Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mar Pollut Bull ; 205: 116630, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38925027

RESUMEN

We investigated the distribution and effects of waterborne microplastic (MP) (polyethylene microspheres, 53-63 um) on the emergent model for ecotoxicology, the amphipod Parhyale hawaiensis, during 30 days of exposure. The following life-history traits were measured: (1) survival, (2) specific growth rate (SGR), (3) reproductive performance (precopulatory pairing behavior, fecundity, and time to release neonates), (4) molting frequency, (5) F1 newborn offspring survival and (6) MP bioaccumulation. No significant mortality or molt was seen in any of the treatments. MP caused a reduction in SGR, being more pronounced in females. The time for precopulatory pairing was 3-fold longer in amphipods exposed to MP. Fecundity decreased by 50 %, and the time to release juveniles was 6.7 days longer for amphipods exposed to MP. Finally, neonate survival decreased by 80 % after ten days of release. MP disrupts the reproductive mechanisms and triggers adverse effects on life history traits in P. hawaiensis.


Asunto(s)
Anfípodos , Rasgos de la Historia de Vida , Microplásticos , Reproducción , Contaminantes Químicos del Agua , Animales , Anfípodos/fisiología , Anfípodos/efectos de los fármacos , Reproducción/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Microplásticos/toxicidad , Femenino , Masculino , Fertilidad/efectos de los fármacos
2.
Environ Pollut ; 341: 122946, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37977364

RESUMEN

Plastics contain a mixture of chemical additives that can leach into the environment and potentially cause harmful effects on reproduction and the endocrine system. Two of these chemicals, N-butyl benzenesulfonamide (NBBS) and triphenyl phosphate (TPHP), are among the top 30 organic chemicals detected in surface and groundwater and are currently placed on international watchlist for evaluation. Although bans have been placed on legacy pollutants such as diethylhexyl phthalate (DEHP) and dibutyl phthalate (DBP), their persistence remains a concern. This study aimed to examine the impact of plastic additives, including NBBS, TPHP, DBP, and DEHP, on the reproductive behaviour and male fertility of the marine amphipod Echinogammarus marinus. Twenty precopulatory pairs of E. marinus were exposed to varying concentrations of the four test chemicals to assess their pairing behaviour. A high-throughput methodology was developed and optimised to record the contact time and re-pair time within 15 min and additional point observations for 96 h. The study found that low levels of NBBS, TPHP, and DEHP prolonged the contact and re-pairing time of amphipods and the proportion of pairs reduced drastically with re-pairing success ranging from 75% to 100% in the control group and 0%-85% in the exposed groups at 96 h. Sperm count declined by 40% and 60% in the 50 µg/l and 500 µg/l DBP groups, respectively, whereas TPHP resulted in significantly lower sperms in 50 µg/l exposed group. Animals exposed to NBBS and DEHP showed high interindividual variability in all exposed groups. Overall, this study provides evidence that plastic additives can disrupt the reproductive mechanisms and sperm counts of amphipods at environmentally relevant concentrations. Our research also demonstrated the usefulness of the precopulatory pairing mechanism as a sensitive endpoint in ecotoxicity assessments to proactively mitigate population-level effects in the aquatic environment.


Asunto(s)
Anfípodos , Dietilhexil Ftalato , Animales , Masculino , Dietilhexil Ftalato/farmacología , Semen , Dibutil Ftalato/farmacología , Fertilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA