Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Sci Prog ; 107(3): 368504241264994, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39228316

RESUMEN

Millions of people suffer from opioid use disorder, because of the ongoing opioid epidemic. The aversive symptoms of withdrawal are a leading factor for drug relapses, yet there are limited therapeutic options to minimize or prevent withdrawal symptoms. The mechanism behind opioid withdrawal is still not fully understood, thus preventing the development of new therapeutics. This study is an extension of our previously proposed mechanism of a toll-like receptor 2 (TLR2) mediated withdrawal response as a result of morphine induced microbial change that occurs during morphine withdrawal. Transcriptome analysis of the pre-frontal cortex indicated that there was increased expression of genes related to TLR2 signaling in morphine withdrawal treated animals compared to placebo controls. Antibiotic treatment further altered TLR2 related genes, recovering some of the morphine induced effect and leading to additional suppression of some genes related to the TLR2 pathway. Morphine withdrawal induced gene expression was attenuated in a whole body TLR2 knockout model. These results provide more support that TLR2 plays an integral role in morphine withdrawal mechanisms and could be a potential therapeutic target to minimize opioid withdrawal associated co-morbidities.


Asunto(s)
Morfina , Corteza Prefrontal , Transducción de Señal , Síndrome de Abstinencia a Sustancias , Receptor Toll-Like 2 , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo , Síndrome de Abstinencia a Sustancias/genética , Síndrome de Abstinencia a Sustancias/metabolismo , Corteza Prefrontal/metabolismo , Corteza Prefrontal/efectos de los fármacos , Animales , Transducción de Señal/efectos de los fármacos , Ratones , Masculino , Ratones Noqueados , Ratones Endogámicos C57BL , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Dependencia de Morfina/genética , Dependencia de Morfina/metabolismo
2.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38474019

RESUMEN

Alzheimer's Disease (AD) is an age-related neurodegenerative disorder characterized by progressive memory loss and cognitive impairment, affecting 35 million individuals worldwide. Intracerebroventricular (ICV) injection of low to moderate doses of streptozotocin (STZ) in adult male Wistar rats can reproduce classical physiopathological hallmarks of AD. This biological model is known as ICV-STZ. Most studies are focused on the description of behavioral and morphological aspects of the ICV-STZ model. However, knowledge regarding the molecular aspects of the ICV-STZ model is still incipient. Therefore, this work is a first attempt to provide a wide proteome description of the ICV-STZ model based on mass spectrometry (MS). To achieve that, samples from the pre-frontal cortex (PFC) and hippocampus (HPC) of the ICV-STZ model and control (wild-type) were used. Differential protein abundance, pathway, and network analysis were performed based on the protein identification and quantification of the samples. Our analysis revealed dysregulated biological pathways implicated in the early stages of late-onset Alzheimer's disease (LOAD), based on differentially abundant proteins (DAPs). Some of these DAPs had their mRNA expression further investigated through qRT-PCR. Our results shed light on the AD onset and demonstrate the ICV-STZ as a valid model for LOAD proteome description.


Asunto(s)
Enfermedad de Alzheimer , Ratas , Masculino , Animales , Enfermedad de Alzheimer/metabolismo , Ratas Wistar , Estreptozocina , Proteoma , Proteómica , Modelos Animales de Enfermedad , Aprendizaje por Laberinto
3.
Scand J Med Sci Sports ; 34(1): e14503, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37747708

RESUMEN

PURPOSE: Hot water immersion (HWI) has gained popularity to promote muscle recovery, despite limited data on the optimal heat dose. The purpose of this study was to compare the responses of two exogenous heat strains on core body temperature, hemodynamic adjustments, and key functional markers of muscle recovery following exercise-induced muscle damage (EIMD). METHODS: Twenty-eight physically active males completed an individually tailored EIMD protocol immediately followed by one of the following recovery interventions: HWI (40°C, HWI40 ), HWI (41°C, HWI41 ) or warm water immersion (36°C, CON36 ). Gastrointestinal temperature (Tgi ), hemodynamic adjustments (cardiac output [CO], mean arterial pressure [MAP], and systemic vascular resistance [SVR]), pre-frontal cortex deoxyhemoglobin (HHb), ECG-derived respiratory frequency, and subjective perceptual measures were tracked throughout immersion. In addition, functional markers of muscle fatigue (maximal concentric peak torque [Tpeak ]) and muscle damage (late-phase rate of force development [RFD100-200 ]) were measured prior to EIMD (pre-), 24 h (post-24 h), and 48 h (post-48 h) post-EIMD. RESULTS: By the end of immersion, HWI41 led to significantly higher Tgi values than HWI40 (38.8 ± 0.1 vs. 38.0°C ± 0.6°C, p < 0.001). While MAP was well maintained throughout immersion, only HWI41 led to increased (HHb) (+4.2 ± 1.47 µM; p = 0.005) and respiratory frequency (+4.0 ± 1.21 breath.min-1 ; p = 0.032). Only HWI41 mitigated the decline in RFD100-200 at post-24 h (-7.1 ± 31.8%; p = 0.63) and Tpeak at post-48 h (-3.1 ± 4.3%, p = 1). CONCLUSION: In physically active males, maintaining a core body temperature of ~25 min within the range of 38.5°C-39°C has been found to be effective in improving muscle recovery, while minimizing the risk of excessive physiological heat strain.


Asunto(s)
Temperatura Corporal , Fatiga Muscular , Humanos , Masculino , Calor , Inmersión , Fatiga Muscular/fisiología , Temperatura , Agua
4.
Int J Mol Sci ; 24(9)2023 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-37175420

RESUMEN

γ-aminobutyric acid (GABA) is a major inhibitory neurotransmitter implicated in neuropsychiatric disorders. The best method for quantifying GABA is proton magnetic resonance spectroscopy (1H MRS). Considering that accurate measurements of GABA are affected by slight methodological alterations, demonstrating GABA reproducibility in healthy volunteers is essential before implementing the changes in vivo. Thus, our study aimed to evaluate the back-to-back (B2B) and day-to-day (D2D) reproducibility of GABA+ macromolecules (GABA+) using a 3 Tesla MRI scanner, the new 32-channel head coil (CHC), and Mescher-Garwood Point Resolved Spectroscopy (MEGA-PRESS) technique with the scan time (approximately 10 min), adequate for psychiatric patients. The dorsomedial pre-frontal cortex/anterior cingulate cortex (dmPFC/ACC) was scanned in 29 and the dorsolateral pre-frontal cortex (dlPFC) in 28 healthy volunteers on two separate days. Gannet 3.1 was used to quantify GABA+. The reproducibility was evaluated by Pearson's r correlation, the interclass-correlation coefficient (ICC), and the coefficient of variation (CV%) (r/ICC/CV%). For Day 1, B2B reproducibility was 0.59/0.60/5.02% in the dmPFC/ACC and 0.74/0.73/5.15% for dlPFC. For Day 2, it was 0.60/0.59/6.26% for the dmPFC/ACC and 0.54/0.54/6.89 for dlPFC. D2D reproducibility of averaged GABA+ was 0.62/0.61/4.95% for the dmPFC/ACC and 0.58/0.58/5.85% for dlPFC. Our study found excellent GABA+ repeatability and reliability in the dmPFC/ACC and dlPFC.


Asunto(s)
Imagen por Resonancia Magnética , Ácido gamma-Aminobutírico , Humanos , Espectroscopía de Protones por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos , Reproducibilidad de los Resultados , Imagen por Resonancia Magnética/métodos
5.
Sensors (Basel) ; 23(8)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37112298

RESUMEN

Engagement is enhanced by the ability to access the state of flow during a task, which is described as a full immersion experience. We report two studies on the efficacy of using physiological data collected from a wearable sensor for the automated prediction of flow. Study 1 took a two-level block design where activities were nested within its participants. A total of five participants were asked to complete 12 tasks that aligned with their interests while wearing the Empatica E4 sensor. This yielded 60 total tasks across the five participants. In a second study representing daily use of the device, a participant wore the device over the course of 10 unstructured activities over 2 weeks. The efficacy of the features derived from the first study were tested on these data. For the first study, a two-level fixed effects stepwise logistic regression procedure indicated that five features were significant predictors of flow. In total, two were related to skin temperature (median change with respect to the baseline and skewness of the temperature distribution) and three were related to acceleration (the acceleration skewness in the x and y directions and the kurtosis of acceleration in the y direction). Logistic regression and naïve Bayes models provided a strong classification performance (AUC > 0.7, between-participant cross-validation). For the second study, these same features yielded a satisfactory prediction of flow for the new participant wearing the device in an unstructured daily use setting (AUC > 0.7, leave-one-out cross-validation). The features related to acceleration and skin temperature appear to translate well for the tracking of flow in a daily use environment.


Asunto(s)
Dispositivos Electrónicos Vestibles , Muñeca , Humanos , Muñeca/fisiología , Teorema de Bayes , Universidades , Cognición , Estudiantes
6.
Front Cardiovasc Med ; 9: 1070157, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36531710

RESUMEN

Objective: To investigate whether anodal high-definition transcranial current stimulation (HD-tDCS) over the left dorsolateral pre-frontal cortex (DLPFC) could modulate the heart rate (HR) and heart-rate variability (HRV) in healthy young people. Methods: Forty healthy young people were enrolled in this randomized crossover trial. The participants were randomized to receive anodal HD-tDCS (n = 20) or sham HD-tDCS (n = 20) over the left DLPFC with a washout period of 1 week. Electrocardiogram (ECG) data were continuously recorded 20 min before the stimulation, during the session (20 min), and 20 min after the session. HR and the time- and frequency-domain indices of the HRV were measured to investigate the activity of the sympathetic and parasympathetic nervous systems. Results: Anodal HD-tDCS over the left DLPFC induced a significant decrease in HR and a significant increase in the average of normal-to-normal intervals (AVG NN), low-frequency (LF) power, total power (TP), and LF/high-frequency (HF) ratio in comparison with the sham stimulation and the baseline. However, sham HD-tDCS over the left DLPFC had no significant effect on HR or HRV. Conclusions: Anodal HD-tDCS over the left DLPFC could reduce HR and modulate the HRV in healthy young people. HD-tDCS may show some potential for acutely modulating cardiovascular function.

7.
Brain Sci ; 12(11)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36358369

RESUMEN

(1) Background: Cerebral autoregulation is altered during acute mild traumatic brain injury, or concussion. However, it is unknown how a history of concussion can impact cerebral haemodynamic activity during a task that elicits an autoregulatory response. (2) Methods: We assessed cerebral haemodynamic activity in those with a history of three or more concussions. The study included 44 retired athletes with concussion history and 25 control participants. We recorded participants' relative changes in right and left pre-frontal cortex oxygenation collected by near-infrared spectroscopy and continuous beat-to-beat blood pressure measured by finger photoplethysmography. Participants completed a 5-min seated rest followed by a 5-min repeated squat (10-s) stand (10-s) maneuver (0.05 Hz) to elicit a cerebral autoregulatory response. Wavelet transformation was applied to the collected signals, allowing separation into cardiac interval I (0.6 to 2 Hz), respiratory interval II (0.145 to 0.6 Hz), and smooth muscle cell interval III (0.052 to 0.145 Hz). (3) Results: Significant increases at cardiac interval I were found for the wavelet amplitude of oxy-haemoglobin and haemoglobin difference at the right pre-frontal cortex. No significant difference was found at the left pre-frontal cortex or the blood pressure wavelet amplitudes. (4) Conclusions: Contributions from cardiac activity to the pre-frontal cortex oxygenation are elevated when eliciting dynamic cerebral autoregulation in those with a history of three or more concussions.

8.
Front Neurol ; 13: 904722, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35928123

RESUMEN

Background: Recovery of walking post-stroke is highly variable. Accurately measuring and documenting functional brain activation characteristics during walking can help guide rehabilitation. Previous work in this area has been limited to investigations of frontal brain regions and have not utilized recent technological and analytical advances for more accurate measurements. There were three aims for this study: to characterize the hemodynamic profile during walking post-stroke, to investigate regional changes in brain activation during different phases of walking, and to related brain changes to clinical measures. Methods: Functional near-infrared spectroscopy (fNIRS) along the pre-frontal, premotor, sensorimotor, and posterior parietal cortices was used on twenty individuals greater than six months post-stroke. Individual fNIRS optodes were digitized and used to estimate channel locations on each participant and short separation channels were used to control for extracerebral hemodynamic changes. Participants walked at their comfortable pace several times along a hallway while brain activation was recorded. Exploratory cluster analysis was conducted to determine if there was a link between brain activation and clinical measures. Results: Sustained activation was observed in the pre-frontal cortex with the ipsilesional hemisphere showing greater activation compared to the contralesional side. Sensorimotor cortex was active during the early, acceleration stage of walking only. Posterior parietal cortex showed changes in activation during the later, steady-state stage of walking. Faster gait speeds also related to increased activation in contralesional sensorimotor and posterior parietal cortices. Exploratory analysis clustered participants into two distinct groups based on their brain activation profiles and generally showed that individuals with greater activation tended to have better physical outcomes. Conclusions: These findings can guide future research for obtaining adequate power and determining factors that can be used as effect modifiers to reduce inter-subject variability. Overall, this is the first study to report specific oxygenated and deoxygenated hemoglobin changes in frontal to parietal regions during walking in the stroke population. Our results shed light on the importance of measuring brain activation across the cortex and show the importance of pre-frontal, sensorimotor, and posterior parietal cortices in walking after a stroke.

9.
Front Psychiatry ; 12: 669533, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34867499

RESUMEN

Background and Objective: Acupuncture is used as an alternative treatment for patients with major depressive disorder (MDD). The associated therapeutic effect of acupuncture is often attributed to its modulatory effect on the activity of the pre-frontal cortex (PFC), although the mechanism is not well-studied. We employed a repeated measures design to investigate the brain modulatory effect of acupuncture on the PFC in a group of patients with MDD and investigated whether the modulatory effect is influenced by the severity of the disease. Methods: A total of 47 patients diagnosed with MDD were enrolled in this functional near-infrared spectroscopy experiment. The severity of depressive symptoms was measured at baseline using the Hamilton Depression Rating Scale-24 (HAMD). The cortical activation in the bilateral PFC areas during a verbal fluency task (VFT) was measured before and after a single session of acupuncture in the Baihui acupoint. We further explored the potential correlation between the severity of MDD and task-related activation before and after acupuncture. Results: A single session of acupuncture significantly tended to enhance the activation level of the left frontopolar cortex in patients with severe depression during VFT, but a null effect was found in those with mild to moderate depression. Among patients with severe depression, a strong correlation was observed between HAMD scores and the change in VFT-related activation after acupuncture in the left dorsolateral PFC (DLPFC). Conclusion: A single session of acupuncture did not significantly modulate the activation of the left PFC in patients with mild to moderate depression; however, it demonstrated a tendency to enhance the activation of the frontopolar area in patients with severe depression. Among patients with severe depression, there is a correlation between the activation by acupuncture of left DLPFC during executive functioning and the severity of depressive symptoms, suggesting that the brain activity induced by acupuncture is likely to be influenced by the baseline disease severity in patients with MDD.

10.
Mol Biol Rep ; 48(12): 7865-7873, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34642830

RESUMEN

BACKGROUND: Chronic stress increases the production of pro-inflammatory cytokines and oxidative stress in the brain, which underlay cognitive and psychological problems. In addition to the anti-depressants, vitamin D is known to act as an anti-inflammatory and anti-oxidative agent. This study investigates the specific effects of vitamin D in protecting hippocampus and pre-frontal cortex (PFC) against chronic mild stress (CMS)-induced activation of pro-inflammatory cytokines IL-6 and TNF-α and decreasing the activation of anti-oxidative enzymes super oxide dismutase (SOD) and glutathione peroxidase (GPx). METHODS AND RESULTS: Rats were exposed to CMS for 3 weeks. Two groups of rats received vitamin D (5 and 10 µg/kg) and another received fluoxetine (5 mg/kg) along with CMS. Control groups were not exposed to CMS, but received treatments similar to CMS groups. Serum corticosterone and IL-6, TNF-α and SOD and GPx levels in the hippocampus and PFC were measured at the end of three weeks. CMS significantly increased corticosterone, IL-6, TNF-α and decreased SOD and GPx levels (P < 0.0001) in hippocampus and PFC. Vitamin D treatment reduced corticosterone levels (P < 0.01), increased SOD (P < 0.0001) and GPx (P < 0.01) and decreased IL-6 and TNF-α (P < 0.0001) levels in the hippocampus and PFC compared to rats treated with vitamin D vehicle. Vitamin D-10 regulation of SOD and IL-6 levels was more effective than fluoxetine (P < 0.0001 and P < 0.01, respectively, in hippocampus). CONCLUSION: This study suggests that vitamin D effectively protects the key regions of the brain related to cognition and affective behavior, against the inflammation and oxidative stress caused by the chronic stress.


Asunto(s)
Estrés Psicológico/tratamiento farmacológico , Vitamina D/farmacología , Animales , Antioxidantes/metabolismo , Conducta Animal/efectos de los fármacos , Encéfalo/metabolismo , Citocinas/metabolismo , Glutatión Peroxidasa/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Inflamación , Interleucina-6/metabolismo , Masculino , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Ratas , Ratas Wistar , Estrés Psicológico/metabolismo , Estrés Psicológico/fisiopatología , Superóxido Dismutasa/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Vitamina D/metabolismo
11.
Front Hum Neurosci ; 15: 680847, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34239431

RESUMEN

Background: Post-stroke depression (PSD) is the most common mood disorder following stroke and is also the main factor that limits the recovery and rehabilitation of patients with stroke. The prevalence of PSD is ~30%. Since there is no gold standard for the diagnosis and evaluation of PSD, it is important to raise awareness of PSD and to establish methods for its evaluation, early diagnosis, and treatment. In the field of psychiatry, functional near-infrared spectroscopy (fNIRS) has been used as a diagnostic tool for the measurement of oxygenated hemoglobin (oxy-Hb). This study aimed to assess whether fNIRS could be applied in the diagnosis and evaluation of PSD. Methods: We recruited 45 patients with stroke, who were admitted to Nagasaki Kita Hospital between May 2015 and April 2019. The 17-item Hamilton Rating Scale for Depression (HAMD17), which is considered to be a useful screening and evaluation tool for PSD, was used for the assessment of patients after stroke; moreover, oxy-Hb was measured in the pre-frontal cortex. The subjects were divided into two groups: the depressed group (n = 13) and the non-depressed group (n = 32). We evaluated the correlation between the oxy-Hb integral values and HAMD17 scores. Results: We investigated the relationship between the oxy-Hb integral values and HAMD17 total scores, and found a negative correlation between them (ρ = -0.331, P < 0.005). There was a significant difference in the oxy-Hb integral values during the activation task period between the depressed and non-depressed groups (3.16 ± 2.7 and 1.71 ± 2.4, respectively; P = 0.040). The results indicated that the patients of the depressed group showed lower oxy-Hb integral values and lower activation in the frontal lobe in comparison with the patients of the non-depressed group. Conclusion: The present study highlights that the measurement of oxy-Hb by using fNIRS is a useful methodology for the diagnosis of PSD in patients after stroke.

12.
Front Psychiatry ; 12: 623765, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33889094

RESUMEN

Background: Repetitive transcranial magnetic stimulation (rTMS) has been proven to be safe and effective in treating major depressive disorder (MDD). However, the treatment parameters of rTMS are still divergent and need to be optimized further. The aim of this study was to compare the efficacy of rTMS in treating MDD with different parameters of stimulating frequency and location, and course of treatment. Methods: A total of 221 patients with MDD were recruited in the randomized, double-blind, controlled trial. All eligible patients were randomly assigned into four treatment groups: (1) 10 Hz in left dorsolateral pre-frontal cortex (DLPFC) (n = 55), (2) 5 Hz in left DLPFC (n = 53), (3) 10 Hz in bilateral DLPFC (n = 57), and (4) 5 Hz in bilateral DLPFC (n = 56). The patients received treatment for 6 weeks and an additional 6-week optional treatment. The efficacies were evaluated by Hamilton Depression Rating Scale-24 items (HDRS) and Clinical Global Impressions Scale (CGI). The trial is registered at the Chinese Clinical Trial Registry as ChiCTR-TRC-12002248. Results: The ANOVAs of HDRS scores up to 6 weeks and 12 weeks with repeated measure of time showed a significant effect of duration without statistical difference among four treatment groups and no significance when time was interacted with inter-group as well. The response rates up until the 5th week were significantly different with the previous week. Conclusions: It concludes that there were no statistical differences in the efficacy of rTMS between unilateral left and bilateral DLPFC, and between 5 and 10 Hz for treating MDD.

13.
J Neuroeng Rehabil ; 18(1): 23, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33526043

RESUMEN

BACKGROUND: The performance of a secondary task while walking increases motor-cognitive interference and exacerbates fall risk in older adults. Previous studies have demonstrated that transcranial direct current stimulation (tDCS) may improve certain types of dual-task performance, and, that tDCS delivered during the performance of a task may augment the benefits of stimulation, potentially reducing motor-cognitive interference. However, it is not yet known if combining multi-target tDCS with the simultaneous performance of a task related to the tDCS targets reduces or increases dual-task walking costs among older adults. The objectives of the present work were (1) To examine whether tDCS applied during the performance of a task that putatively utilizes the brain networks targeted by the neuro-stimulation reduces dual-task costs, and (2) to compare the immediate after-effects of tDCS applied during walking, during seated-rest, and during sham stimulation while walking, on dual-task walking costs in older adults. We also explored the impact on postural sway and other measures of cognitive function. METHODS: A double-blind, 'within-subject' cross-over pilot study evaluated the effects of 20 min of anodal tDCS targeting both the primary motor cortex (M1) and the left dorsolateral prefrontal cortex (lDLPFC) in 25 healthy older adults (73.9 ± 5.2 years). Three stimulation conditions were assessed in three separate sessions: (1) tDCS while walking in a complex environment (tDCS + walking), (2) tDCS while seated (tDCS + seated), and (3) walking in a complex environment with sham tDCS (sham + walking). The complex walking condition utilized virtual reality to tax motor and cognitive abilities. During each session, usual-walking, dual-task walking, quiet standing sway, and cognitive function (e.g., Stroop test) were assessed before and immediately after stimulation. Dual-task costs to gait speed and other measures were computed. RESULTS: The dual-task cost to gait speed was reduced after tDCS + walking (p = 0.004) as compared to baseline values. Neither tDCS + seated (p = 0.173) nor sham + walking (p = 0.826) influenced this outcome. Similar results were seen for other gait measures and for Stroop performance. Sway was not affected by tDCS. CONCLUSIONS: tDCS delivered during the performance of challenging walking decreased the dual-task cost to walking in older adults when they were tested just after stimulation. These results support the existence of a state-dependent impact of neuro-modulation that may set the stage for a more optimal neuro-rehabilitation. TRIAL REGISTRATION: Clinical Trials Gov Registrations Number: NCT02954328.


Asunto(s)
Cognición/fisiología , Estimulación Transcraneal de Corriente Directa/métodos , Caminata/fisiología , Anciano , Anciano de 80 o más Años , Encéfalo/fisiología , Método Doble Ciego , Femenino , Humanos , Masculino , Proyectos Piloto , Test de Stroop
14.
Front Pain Res (Lausanne) ; 2: 673538, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35295450

RESUMEN

The subgenual anterior cingulate cortex (sgACC) is a key node of the descending antinociceptive system with sex differences in its functional connectivity (FC). We previously reported that, in a male-prevalent chronic pain condition, sgACC FC is abnormal in women but not in men. This raises the possibility that, within a sex, sgACC FC may be either protective or represent a vulnerability to develop a sex-dominant chronic pain condition. The aim of this study was to characterize sgACC FC in a female-dominant chronic pain condition, carpal tunnel syndrome (CTS), to investigate whether sgACC abnormalities are a common feature in women with chronic pain or unique to individuals with pain conditions that are more prevalent in the opposite sex. We used fMRI to determine the resting state FC of the sgACC in healthy controls (HCs, n = 25, 18 women; 7 men) and people with CTS before (n = 25, 18 women; 7 men) and after (n = 17, 13 women; 4 men) successful surgical treatment. We found reduced sgACC FC with the medial pre-frontal cortex (mPFC) and temporal lobe in CTS compared with HCs. The group-level sgACC-mPFC FC abnormality was driven by men with CTS, while women with CTS did not have sgACC FC abnormalities compared with healthy women. We also found that age and sex influenced sgACC FC in both CTS and HCs, with women showing greater FC with bilateral frontal poles and men showing greater FC with the parietal operculum. After surgery, there was reduced sgACC FC with the orbitofrontal cortex, striatum, and premotor areas and increased FC with the posterior insula and precuneus compared with pre-op scans. Abnormally reduced sgACC-mPFC FC in men but not women with a female-prevalent chronic pain condition suggests pain-related sgACC abnormalities may not be specific to women but rather to individuals who develop chronic pain conditions that are more dominant in the opposite sex. Our data suggest the sgACC plays a role in chronic pain in a sex-specific manner, and its communication with other regions of the dynamic pain connectome undergoes plasticity following pain-relieving treatment, supporting it as a potential therapeutic target for neuromodulation in chronic pain.

15.
Front Neurosci ; 14: 572299, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33162879

RESUMEN

Retinal degeneration (rd) is one of the leading causes of blindness in the modern world today. Various strategies including electrical stimulation are being researched for the restoration of partial or complete vision. Previous studies have demonstrated that the effectiveness of electrical stimulation in somatosensory, frontal and visual cortices is dependent on stimulation parameters including stimulation frequency and brain states. The aim of the study is to investigate the effect of applying a prolonged electrical stimulation on the eye of rd mice with various stimulation frequencies, in awake and anesthetized brain states. We recorded spontaneous electrocorticogram (ECoG) neural activity in prefrontal cortex and primary visual cortex in a mouse model of retinitis pigmentosa (RP) after prolonged (5-day) transcorneal electrical stimulation (pTES) at various frequencies (2, 10, and 20 Hz). We evaluated the absolute power and coherence of spontaneous ECoG neural activities in contralateral primary visual cortex (contra Vcx) and contralateral pre-frontal cortex (contra PFx). Under the awake state, the absolute power of theta, alpha and beta oscillations in contra Vcx, at 10 Hz stimulation, was higher than in the sham group. Under the anesthetized state, the absolute power of medium-, high-, and ultra-high gamma oscillations in the contra PFx, at 2 Hz stimulation, was higher than in the sham group. We also observed that the ultra-high gamma band coherence in contra Vcx-contra PFx was higher than in the sham group, with both 10 and 20 Hz stimulation frequencies. Our results showed that pTES modulates rd brain oscillations in a frequency and brain state-dependent manner. These findings suggest that non-invasive electrical stimulation of retina changes patterns of neural oscillations in the brain circuitry. This also provides a starting point for investigating the sustained effect of electrical stimulation of the retina to brain activities.

16.
Int J Psychophysiol ; 158: 27-33, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32979414

RESUMEN

The cortisol awakening response (CAR) is associated with various aspects of cognition, including executive function, in older adult and clinical samples. However, the association between these variables in the healthy functioning population is not well understood due to the limited number of appropriately controlled studies. This study explored the association between the CAR and a set shifting index of executive function in 55 (44 females) healthy participants aged 20.2 ± 3.0 years. Notoriously, assessment of the CAR from self-collected saliva samples within the domestic setting is subject to sample timing error, so electronic monitoring of both awakening and sampling times were employed. Participants attended the laboratory in the afternoon of CAR assessment for testing on the Attention Switching Task of the CANTAB neuropsychological testing battery. A positive association was found between CAR magnitude and attention-switching performance in the afternoon of the same day. This was independent of known relevant CAR covariates, but only evident in CAR data collected without delay exceeding 8 min post-awakening. These findings offer insight into a potential role for the CAR in modulating cognitive functions associated with the pre-frontal cortex.


Asunto(s)
Función Ejecutiva , Hidrocortisona , Anciano , Ritmo Circadiano , Femenino , Humanos , Saliva , Factores de Tiempo , Vigilia , Adulto Joven
17.
Int Rev Neurobiol ; 150: 187-217, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32204832

RESUMEN

There is evidence that stress-induced disruption of the circadian rhythm of cortisol secretion, has negative consequences for brain health. The cortisol awakening response (CAR) is the most prominent and dynamic aspect of this rhythm. It has complex regulatory mechanisms making it distinct from the rest of the cortisol circadian rhythm, and is frequently investigated as a biomarker of stress and potential intermediary between stress and impaired brain function. Despite this, the precise function of the CAR within the healthy cortisol circadian rhythm remains poorly understood. Cortisol is a powerful hormone known to influence cognition in multiple and complex ways. Studies of the CAR and cognitive function have used varied methodological approaches which have produced similarly varied findings. The present review considers the accumulating evidence linking stress, attenuation of the CAR and reduced cognitive function, and seeks to contextualize the many findings to study populations, cognitive measures, and CAR methodologies employed. Associations between the CAR and both memory and executive functions are discussed in relation to its potential role as a neuroendocrine time of day signal that synchronizes peripheral clocks throughout the brain to enable optimum function, and recommendations for future research are provided.


Asunto(s)
Ritmo Circadiano/fisiología , Función Ejecutiva/fisiología , Hidrocortisona/metabolismo , Memoria/fisiología , Estrés Psicológico/metabolismo , Estrés Psicológico/fisiopatología , Adolescente , Adulto , Anciano , Niño , Preescolar , Humanos , Persona de Mediana Edad , Adulto Joven
18.
Front Hum Neurosci ; 14: 35, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32116614

RESUMEN

Aims: Recent research suggests that aerobic exercise can be performed safely within the first week following a concussion injury and that early initiation of exercise may speed recovery. To better understand the physiological changes during a concussion, we tested the hypothesis that mild-to-intense exercise testing can be performed within days immediately following injury, and can be used to discern differences between the concussed and normal healthy state. Thus, the purpose was to observe the cerebral hemodynamic responses to incremental exercise testing performed acutely post-concussion in high-performance athletes. Methods: This study was a within- and between-experimental design, with seven male university ice hockey teams participating. A subgroup of five players acted as control subjects (CON) and was tested at the same time as the 14 concussed (mTBI) players on Day 2, 4, and 7 post-concussion. A 5-min resting baseline and 5-min exercise bouts of mild (EX1), moderate (EX2), and high (EX3) intensity exercise were performed on a cycle ergometer. Near-infrared spectroscopy was used to monitor pre-frontal cortex oxy-haemoglobin (HbO2), deoxy-haemoglobin (HHb), and total blood volume (tHb) changes. Results: ANOVA compared differences between testing days and groups, and although large percentage changes in HbO2 (20-30%), HHb (30-40%), and tHb (30-40%) were recorded, no significant (p ≤ 0.05) differences in cerebral hemodynamics occurred between mTBI vs. CON during aerobic exercise testing on any day post-injury. Furthermore, there was a linear relationship between exercise intensity vs. cerebral hemodynamics during testing for each day (r 2 = 0.83-0.99). Conclusion: These results demonstrate two novel findings: (1) mild-to-intense aerobic exercise testing can be performed safely as early as Day 2 post-concussion injury in a controlled laboratory environment; and (2) evidence-based objective measures such as cerebral hemodynamics can easily be collected using near-infrared spectroscopy (NIRS) to monitor physiological changes during the first-week post-injury. This research has important implications for monitoring physiological recovery post-injury and establishing new rehabilitation guidelines.

19.
Eur Neuropsychopharmacol ; 33: 81-88, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32088112

RESUMEN

Pathological gambling and cocaine dependence are highly pervasive disorders. Functional neuroimaging evidence implicates aberrant activity of prefrontal striatal pathways in both disorders. It is unclear if the neuroanatomy of these areas is also affected. Participants with pathological gambling (n = 18), cocaine dependence (n = 19) and controls (n = 21) underwent high-resolution structural MRI scan and cognitive assessments. In line with emerging functional neuroimaging findings, we hypothesised (i) lower volumes of corticostriatal areas ascribed to decision-making/inhibitory control, craving and reward processing (i.e., orbitofrontal cortex, inferior frontal gyrus, amygdala, striatum, insula) in both pathological gamblers and cocaine dependent participants versus controls; (ii) selected dopaminergic/glutamatergic pathways directly taxed by cocaine (i.e., superior, dorsolateral and anterior cingulate cortices) would be altered in cocaine dependent versus control participants only. Analyses were conducted with a bonferroni correction. Our results showed that both pathological gambling and cocaine dependent participants, compared to controls, had larger volumes of the right inferior frontal gyrus (ps <.01, ds = 0.66 and 0.62). Cocaine dependent participants had lower nucleus accumbens and medial orbitofrontal cortex volumes than pathological gamblers (ps <.05, ds = 0.51 and 0.72), with the latter being predicted by higher negative urgency scores. Inferior frontal gyrus volume may reflect common alterations of cocaine and gambling addictions, whereas cocaine dependence may be uniquely associated with reduced volume in dorsolateral and middle frontal regions. Cocaine's supra-physiological effects on mesolimbic neurons may explain reduced accumbens-orbitofrontal structure compared to gambling.


Asunto(s)
Encéfalo/diagnóstico por imagen , Trastornos Relacionados con Cocaína/diagnóstico por imagen , Juego de Azar/diagnóstico por imagen , Adulto , Mapeo Encefálico , Ansia , Toma de Decisiones , Dopamina/fisiología , Femenino , Neuroimagen Funcional , Humanos , Inhibición Psicológica , Imagen por Resonancia Magnética , Masculino , Pruebas Neuropsicológicas , Recompensa
20.
J Neurotrauma ; 37(2): 273-285, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31418318

RESUMEN

Alcohol is the most commonly abused drug by young adults across North America. Although alcohol consumption itself incurs a risk of neurological damage, it is also a significant risk factor for traumatic brain injury (TBI). TBI among young adults is described as a modern healthcare epidemic. The drastic changes occurring within their neurological networks put young adults at greater risk for developing long-term post-traumatic deficits. Contradictory findings have been indicated regarding the effects of alcohol consumption on TBI outcomes in adults, with some studies demonstrating detrimental effects, whereas others suggest neuroprotective abilities. However, little is known about the effects of alcohol consumption on TBI outcomes during the sensitive stage of early adulthood. Young adult female Sprague-Dawley rats were randomly assigned to one of six experimental conditions: Pre-injury alcohol+TBI; Pre-injury alcohol+Sham; Pre- and Post-injury alcohol+TBI; Pre- and Post-injury alcohol+Sham; No alcohol+TBI; No alcohol+Sham. Alcohol consumption groups received an amount of 10% v/v ethanol solution based on the animals' weight. Following the injury, the rats were subjected to a behavioral test battery to assess post-concussive symptomology. Overall, chronic binge drinking significantly improved TBI outcomes related to motor coordination and balance, whereas binge drinking in general significantly decreased anxiety-like behaviors. Additionally, in many cases, chronic binge drinking appears to return the TBI animal's behavioral outcomes to levels comparable to those of the no alcohol sham animals. Thus, the results suggest that alcohol may exhibit neuroprotective abilities in the context of early adulthood TBI.


Asunto(s)
Ansiedad/fisiopatología , Consumo Excesivo de Bebidas Alcohólicas/complicaciones , Lesiones Traumáticas del Encéfalo/complicaciones , Actividad Motora/fisiología , Neuroprotección/fisiología , Animales , Conducta Animal/fisiología , Consumo Excesivo de Bebidas Alcohólicas/fisiopatología , Lesiones Traumáticas del Encéfalo/fisiopatología , Femenino , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA