Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Neural Transm (Vienna) ; 130(9): 1113-1132, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37542675

RESUMEN

Aggression is a complex social behavior, critically involving brain serotonin (5-HT) function. The neurobiology of female aggression remains elusive, while the incidence of its manifestations has been increasing. Yet, animal models of female aggression are scarce. We previously proposed a paradigm of female aggression in the context of gene x environment interaction where mice with partial genetic inactivation of tryptophan hydroxylase-2 (Tph2+/- mice), a key enzyme of neuronal 5-HT synthesis, are subjected to predation stress resulting in pathological aggression. Using deep sequencing and the EBSeq method, we studied the transcriptomic signature of excessive aggression in the prefrontal cortex of female Tph2+/- mice subjected to rat exposure stress and food deprivation. Challenged mutants, but not other groups, displayed marked aggressive behaviors. We found 26 genes with altered expression in the opposite direction between stressed groups of both Tph2 genotypes. We identified several molecular markers, including Dgkh, Arfgef3, Kcnh7, Grin2a, Tenm1 and Epha6, implicated in neurodevelopmental deficits and psychiatric conditions featuring impaired cognition and emotional dysregulation. Moreover, while 17 regulons, including several relevant to neural plasticity and function, were significantly altered in stressed mutants, no alteration in regulons was detected in stressed wildtype mice. An interplay of the uncovered pathways likely mediates partial Tph2 inactivation in interaction with severe stress experience, thus resulting in excessive female aggression.


Asunto(s)
Serotonina , Triptófano Hidroxilasa , Ratones , Ratas , Femenino , Animales , Serotonina/metabolismo , Triptófano Hidroxilasa/genética , Triptófano Hidroxilasa/metabolismo , Agresión/fisiología , Encéfalo/metabolismo , Conducta Social
2.
Insect Sci ; 30(3): 844-856, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36271685

RESUMEN

The non-consumptive effects of predator-induced stress can influence a variety of life-history traits. Many previous studies focused only on short-term effects such as development and reproductive rates. Recent studies have showed that long-term predation stress (given during the whole life of the prey) and short-term predation stress (provided during the immature stage of the prey) could generate completely opposite results: the former could decrease lifespan, whereas the later could increase lifespan. However, it is still unclear whether the advantage is because of the short duration of exposure or the early stage of life during which exposure was exerted. Thus, in this study, the prey (Tyrophagus putrescentiae) was exposed to predation stress from the predator (Neoseiulus cucumeris) during different life stages (larva, protonymph, tritonymph, first 5 d of oviposition, the full lifespan or none of the above). The results showed that the predation stress supplied during larval and protonymphal stage delayed development, reduced fecundity and prolonged lifespan of the prey, while the stress given during tritonymphal stage only reduced lifespan slightly and the stress given during the first 5 d of oviposition did not change lifespan but reduced fecundity. This study indicated that the effects of predation stress are dependent on prey life stage and the predation stress experienced in the early life stages is important to lifespan modulation.


Asunto(s)
Ácaros , Femenino , Animales , Conducta Predatoria , Longevidad , Reproducción , Larva , Cadena Alimentaria
3.
Cells ; 11(6)2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35326487

RESUMEN

The interaction between brain serotonin (5-HT) deficiency and environmental adversity may predispose females to excessive aggression. Specifically, complete inactivation of the gene encoding tryptophan hydroxylase-2 (Tph2) results in the absence of neuronal 5-HT synthesis and excessive aggressiveness in both male and female null mutant (Tph2-/-) mice. In heterozygous male mice (Tph2+/-), there is a moderate reduction in brain 5-HT levels, and when they are exposed to stress, they exhibit increased aggression. Here, we exposed female Tph2+/- mice to a five-day rat predation stress paradigm and assessed their emotionality and social interaction/aggression-like behaviors. Tph2+/- females exhibited excessive aggression and increased dominant behavior. Stressed mutants displayed altered gene expression of the 5-HT receptors Htr1a and Htr2a, glycogen synthase kinase-3 ß (GSK-3ß), and c-fos as well as myelination-related transcripts in the prefrontal cortex: myelin basic protein (Mbp), proteolipid protein 1 (Plp1), myelin-associated glycoprotein (Mag), and myelin oligodendrocyte glycoprotein (Mog). The expression of the plasticity markers synaptophysin (Syp) and cAMP response element binding protein (Creb), but not AMPA receptor subunit A2 (GluA2), were affected by genotype. Moreover, in a separate experiment, naïve female Tph2+/- mice showed signs of enhanced stress resilience in the modified swim test with repeated swimming sessions. Taken together, the combination of a moderate reduction in brain 5-HT with environmental challenges results in behavioral changes in female mice that resemble the aggression-related behavior and resilience seen in stressed male mutants; additionally, the combination is comparable to the phenotype of null mutants lacking neuronal 5-HT. Changes in myelination-associated processes are suspected to underpin the molecular mechanisms leading to aggressive behavior.


Asunto(s)
Serotonina , Triptófano Hidroxilasa/metabolismo , Agresión/fisiología , Animales , Femenino , Glucógeno Sintasa Quinasa 3 beta , Masculino , Ratones , Conducta Predatoria , Ratas , Serotonina/metabolismo , Triptófano Hidroxilasa/genética
4.
Biol Lett ; 18(1): 20210476, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35078332

RESUMEN

Predators can impact prey via predation or risk effects, which can initiate trophic cascades. Given widespread population declines of apex predators, understanding and predicting the associated ecological consequences is a priority. When predation risk is relatively unpredictable or uncontrollable by prey, the loss of predators is hypothesized to release prey from stress; however, there are few tests of this hypothesis in the wild. A well-studied predator-prey system between white sharks (Carcharodon carcharias) and Cape fur seals (Arctocephalus pusillus pusillus) in False Bay, South Africa, has previously demonstrated elevated faecal glucocorticoid metabolite concentrations (fGCMs) in seals exposed to high levels of predation risk from white sharks. A recent decline and disappearance of white sharks from the system has coincided with a pronounced decrease in seal fGCM concentrations. Seals have concurrently been rafting further from shore and over deeper water, a behaviour that would have previously rendered them vulnerable to attack. These results show rapid physiological and behavioural responses by seals to release from predation stress. To our knowledge, this represents the first demonstration in the wild of physiological changes in prey from predator decline, and such responses are likely to increase given the scale and pace of apex predator declines globally.


Asunto(s)
Phocidae , Tiburones , Animales , Cadena Alimentaria , Conducta Predatoria/fisiología , Phocidae/fisiología , Tiburones/fisiología , Sudáfrica
6.
Aquat Toxicol ; 212: 205-213, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31132738

RESUMEN

Ignoring natural stressors such as predation risk may contribute to the failure of ecological risk assessment of pesticides to protect freshwater biodiversity. To better understand combined effects of multiple stressors, bioenergetic responses are important as these inform about the balance between energy input and consumption, and provide a unifying mechanism to integrate the impact of multiple stressors with different modes of action. We studied in Enallagma cyathigerum damselfly larvae the single and combined effects of exposure to the pesticide chlorpyrifos and predation risk on life history (survival and growth rate) and bioenergetic response variables at the organismal level (assimilation and conversion efficiency) and the cellular level (cellular energy allocation CEA, energy storage Ea, and energy consumption Ec). Chlorpyrifos exposure almost halved the survival of the damselfly larvae, while predation risk had no effect on survival. Both exposure to the pesticide and to predation risk reduced larval growth rates. This was caused by a reduced conversion efficiency under chlorpyrifos exposure, and by a reduced assimilation efficiency under predation risk. Both chlorpyrifos and predation risk reduced the CEA because of a decreased Ea, and for chlorpyrifos also an increased Ec. The lower Ea was driven by reductions in the fat and glycogen contents. Effects of the pesticide and predation risk were consistently additive and for most variables the strongest response was detected when both stressors were present. The absence of any synergisms may be explained by the high mortality and hypometabolism caused by the pesticide. Our results indicate that CEA can be a sensitive biomarker to evaluate effects of not only contaminants but also natural stressors, such as predation risk, and their combined impact on organisms.


Asunto(s)
Cloropirifos/toxicidad , Metabolismo Energético/efectos de los fármacos , Odonata/efectos de los fármacos , Animales , Reacción de Fuga/efectos de los fármacos , Larva/efectos de los fármacos , Plaguicidas/toxicidad , Contaminantes Químicos del Agua/toxicidad
7.
Front Behav Neurosci ; 12: 247, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30429779

RESUMEN

Evidence for and against adolescent vulnerability to posttraumatic stress disorder (PTSD) is mounting, but this evidence is largely qualitative, retrospective, or complicated by variation in prior stress exposure and trauma context. Here, we examine the effects of development on trauma vulnerability using adult post-natal (PN) day 61, early adolescent (PN23) and mid adolescence (PN34) rats and two types of trauma: an established animal model of PTSD, single prolonged stress (SPS), and a novel composite model-SPS predation (SPSp) version. We demonstrate that early and mid adolescent rats are capable of fear conditioning and fear extinction, as well as extinction retention. Our results also demonstrate that both types of trauma induced a deficit in the retention of fear extinction in adulthood, a hallmark of PTSD, but not after early or mid adolescence trauma, suggesting that adolescence might convey resilience to SPS and SPSp traumas. Across all three life stages, the effects of SPS exposure and a novel predation trauma model, SPSp, had similar effects on behavior suggesting that trauma type did not affect the likelihood of developing PTSD-like symptoms, and that SPSp is a predation-based trauma model worth exploring.

8.
Microbiome ; 6(1): 28, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29409543

RESUMEN

BACKGROUND: Gut microbiota provide functions of importance to influence hosts' food digestion, metabolism, and protection against pathogens. Factors that affect the composition and functions of gut microbial communities are well studied in humans and other animals; however, we have limited knowledge of how natural food web factors such as stress from predators and food resource rations could affect hosts' gut microbiota and how it interacts with host sex. In this study, we designed a two-factorial experiment exposing perch (Perca fluviatilis) to a predator (pike, Esox lucius), and different food ratios, to examine the compositional and functional changes of perch gut microbiota based on 16S rRNA amplicon sequencing. We also investigated if those changes are host sex dependent. RESULTS: We showed that overall gut microbiota composition among individual perch significantly responded to food ration and predator presence. We found that species richness decreased with predator presence, and we identified 23 taxa from a diverse set of phyla that were over-represented when a predator was present. For example, Fusobacteria increased both at the lowest food ration and at predation stress conditions, suggesting that Fusobacteria are favored by stressful situations for the host. In concordance, both food ration and predation stress seemed to influence the metabolic repertoire of the gut microbiota, such as biosynthesis of other secondary metabolites, metabolism of cofactors, and vitamins. In addition, the identified interaction between food ration and sex emphasizes sex-specific responses to diet quantity in gut microbiota. CONCLUSIONS: Collectively, our findings emphasize an alternative state in gut microbiota with responses to changes in natural food webs depending on host sex. The obtained knowledge from this study provided us with an important perspective on gut microbiota in a food web context.


Asunto(s)
Bacterias/clasificación , Percas/microbiología , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN/métodos , Estrés Fisiológico , Animales , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , ADN Bacteriano/genética , ADN Ribosómico/genética , Esocidae/fisiología , Femenino , Microbioma Gastrointestinal , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , Conducta Predatoria , Metabolismo Secundario
9.
Ecology ; 97(11): 3119-3130, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27870021

RESUMEN

Prey at risk of predation may experience stress and respond physiologically by altering their metabolic rates. Theory predicts that such physiological changes should alter prey nutrient demands from N-rich to C-rich macronutrients and shift the balance between maintenance and growth/reproduction. Theory further suggests that for ectotherms, temperature stands to exacerbate this stress. Yet, the interactive effects of predation stress and temperature stress on diet, metabolism, and survival of ectotherms are not well known. This knowledge gap was addressed with a laboratory study in which wild juvenile grasshoppers were collected, assigned to one of three groups, and raised at three different temperatures. All grasshoppers had access to equal quantities of two diets composed of opposite carbohydrate : protein ratios. Half of the individuals in each temperature group were exposed to predation risk cues from spider predators, while the other half were kept in risk free conditions. Grasshoppers consumed more carbohydrates when exposed to predation risk, but consumption favored greater protein intake as temperature increased. Moreover, the difference in carbohydrate intake between risk cue and risk free treatments diminished as temperature increased. Furthermore, variability between individual consumption patterns both within and between treatments decreased markedly as temperature increased, suggesting that higher temperatures promote more consistent individual consumption behaviors. Grasshoppers grew faster and larger as temperature increased, which translated into higher survival rates at higher temperatures. Warmer grasshoppers also did not alter their metabolic rates in response to predation risk cues, in contrast to colder grasshoppers. Digestive efficiency increased with temperature as well -- further indicating that lower temperatures were much more stressful than higher temperatures for grasshoppers. The study shows that physiological responses of ectothermic herbivores to predation stress are highly plastic and temperature dependent, with higher temperatures promoting increased protein intake, growth, development, survival, and digestive efficiency relative to colder temperatures. These findings help to reconcile why dietary responses (proportion of protein vs. carbohydrate intake) to predation stress may vary among different prey taxa studied previously.


Asunto(s)
Saltamontes/fisiología , Herbivoria , Estrés Fisiológico , Temperatura , Animales , Ecosistema , Reacción de Fuga , Conducta Predatoria , Arañas/fisiología
10.
J Exp Biol ; 218(Pt 2): 255-64, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25452504

RESUMEN

Fish inhabit environments that vary greatly in terms of predation intensity, and these predation regimes are generally expected to be a major driver of divergent natural selection. To test whether there is predator-driven intra-species variation in the locomotion, metabolism and water velocity preference of pale chub (Zacco platypus) along a river, we measured unsteady and steady swimming and water velocity preference among fish collected from both high- and low-predation habitats in the Wujiang River. We also measured the routine metabolic rate (RMR), maximum metabolic rate (MMR) and cost of transport (COT) and calculated the optimal swimming speed (Uopt). The fish from the high-predation populations showed a shorter response latency, elevated routine metabolism, lower swimming efficiency at low swimming speed and lower water velocity preference compared with those from the low-predation populations. Neither of the kinematic parameters fast-start and critical swimming speed (Ucrit) showed a significant difference between the high- and low-predation populations. The fish from the high-predation populations may improve their predator avoidance capacity primarily through an elevated routine metabolism and shorter response latency to achieve advanced warning and escape, rather than an improved fast-start swimming speed or acceleration. Thus, the cost of this strategy is an elevated RMR, and no trade-off between unsteady and steady swimming performance was observed in the pale chub population under various predation stresses. It was interesting to find that the high-predation fish showed an unexpected lower velocity preference, which might represent a compromise between predation avoidance, foraging and energy saving.


Asunto(s)
Cyprinidae/fisiología , Ecosistema , Ríos , Natación/fisiología , Animales , Conducta Animal , China , Cyprinidae/metabolismo , Metabolismo Energético , Conducta Predatoria , Movimientos del Agua
11.
Aquat Toxicol ; 155: 236-43, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25063887

RESUMEN

The combined effects of a pesticide and predation risk on sublethal endpoints in the midge Chironomus riparius were investigated using a combination of predator-release kairomones from common carp (Cyprinus carpio) and alarm substances from conspecifics together with the pesticide dimethoate. Midge larvae were exposed for 30 days to three sublethal dimethoate concentrations (0.01, 0.1 and 0.25 mg L(-1)) in the presence or absence of predator cues. Sublethal endpoints were analysed at different levels of biological organisation. Available energy reserves, enzyme biomarkers, feeding rate and life history endpoints were investigated. Three endpoints were significantly affected by the two highest dimethoate concentrations, i.e. AChE activity, age at emergence and emergence success, with a significant decrease in response after exposure to 0.25, 0.1 and 0.01 mg L(-1) dimethoate, respectively. Four sublethal endpoints were significantly affected by predator stress: Total protein content, GST activity and biomass decreased only in the presence of the predation risk, while AChE activity further decreased significantly in the presence of predation cues and effects on AChE of combined exposure were additive. From this study we can conclude that sublethal life history characteristics should be included in ecotoxicity testing as well as natural environmental stressors such as predator stress, which might act additively with pollutants on fitness related endpoints.


Asunto(s)
Carpas/fisiología , Chironomidae/efectos de los fármacos , Dimetoato/farmacología , Insecticidas/farmacología , Larva/efectos de los fármacos , Conducta Predatoria/fisiología , Animales , Dimetoato/administración & dosificación , Femenino , Insecticidas/administración & dosificación , Masculino , Contaminantes Químicos del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA