steroidal 4,5-dihydropyrazole thiazole derivatives were synthesized and evaluated their anti-inflammatory activities in vitro. Preliminary structure-activity relationship (SAR) analysis was conducted by their inhibitory activities against nitric oxide (NO) release in lipopolysaccharide (LPS)-induced RAW 264.7 cells, and the optimal compound 12b [3ß-hydroxy-pregn-5-en-17ß-yl-5'- (o- chlorophenyl)- 1'-(4''- phenyl -[1'', 3'']- thiazol-2''- yl) - 4',5'-dihydro - 1'H-pyrazol - 3'- yl] exhibited more potent anti-inflammatory activity than the positive control treatment methylprednisolone (MPS), with an IC50 value of 2.59 µM on NO production and low cytotoxicity against RAW 264.7 cells. In further mechanism study, our results showed that compound 12b significantly suppressed the production of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and inhibited the expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) through blocking NF-κB p65 nuclear translocation and phosphorylation of IκBα. Compound 12b also attenuated LPS-induced activation of c-Jun amino-terminal kinase (JNK) and p38 phosphorylation in RAW 264.7 cells. Molecular docking study revealed the strong binding affinity of compound 12b to the active site of the COX-2 proteins, which confirmed that compound 12b acted as an anti-inflammatory mediator. These results indicate that steroidal derivatives bearing 4,5-dihydropyrazole thiazole structure might be considered for further research and scaffold optimization in designing anti-inflammatory drugs and compound 12b might be a promising therapeutic anti-inflammatory drug candidate.


Asunto(s)
Antiinflamatorios , Ciclooxigenasa 2 , Diseño de Fármacos , Lipopolisacáridos , Simulación del Acoplamiento Molecular , Óxido Nítrico Sintasa de Tipo II , Pirazoles , Tiazoles , Animales , Ratones , Lipopolisacáridos/farmacología , Células RAW 264.7 , Óxido Nítrico Sintasa de Tipo II/metabolismo , Ciclooxigenasa 2/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/síntesis química , Pirazoles/farmacología , Pirazoles/química , Pirazoles/síntesis química , Tiazoles/farmacología , Tiazoles/química , Tiazoles/síntesis química , Relación Estructura-Actividad , Óxido Nítrico/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Inhibidores de la Ciclooxigenasa 2/farmacología , Inhibidores de la Ciclooxigenasa 2/síntesis química , Inhibidores de la Ciclooxigenasa 2/química
15.
Zool Res ; 45(1): 176-188, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38199972

RESUMEN

Omega-3 polyunsaturated fatty acids (n-3 PUFAs), particularly docosahexaenoic acid (22:6n-3, DHA), play crucial roles in the reproductive health of vertebrates, including humans. Nevertheless, the underlying mechanism related to this phenomenon remains largely unknown. In this study, we employed two zebrafish genetic models, i.e., elovl2 -/- mutant as an endogenous DHA-deficient model and fat1 (omega-3 desaturase encoding gene) transgenic zebrafish as an endogenous DHA-rich model, to investigate the effects of DHA on oocyte maturation and quality. Results show that the elovl2 -/- mutants had much lower fecundity and poorer oocyte quality than the wild-type controls, while the fat1 zebrafish had higher fecundity and better oocyte quality than wild-type controls. DHA deficiency in elovl2 -/- embryos led to defects in egg activation, poor microtubule stability, and reduced pregnenolone levels. Further study revealed that DHA promoted pregnenolone synthesis by enhancing transcription of cyp11a1, which encodes the cholesterol side-chain cleavage enzyme, thereby stabilizing microtubule assembly during oogenesis. In turn, the hypothalamic-pituitary-gonadal axis was enhanced by DHA. In conclusion, using two unique genetic models, our findings demonstrate that endogenously synthesized DHA promotes oocyte maturation and quality by promoting pregnenolone production via transcriptional regulation of cyp11a1.


Asunto(s)
Ácidos Docosahexaenoicos , Pez Cebra , Animales , Humanos , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol , Oogénesis/genética , Oocitos
16.
Neurosci Biobehav Rev ; 158: 105558, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38244954

RESUMEN

This mini-review presents emerging evidence that endogenous neurosteroids modulate both pro- and anti-inflammatory signaling by immune cells and brain cells that contribute to depression, alcohol use disorders, and other inflammatory conditions. We first review the literature on pregnenolone and allopregnanolone inhibition of proinflammatory neuroimmune pathways in the periphery and the brain - effects that are independent of GABAergic mechanisms. We follow with evidence for neurosteroid enhancement of anti-inflammatory and protective pathways in brain and immune cells. These studies draw clinical relevance from a large body of evidence that pro-inflammatory immune signaling is dysregulated in many brain disorders and the fact that neurosteroids inhibit the same inflammatory pathways that are activated in depression, alcohol use disorders and other inflammatory conditions. Thus, we describe evidence that neurosteroid levels are decreased and neurosteroid supplementation has therapeutic efficacy in these neuropsychiatric conditions. We conclude with a perspective that endogenous regulation of immune balance between pro- and anti-inflammatory pathways by neurosteroid signaling is essential to prevent the onset of disease. Deficits in neurosteroids may unleash excessive pro-inflammatory activation which progresses in a feed-forward manner to disrupt brain networks that regulate stress, emotion and motivation. Neurosteroids can block various inflammatory pathways in mouse and human macrophages, rat brain and human blood and therefore provide new hope for treatment of intractable conditions that involve excessive inflammatory signaling.


Asunto(s)
Alcoholismo , Neuroesteroides , Ratas , Humanos , Ratones , Animales , Neuroesteroides/metabolismo , Alcoholismo/metabolismo , Encéfalo/metabolismo , Pregnanolona/farmacología , Pregnanolona/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico
17.
Psychopharmacology (Berl) ; 241(5): 1011-1025, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38282126

RESUMEN

RATIONALE: Multiple psychiatric disorders are associated with altered brain and serum levels of neuroactive steroids, including the endogenous GABAergic steroid, allopregnanolone. Clinically, chronic cocaine use was correlated with decreased levels of pregnenolone. Preclinically, the effect of acute cocaine on allopregnanolone levels in rodents has had mixed results, showing an increase or no change in allopregnanolone levels in some brain regions. OBJECTIVE: We hypothesized that cocaine acutely increases allopregnanolone levels, but repeated cocaine exposure decreases allopregnanolone levels compared to controls. METHODS: We performed two separate studies to determine how systemic administration of 15 mg/kg cocaine (1) acutely or (2) chronically alters brain (olfactory bulb, frontal cortex, dorsal striatum, and midbrain) and serum allopregnanolone levels in adult male and female Sprague-Dawley rats. RESULTS: Cocaine acutely increased allopregnanolone levels in the midbrain, but not in olfactory bulb, frontal cortex, or dorsal striatum. Repeated cocaine did not persistently (24 h later) alter allopregnanolone levels in any region in either sex. However, allopregnanolone levels varied by sex across brain regions. In the acute study, we found that females had significantly higher allopregnanolone levels in serum and olfactory bulb relative to males. In the repeated cocaine study, females had significantly higher allopregnanolone levels in olfactory bulb, frontal cortex, and serum. Finally, acute cocaine increased allopregnanolone levels in the frontal cortex of females in proestrus, relative to non-proestrus stages. CONCLUSION: Collectively these results suggest that allopregnanolone levels vary across brain regions and by sex, which may play a part in differential responses to cocaine by sex.


Asunto(s)
Cocaína , Pregnanolona , Humanos , Adulto , Ratas , Masculino , Femenino , Animales , Ratas Sprague-Dawley , Encéfalo , Mesencéfalo , Cocaína/farmacología
18.
Front Neuroendocrinol ; 72: 101113, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37993022

RESUMEN

Advances in neuroendocrinology have led to major discoveries since the 19th century, identifying adaptive loops for maintaining homeostasis. One of the most remarkable discoveries was the concept of neurosteroids, according to which the brain is not only a target but also a source of steroid production. The identification of new membrane steroid targets now underpins the neuromodulatory effects of neurosteroids such as pregnenolone, which is involved in functions mediated by the GPCR CB1 receptor. Structural analysis of steroids is a key feature of their interactions with the phospholipid membrane, receptors and resulting activity. Therefore, mass spectrometry-based methods have been developed to elucidate the metabolic pathways of steroids, the ultimate approach being metabolomics, which allows the identification of a large number of metabolites in a single sample. This approach should enable us to make progress in understanding the role of neurosteroids in the functioning of physiological and pathological processes.


Asunto(s)
Neuroesteroides , Neuroesteroides/metabolismo , Pregnenolona/metabolismo , Esteroides , Encéfalo/metabolismo
19.
J Neuroinflammation ; 20(1): 293, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38062440

RESUMEN

BACKGROUND: Depression is two-to-three times more frequent among women. The hypothalamus, a sexually dimorphic area, has been implicated in the pathophysiology of depression. Neuroinflammation-induced hypothalamic dysfunction underlies behaviors associated with depression. The lipopolysaccharide (LPS)-induced mouse model of depression has been well-validated in numerous laboratories, including our own, and is widely used to investigate the relationship between neuroinflammation and depression. However, the sex-specific differences in metabolic alterations underlying depression-associated hypothalamic neuroinflammation remain unknown. METHODS: Here, we employed the LPS-induced mouse model of depression to investigate hypothalamic metabolic changes in both male and female mice using a metabolomics approach. Through bioinformatics analysis, we confirmed the molecular pathways and biological processes associated with the identified metabolites. Furthermore, we employed quantitative real-time PCR, enzyme-linked immunosorbent assay, western blotting, and pharmacological interventions to further elucidate the underlying mechanisms. RESULTS: A total of 124 and 61 differential metabolites (DMs) were detected in male and female mice with depressive-like behavior, respectively, compared to their respective sex-matched control groups. Moreover, a comparison between female and male model mice identified 37 DMs. We capitalized on biochemical clustering and functional enrichment analyses to define the major metabolic changes in these DMs. More than 55% of the DMs clustered into lipids and lipid-like molecules, and an imbalance in lipids metabolism was presented in the hypothalamus. Furthermore, steroidogenic pathway was confirmed as a potential sex-specific pathway in the hypothalamus of female mice with depression. Pregnenolone, an upstream component of the steroid hormone biosynthesis pathway, was downregulated in female mice with depressive-like phenotypes but not in males and had considerable relevance to depressive-like behaviors in females. Moreover, exogenous pregnenolone infusion reversed depressive-like behaviors in female mice with depression. The 5α-reductase type I (SRD5A1), a steroidogenic hub enzyme involved in pregnenolone metabolism, was increased in the hypothalamus of female mice with depression. Its inhibition increased hypothalamic pregnenolone levels and ameliorated depressive-like behaviors in female mice with depression. CONCLUSIONS: Our study findings demonstrate a marked sexual dimorphism at the metabolic level in depression, particularly in hypothalamic steroidogenic metabolism, identifying a potential sex-specific pathway in female mice with depressive-like behaviors.


Asunto(s)
Depresión , Enfermedades Neuroinflamatorias , Humanos , Ratones , Masculino , Femenino , Animales , Depresión/metabolismo , Lipopolisacáridos/toxicidad , Lipopolisacáridos/metabolismo , Hipotálamo/metabolismo , Inflamación/inducido químicamente , Inflamación/metabolismo , Pregnenolona/metabolismo
20.
Int J Mol Sci ; 24(24)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38139309

RESUMEN

Steroid hormone production via the adrenal cortex, gonads, and placenta (so-called glandular steroidogenesis) is responsible for the endocrine control of the body's homeostasis and is organized by a feedback regulatory mechanism based on the hypothalamus-pituitary-steroidogenic gland axis. On the other hand, recently discovered extraglandular steroidogenesis occurring locally in different tissues is instead linked to paracrine or autocrine signaling, and it is independent of the control by the hypothalamus and pituitary glands. Bone cells, such as bone-forming osteoblasts, osteoblast-derived osteocytes, and bone-resorbing osteoclasts, respond to steroid hormones produced by both glandular and extraglandular steroidogenesis. Recently, new techniques to identify steroid hormones, as well as synthetic steroids and steroidogenesis inhibitors, have been introduced, which greatly empowered steroid hormone research. Based on recent literature and new advances in the field, here we review the local role of steroid hormones in regulating bone homeostasis and skeletal lesion formation. The novel idea of extraglandular steroidogenesis occurring within the skeletal system raises the possibility of the development of new therapies for the treatment of bone diseases.


Asunto(s)
Corteza Suprarrenal , Esteroides , Embarazo , Femenino , Humanos , Corticoesteroides , Gónadas , Huesos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA