Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros











Intervalo de año de publicación
1.
Breed Sci ; 74(1): 37-46, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39246437

RESUMEN

We review the undertaking of a field trial of low asparagine wheat lines in which the asparagine synthetase gene, TaASN2, has been knocked out using CRISPR/Cas9. The field trial was undertaken in 2021-2022 and represented the first field release of genome edited wheat in Europe. The year of the field trial and the period since have seen rapid changes in the regulations covering both the field release and commercialisation of genome edited crops in the UK. These historic developments are reviewed in detail. Free asparagine is the precursor for acrylamide formation during high-temperature cooking and processing of grains, tubers, storage roots, beans and other crop products. Consequently, work on reducing the free asparagine concentration of wheat and other cereal grains, as well as the tubers, beans and storage roots of other crops, is driven by the need for food businesses to comply with current and potential future regulations on acrylamide content of foods. The topic illustrates how strategic and applied crop research is driven by regulations and also needs a supportive regulatory environment in which to thrive.

2.
Transgenic Res ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39105945

RESUMEN

In recent years there have been major advances in precision breeding technologies, such as gene editing, that offer promising solutions to revolutionise global crop production and tackle the pressing issues in food systems. The UK has leading expertise in genomics, and research is already taking place to develop crops with improved resilience to climate change, resistance to disease and less reliance on chemical inputs. In March 2023, the Genetic Technology (Precision Breeding) Act received Royal Assent and passed into UK law. It provides a framework from which to build more proportionate regulations for plants and animals made using genetic technologies which contain genetic changes that could also arise through traditional breeding-known as 'Precision Bred Organisms'. New legislation and the utilization of UK world-leading research could help to enhance the efficiency of breeding systems and enable the development of plants and animals that are healthier, better for the environment and more resilient to climate change.

3.
New Phytol ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014516

RESUMEN

Through enviromics, precision breeding leverages innovative geotechnologies to customize crop varieties to specific environments, potentially improving both crop yield and genetic selection gains. In Brazil's four southernmost states, data from 183 distinct geographic field trials (also accounting for 2017-2021) covered information on 164 genotypes: 79 phenotyped maize hybrid genotypes for grain yield and their 85 nonphenotyped parents. Additionally, 1342 envirotypic covariates from weather, soil, sensor-based, and satellite sources were collected to engineer 10 K synthetic enviromic markers via machine learning. Soil, radiation light, and surface temperature variations remarkably affect differential genotype yield, hinting at ecophysiological adjustments including evapotranspiration and photosynthesis. The enviromic ensemble-based random regression model showcases superior predictive performance and efficiency compared to the baseline and kernel models, matching the best genotypes to specific geographic coordinates. Clustering analysis has identified regions that minimize genotype-environment (G × E) interactions. These findings underscore the potential of enviromics in crafting specific parental combinations to breed new, higher-yielding hybrid crops. The adequate use of envirotypic information can enhance the precision and efficiency of maize breeding by providing important inputs about the environmental factors that affect the average crop performance. Generating enviromic markers associated with grain yield can enable a better selection of hybrids for specific environments.

4.
Mol Plant ; 17(7): 1005-1018, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38877700

RESUMEN

Doubled haploid (DH) technology and synthetic apomixis approaches can considerably shorten breeding cycles and enhance breeding efficiency. Compared with traditional breeding methods, DH technology offers the advantage of rapidly generating inbred lines, while synthetic apomixis can effectively fix hybrid vigor. In this review, we focus on (i) recent advances in identifying and characterizing genes responsible for haploid induction (HI), (ii) the molecular mechanisms of HI, (iii) spontaneous haploid genome doubling, and (iv) crop synthetic apomixis. We also discuss the challenges and potential solutions for future crop breeding programs utilizing DH technology and synthetic apomixis. Finally, we provide our perspectives about how to integrate DH and synthetic apomixis for precision breeding and de novo domestication.


Asunto(s)
Productos Agrícolas , Haploidia , Fitomejoramiento , Fitomejoramiento/métodos , Productos Agrícolas/genética , Apomixis/genética
5.
Plant Cell Rep ; 43(7): 171, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874819

RESUMEN

KEY MESSAGE: A lipofectamine-mediated transfection protocol for DNA-free genome editing of citrus protoplast cells using a Cas9/gRNA ribonucleoprotein (RNP) complex resulted in the production of transgene free genome edited citrus.


Asunto(s)
Citrus , Edición Génica , Genoma de Planta , Lípidos , Nanopartículas , Ribonucleoproteínas , Edición Génica/métodos , Citrus/genética , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/genética , Lípidos/química , Nanopartículas/química , Sistemas CRISPR-Cas , Proteína 9 Asociada a CRISPR/metabolismo , ARN Guía de Sistemas CRISPR-Cas/genética , Protoplastos/metabolismo , Transgenes , Cationes/metabolismo , Liposomas
6.
Mol Plant ; 17(6): 848-866, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38637991

RESUMEN

Enviromics refers to the characterization of micro- and macroenvironments based on large-scale environmental datasets. By providing genotypic recommendations with predictive extrapolation at a site-specific level, enviromics could inform plant breeding decisions across varying conditions and anticipate productivity in a changing climate. Enviromics-based integration of statistics, envirotyping (i.e., determining environmental factors), and remote sensing could help unravel the complex interplay of genetics, environment, and management. To support this goal, exhaustive envirotyping to generate precise environmental profiles would significantly improve predictions of genotype performance and genetic gain in crops. Already, informatics management platforms aggregate diverse environmental datasets obtained using optical, thermal, radar, and light detection and ranging (LiDAR)sensors that capture detailed information about vegetation, surface structure, and terrain. This wealth of information, coupled with freely available climate data, fuels innovative enviromics research. While enviromics holds immense potential for breeding, a few obstacles remain, such as the need for (1) integrative methodologies to systematically collect field data to scale and expand observations across the landscape with satellite data; (2) state-of-the-art AI models for data integration, simulation, and prediction; (3) cyberinfrastructure for processing big data across scales and providing seamless interfaces to deliver forecasts to stakeholders; and (4) collaboration and data sharing among farmers, breeders, physiologists, geoinformatics experts, and programmers across research institutions. Overcoming these challenges is essential for leveraging the full potential of big data captured by satellites to transform 21st century agriculture and crop improvement through enviromics.


Asunto(s)
Productos Agrícolas , Productos Agrícolas/genética , Fitomejoramiento/métodos , Tecnología de Sensores Remotos
7.
Plants (Basel) ; 12(23)2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38068641

RESUMEN

Genome sequencing is widely recognized as a fundamental pillar in genetic research and legal studies of biological phenomena, providing essential insights for genetic investigations and legal analyses of biological events. The field of genome sequencing has experienced significant progress due to rapid improvements in scientific and technological developments. These advancements encompass not only significant improvements in the speed and quality of sequencing but also provide an unparalleled opportunity to explore the subtle complexities of genomes, particularly in the context of rare species. Such a wide range of possibilities has successfully supported the validation of plant gene functions and the refinement of precision breeding methodologies. This expanded scope now includes a comprehensive exploration of the current state and conservation efforts of gymnosperm gene sequencing, offering invaluable insights into their genomic landscapes. This comprehensive review elucidates the trajectory of development and the diverse applications of genome sequencing. It encompasses various domains, including crop breeding, responses to abiotic stress, species evolutionary dynamics, biodiversity, and the unique challenges faced in the conservation and utilization of gymnosperms. It highlights both ongoing challenges and the unveiling of forthcoming developmental trajectories.

8.
Funct Integr Genomics ; 23(3): 217, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37392308

RESUMEN

Insect pests pose a major threat to agricultural production, resulting in significant economic losses for countries. A high infestation of insects in any given area can severely reduce crop yield and quality. This review examines the existing resources for managing insect pests and highlights alternative eco-friendly techniques to enhance insect pest resistance in legumes. Recently, the application of plant secondary metabolites has gained popularity in controlling insect attacks. Plant secondary metabolites encompass a wide range of compounds such as alkaloids, flavonoids, and terpenoids, which are often synthesized through intricate biosynthetic pathways. Classical methods of metabolic engineering involve manipulating key enzymes and regulatory genes to enhance or redirect the production of secondary metabolites in plants. Additionally, the role of genetic approaches, such as quantitative trait loci mapping, genome-wide association (GWAS) mapping, and metabolome-based GWAS in insect pest management is discussed, also, the role of precision breeding, such as genome editing technologies and RNA interference for identifying pest resistance and manipulating the genome to develop insect-resistant cultivars are explored, highlighting the positive contribution of plant secondary metabolites engineering-based resistance against insect pests. It is suggested that by understanding the genes responsible for beneficial metabolite compositions, future research might hold immense potential to shed more light on the molecular regulation of secondary metabolite biosynthesis, leading to advancements in insect-resistant traits in crop plants. In the future, the utilization of metabolic engineering and biotechnological methods may serve as an alternative means of producing biologically active, economically valuable, and medically significant compounds found in plant secondary metabolites, thereby addressing the challenge of limited availability.


Asunto(s)
Fabaceae , Animales , Fabaceae/genética , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Agricultura , Insectos/genética
9.
Front Plant Sci ; 14: 1223861, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37521915

RESUMEN

Plant male sterility (MS) represents the inability of the plant to generate functional anthers, pollen, or male gametes. Developing MS lines represents one of the most important challenges in plant breeding programs, since the establishment of MS lines is a major goal in F1 hybrid production. For these reasons, MS lines have been developed in several species of economic interest, particularly in horticultural crops and ornamental plants. Over the years, MS has been accomplished through many different techniques ranging from approaches based on cross-mediated conventional breeding methods, to advanced devices based on knowledge of genetics and genomics to the most advanced molecular technologies based on genome editing (GE). GE methods, in particular gene knockout mediated by CRISPR/Cas-related tools, have resulted in flexible and successful strategic ideas used to alter the function of key genes, regulating numerous biological processes including MS. These precision breeding technologies are less time-consuming and can accelerate the creation of new genetic variability with the accumulation of favorable alleles, able to dramatically change the biological process and resulting in a potential efficiency of cultivar development bypassing sexual crosses. The main goal of this manuscript is to provide a general overview of insights and advances into plant male sterility, focusing the attention on the recent new breeding GE-based applications capable of inducing MS by targeting specific nuclear genic loci. A summary of the mechanisms underlying the recent CRISPR technology and relative success applications are described for the main crop and ornamental species. The future challenges and new potential applications of CRISPR/Cas systems in MS mutant production and other potential opportunities will be discussed, as generating CRISPR-edited DNA-free by transient transformation system and transgenerational gene editing for introducing desirable alleles and for precision breeding strategies.

10.
Front Plant Sci ; 14: 1171882, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37251754

RESUMEN

The development of low-gluten immunogenic cereal varieties is a suitable way to fight the increment of pathologies associated with the consumption of cereals. Although RNAi and CRISPR/Cas technologies were effective in providing low-gluten wheat, the regulatory framework, particularly in the European Union, is an obstacle to the short- or medium-term implementation of such lines. In the present work, we carried out a high throughput amplicon sequencing of two highly immunogenic complexes of wheat gliadins in a set of bread and durum wheat, and tritordeum genotypes. Bread wheat genotypes harboring the 1BL/1RS translocation were included in the analysis and their amplicons successfully identified. The number of CD epitopes and their abundances were determined in the alpha- and gamma-gliadin amplicons, including 40k-γ-secalin ones. Bread wheat genotypes not containing the 1BL/1RS translocation showed a higher average number of both alpha- and gamma-gliadin epitopes than those containing such translocation. Interestingly, alpha-gliadin amplicons not containing CD epitopes accounted for the highest abundance (around 53%), and the alpha- and gamma-gliadin amplicons with the highest number of epitopes were present in the D-subgenome. The durum wheat and tritordeum genotypes showed the lowest number of alpha- and gamma-gliadin CD epitopes. Our results allow progress in unraveling the immunogenic complexes of alpha- and gamma-gliadins and can contribute to the development of low-immunogenic varieties within precision breeding programs, by crossing or by CRISPR/Cas gene editing.

11.
J Exp Bot ; 74(13): 3864-3876, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37155965

RESUMEN

Plant morphology and anatomy strongly influence agricultural yield. Crop domestication has strived for desirable growth and developmental traits, such as larger and more fruits and semi-dwarf architecture. Genetic engineering has accelerated rational, purpose-driven engineering of plant development, but it can be unpredictable. Developmental pathways are complex and riddled with environmental and hormonal inputs, as well as feedback and feedforward interactions, which occur at specific times and places in a growing multicellular organism. Rational modification of plant development would probably benefit from precision engineering based on synthetic biology approaches. This review outlines recently developed synthetic biology technologies for plant systems and highlights their potential for engineering plant growth and development. Streamlined and high-capacity genetic construction methods (Golden Gate DNA Assembly frameworks and toolkits) allow fast and variation-series cloning of multigene transgene constructs. This, together with a suite of gene regulation tools (e.g. cell type-specific promoters, logic gates, and multiplex regulation systems), is starting to enable developmental pathway engineering with predictable outcomes in model plant and crop species.


Asunto(s)
Ingeniería Genética , Biología Sintética , Plantas/genética , ADN , Biología Evolutiva , Clonación Molecular
12.
Funct Integr Genomics ; 23(2): 167, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37204621

RESUMEN

Food plants play a crucial role in human survival, providing them essential nutrients. However, traditional breeding methods have not been able to keep up with the demands of the growing population. The improvement of food plants aims to increase yield, quality, and resistance to biotic and abiotic stresses. With CRISPR/Cas9, researchers can identify and edit key genes conferring desirable qualities in agricultural plants, including increased yield, enhanced product quality attributes, and increased tolerance to biotic and abiotic challenges. These modifications have enabled the creation of "smart crops" that exhibit rapid climatic adaptation, resistance to extreme weather conditions and high yield and quality. The use of CRISPR/Cas9 combined with viral vectors or growth regulators has made it possible to produce more efficient modified plants with certain conventional breeding methods. However, ethical and regulatory aspects of this technology must be carefully considered. Proper regulation and application of genome editing technology can bring immense benefits to agriculture and food security. This article provides an overview of genetically modified genes and conventional as well as emerging tools, including CRISPR/Cas9, that have been utilized to enhance the quality of plants/fruits and their products. The review also discusses the challenges and prospects associated with these techniques.


Asunto(s)
Sistemas CRISPR-Cas , Fitomejoramiento , Humanos , Plantas Modificadas Genéticamente/genética , Fitomejoramiento/métodos , Edición Génica/métodos , Productos Agrícolas/genética , Agricultura , Genoma de Planta
13.
Heliyon ; 9(1): e12974, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36747944

RESUMEN

A plant breeding program involves hundreds of experiments, each having number of entries, genealogy information, linked experimental design, lists of treatments, observed traits, and data analysis. The traditional method of arranging breeding program information and data recording and maintenance is not centralized and is always scattered in different file systems which is inconvenient for retrieving breeding information resulting in poor data management and the loss of crucial data. Data administration requires a significant amount of manpower and resources to maintain nurseries, trials, germplasm lines, and pedigree records. Further, data transcription in scattered spreadsheets and files leads to nomenclature and typing mistakes, which affects data analysis and selection decisions in breeding programs. The accurate data recording and management tools could improve the efficiency of breeding programs. Recent interventions in data management using computer-based breeding databases and informatics applications and tools have made the breeder's life easier. Because of its digital nature, the data obtained is improved even further, allowing for the acquisition of images, voice recording and other specific data kinds. Public breeding programs are far behind the industry in the use of data management tools and softwares. In this article, we have compiled the information on available data recording tools and breeding data management softwares with major emphasis on potato breeding data management.

14.
Front Bioinform ; 2: 1027457, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36438626

RESUMEN

With the rapid development of next-generation sequencing (NGS), multi-omics techniques have been emerging as effective approaches for crop improvement. Here, we focus mainly on addressing the current status and future perspectives toward omics-related technologies and bioinformatic resources with potential applications in crop breeding. Using a large amount of omics-level data from the functional genome, transcriptome, proteome, epigenome, metabolome, and microbiome, clarifying the interaction between gene and phenotype formation will become possible. The integration of multi-omics datasets with pan-omics platforms and systems biology could predict the complex traits of crops and elucidate the regulatory networks for genetic improvement. Different scales of trait predictions and decision-making models will facilitate crop breeding more intelligent. Potential challenges that integrate the multi-omics data with studies of gene function and their network to efficiently select desirable agronomic traits are discussed by proposing some cutting-edge breeding strategies for crop improvement. Multi-omics-integrated approaches together with other artificial intelligence techniques will contribute to broadening and deepening our knowledge of crop precision breeding, resulting in speeding up the breeding process.

15.
aBIOTECH ; 3(2): 110-114, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36304517

RESUMEN

Pod shattering can lead to devastating yield loss of soybean and has been a negatively selected trait in soybean domestication and breeding. Nevertheless, a significant portion of soybean cultivars are still pod shattering-susceptible, limiting their regional and climatic adaptabilities. Here we performed genetic diagnosis on the shattering-susceptible trait of a national registered cultivar, Huachun6 (HC6), and found that HC6 carries the susceptible genotype of a candidate Pod dehiscence 1 (PDH1) gene, which exists in a significant portion of soybean cultivars. We next performed genome editing on PDH1 gene by clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9). In T2 progenies, several transgene-free lines with pdh1 mutations were characterized without affecting major agronomic traits. The pdh1 mutation significantly improved the pod shattering resistance which is associated with aberrant lignin distribution in inner sclerenchyma. Our work demonstrated that precision breeding by genome editing on PDH1 holds great potential for precisely improving pod shattering resistance and adaptability of soybean cultivars.

16.
Int J Mol Sci ; 23(17)2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36077571

RESUMEN

CRISPR/Cas-based genome editing technology provides straightforward, proficient, and multifunctional ways for the site-directed modification of organism genomes and genes. The application of CRISPR-based technology in plants has a vast potential value in gene function research, germplasm innovation, and genetic improvement. The complexity of woody plants genome may pose significant challenges in the application and expansion of various new editing techniques, such as Cas9, 12, 13, and 14 effectors, base editing, particularly for timberland species with a long life span, huge genome, and ploidy. Therefore, many novel optimisms have been drawn to molecular breeding research based on woody plants. This review summarizes the recent development of CRISPR/Cas applications for essential traits, including wood properties, flowering, biological stress, abiotic stress, growth, and development in woody plants. We outlined the current problems and future development trends of this technology in germplasm and the improvement of products in woody plants.


Asunto(s)
Sistemas CRISPR-Cas/genética , Edición Génica , Genoma de Planta/genética , Árboles/genética , Edición Génica/métodos , Madera/genética
17.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35806334

RESUMEN

The major goal of animal breeding is the genetic enhancement of economic traits. The CRISPR/Cas system, which includes nuclease-mediated and base editor mediated genome editing tools, provides an unprecedented approach to modify the mammalian genome. Thus, farm animal genetic engineering and genetic manipulation have been fundamentally revolutionized. Agricultural animals with traits of interest can be obtained in just one generation (and without long time selection). Here, we reviewed the advancements of the CRISPR (Clustered regularly interspaced short palindromic repeats)/Cas (CRISPR associated proteins) genome editing tools and their applications in animal breeding, especially in improving disease resistance, production performance, and animal welfare. Additionally, we covered the regulations on genome-edited animals (GEAs) and ways to accelerate their use. Recommendations for how to produce GEAs were also discussed. Despite the current challenges, we believe that genome editing breeding and GEAs will be available in the near future.


Asunto(s)
Enfermedades de los Animales , Edición Génica , Enfermedades de los Animales/genética , Animales , Sistemas CRISPR-Cas/genética , Resistencia a la Enfermedad/genética , Endonucleasas/genética , Ingeniería Genética , Mamíferos/genética
19.
Front Genome Ed ; 4: 846624, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35330692

RESUMEN

Precise plant genome editing technologies have provided new opportunities to accelerate crop improvement and develop more sustainable agricultural systems. In particular, the prokaryote-derived CRISPR platforms allow precise manipulation of the crop genome, enabling the generation of high-yielding and stress-tolerant crop varieties. Nanotechnology has the potential to catalyze the development of a novel molecular toolbox even further by introducing the possibility of a rapid, universal delivery method to edit the plant genome in a species-independent manner. In this Perspective, we highlight how nanoparticles can help unlock the full potential of CRISPR/Cas technology in targeted manipulation of the plant genome to improve agricultural output. We discuss current challenges hampering progress in nanoparticle-enabled plant gene-editing research and application in the field, and highlight how rational nanoparticle design can overcome them. Finally, we examine the implications of the regulatory frameworks and social acceptance for the future of nano-enabled precision breeding in the developing world.

20.
Front Plant Sci ; 12: 719706, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34868106

RESUMEN

The continued improvement of crop yield is a fundamental driver in agriculture and is the goal of both plant breeders and researchers. Plant breeders have been remarkably successful in improving crop yield, as demonstrated by the continued release of varieties with improved yield potential. This has largely been accomplished through performance-based selection, without specific knowledge of the molecular mechanisms underpinning these improvements. Insight into molecular mechanisms has been provided by plant molecular, genetic, and biochemical research through elucidation of the function of genes and pathways that underlie many of the physiological processes that contribute to yield potential. Despite this knowledge, the impact of most genes and pathways on yield components have not been tested in key crops or in a field environment for yield assessment. This gap is difficult to bridge, but field-based physiological knowledge offers a starting point for leveraging molecular targets to successfully apply precision breeding technologies such as genome editing. A better understanding of both the molecular mechanisms underlying crop yield physiology and yield limiting processes under field conditions is essential for elucidating which combinations of favorable alleles are required for yield improvement. Consequently, one goal in plant biology should be to more fully integrate crop physiology, breeding, genetics, and molecular knowledge to identify impactful precision breeding targets for relevant yield traits. The foundation for this is an understanding of yield formation physiology. Here, using soybean as an example, we provide a top-down review of yield physiology, starting with the fact that yield is derived from a population of plants growing together in a community. We review yield and yield-related components to provide a basic overview of yield physiology, synthesizing these concepts to highlight how such knowledge can be leveraged for soybean improvement. Using genome editing as an example, we discuss why multiple disciplines must be brought together to fully realize the promise of precision breeding-based crop improvement.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA