Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 933: 172953, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38734112

RESUMEN

In recent decades, the problem of heavy metal contamination in rice paddies has attracted widespread attention. However, most studies on heavy metal contamination in paddy fields are biased towards soil and/or rice plants, without taking atmospheric deposition into account. In this study, atmospheric deposition, paddy soil, and rice samples were collected from three functional areas (area proximity to factories, along the roadside, and suburban) in ChangZhuTan, Hunan Province. The pollution characterization, translocation, and health risk of heavy metals were reassessed. The findings revealed that Cd and As contamination in the study area's soils was more severe, with point exceedance rates reaching 70 % and 35.9 %, respectively. The highest concentrations of As, Ni, Cd, and Pb in atmospheric deposition were found along the roadside, with 1.42 µg/m2/day, 3.21 µg/m2/day, 0.34 µg/m2/day, and 8.28 µg/m2/day, respectively. In area proximity to factories, As and Ni in atmospheric deposition showed to be lowest, whereas Cd and Pb concentrations showed lowest in suburban areas. Furthermore, the accumulation of Cd and Pb in rice grains in regions proximity to factories was significantly higher than in other regions. The human health risk assessment indicated the health risk caused by rice intake in areas proximity to factories was the highest and requires attention, which was mainly due to Cd accumulation, with HQ value reached 3.19. Correlation tests indicate that atmospheric deposition has a positive effect on heavy metal enrichment in rice grains. Further Random Forest analysis revealed that the transport of heavy metals from atmospheric deposition to leaves and shells were important influencing factors for As, Cd, Ni and Mg accumulation in rice grain. Therefore, more attention should be paid to the effects of atmospheric deposition on the accumulation of heavy metals in paddy fields in order to maintain the production safety of crops.


Asunto(s)
Agricultura , Contaminantes Atmosféricos , Monitoreo del Ambiente , Metales Pesados , Oryza , Contaminantes del Suelo , Metales Pesados/análisis , China , Oryza/química , Contaminantes del Suelo/análisis , Contaminantes Atmosféricos/análisis , Medición de Riesgo , Suelo/química
2.
Food Sci Nutr ; 11(9): 5501-5511, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37701226

RESUMEN

About 388 million school-going children worldwide benefit from school feeding schemes, which make use of fresh produce to prepare meals. Fresh produce including leafy greens and other vegetables were served at 37% and 31% of school feeding programs, respectively, in Africa. This study aimed at assessing the microbiological quality of fresh produce grown onsite or supplied to South African schools that are part of the national school feeding programs that benefit over 9 million school-going children. Coliforms, Escherichia coli, Enterobacteriaceae, and Staphylococcus aureus were enumerated from fresh produce (n = 321) samples. The occurrence of E. coli, Listeria monocytogenes, Salmonella spp., and extended-spectrum ß-lactamase (ESBL)-producing Enterobacteriaceae was determined. Presumptive pathogens were tested for antimicrobial resistance. E. coli was further tested for diarrheagenic virulence genes. Enterobacteriaceae on 62.5% of fresh produce samples (200/321) exceeded previous microbiological guidelines for ready-to-eat food, while 86% (276/321 samples) and 31.6% (101/321 samples) exceeded coliform and E. coli criteria, respectively. A total of 76 Enterobacteriaceae were isolated from fresh produce including E. coli (n = 43), Enterobacter spp. (n = 15), and Klebsiella spp. (n = 18). Extended-spectrum ß-lactamase production was confirmed in 11 E. coli, 13 Enterobacter spp., and 17 Klebsiella spp. isolates. No diarrheagenic virulence genes were detected in E. coli isolates. However, multidrug resistance (MDR) was found in 60.5% (26/43) of the E. coli isolates, while all (100%; n = 41) of the confirmed ESBL and AmpC Enterobacteriaceae showed MDR. Our study indicates the reality of the potential health risk that contaminated fresh produce may pose to school-going children, especially with the growing food safety challenges and antimicrobial resistance crisis globally. This also shows that improved food safety approaches to prevent foodborne illness and the spread of foodborne pathogens through the food served by school feeding schemes are necessary.

3.
Environ Pollut ; 333: 122042, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37328128

RESUMEN

Hazardous chemicals released from the petroleum-derived face mask can be inhaled by wearers and cause adverse health effects. Here, we first used headspace solid-phase microextraction coupled with GC-MS to comprehensively analyze the volatile organic compounds (VOCs) released from 26 types of face masks. The results showed that total concentrations and peak numbers ranged from 3.28 to 197 µg/mask and 81 to 162, respectively, for different types of mask. Also, light exposure could affect the chemical composition of VOCs, particularly increasing the concentrations of aldehydes, ketones, organic acids and esters. Of these detected VOCs, 142 substances were matched to a reported database of chemicals associated with plastic packaging; 30 substances were identified by the International Agency for Research on Cancer (IARC) as potential carcinogenic to humans; 6 substances were classified in the European Union as persistent, bioaccumulative, and toxic, or very persistent, very bioaccumulative substance. Reactive carbonyls were ubiquitous in masks, especially after exposure to light. The potential risk of VOCs released from the face masks were then accessed by assuming the extreme scenario that all the VOC residues were released into the breathing air within 3 h. The result showed that the average total concentration of VOCs (17 µg/m3) was below the criterion for hygienic air, but seven substances, 2-ethylhexan-1-ol, benzene, isophorone, heptanal, naphthalene, benzyl chloride, and 1,2-dichloropropane exceeded the non-cancer health guidelines for lifetime exposure. This finding suggested that specific regulations should be adopted to improve the chemical safety of face masks.


Asunto(s)
Compuestos Orgánicos Volátiles , Humanos , Compuestos Orgánicos Volátiles/análisis , Máscaras , Benceno , Cromatografía de Gases y Espectrometría de Masas/métodos , Microextracción en Fase Sólida/métodos
4.
Biol Trace Elem Res ; 201(3): 1503-1519, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35467266

RESUMEN

Tea (Camellia sinensis L.) is one of the most widely consumed non-alcoholic beverages worldwide. In the present study, 73 commercial tea samples were collected from tea plantations in the Southwest, South, Jiangnan, and Jiangbei regions of China. The contents of four macroelements (phosphorus (P), potassium (K), calcium (Ca) and magnesium (Mg)) and 15 trace metals (arsenic (As), cadmium (Cd), chromium (Cr), mercury (Hg), lead (Pb), zinc (Zn), aluminium (Al), copper (Cu), manganese (Mn), iron (Fe), nickel (Ni), thorium (Th), thallium (Tl), rubidium (Rb) and barium (Ba)) in tea samples were determined. The mean concentrations of As, Cd, Cr, Hg, Pb, Zn, Al, Cu, Mn, Fe, Ni, Th, Tl, Rb and Ba were in the range of 0.02-0.61, 0.008-0.126, 0.09-1.12, 0.001-0.012, 0.07-1.62, 19.5-73.2, 170-2100, 5.9-43.3, 228-2040, 60-337, 2.09-17.95, 0.002-0.08, 0.004-0.409, 0-150.50 and 3.1-41.2 µg/g, respectively, which were all lower than the maximum permissible limits stipulated by China (NY/T 288-2012, NY 659-2003). The target hazard quotients of each heavy metal were lower than one, and the combined risk hazard index of all heavy metals for adults was in the range of 0.10-0.85; therefore, there was no significant carcinogenic health risks to tea drinking consumers under the current dietary intake. Significant differences were found in the content of trace elements (Zn, Cu, Fe, Ni, Th, Tl, Rb and Ba) (p < 0.05); however, no significant differences were found in the content of macroelements (P, K, Ca and Mg) and trace metals (As, Cd, Cr, Hg, Pb, Al and Mn) in teas from different regions. Therefore, the region did not affect the heavy metal exposure risk. Correlation coefficient and principal component analyses were performed to determine the source of the elements. Three principal factors were obtained: factor 1 was positively related to Ca, Mg, As, Cd, Cr, Hg, Pb, Al, Mn, Fe and Th (32.63%); factor 2 to P, Zn, Cu and Ni (18.64%) and factor 3 to K and Rb (10.10%). Thus, the elements in the same factor might originate from the same source. This study provides an essential basis to understand the variance and potential risks of different elements in tea from different regions of China.


Asunto(s)
Arsénico , Mercurio , Metales Pesados , Oligoelementos , Arsénico/análisis , Cadmio/análisis , Cromo/análisis , Monitoreo del Ambiente , Plomo/análisis , Magnesio/análisis , Manganeso/análisis , Mercurio/análisis , Metales Pesados/análisis , Níquel/análisis , Medición de Riesgo , Rubidio , , Talio , Oligoelementos/análisis , Zinc/análisis
5.
J Environ Sci (China) ; 107: 38-48, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34412786

RESUMEN

Emissions derived from the consumption of organic solvents have been proven to be the primary industrial source of volatile organic compounds (VOCs). In conjunction with epidemiologic studies, water-based paints (WBPs) and solvent-based paints (SBPs) were selected as representatives of newly developed solvents and traditional solvents, respectively, to simulate the effects of consuming solvents emitted during industrial production. And non-carcinogenic and carcinogenic risks to residents near emission sources were studied in detail. The results showed that the spatial distribution of health risks varied with meteorological conditions and type of emission source, and the prevailing wind direction strongly affected the distribution range and shape of the influenced area. The areas of influence maximized on heavy-polluting days for both WBP and SBP emission sources with the total span reaching 804 m and 16 km, respectively; meanwhile, the areas of influence for carcinogenic risk resulting from WBP emission sources were 1.2 and 2.3 times greater than those measured on fine and rainy days, respectively, and 1.8 and 2.9 times greater for SBP emission sources. Compared with WBPs, the total spans of negatively influenced regions resulting from SBP emission sources were 10.4, 12.5 and 19.9 times greater on fine, rainy and heavy-polluting days, respectively. Therefore, carcinogenic risk was the dominant health threat for populations residing close to solvent-consuming industrial emission sources. The findings suggest that newly developed solvents are capable of significantly reducing consequent health threats, nevertheless, they could still pose occasional threats to nearby residents under specific meteorological conditions.


Asunto(s)
Contaminantes Atmosféricos , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Industrias , Solventes , Compuestos Orgánicos Volátiles/análisis
6.
Chemosphere ; 279: 130565, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33866095

RESUMEN

Gaseous and particulate nitrated polycyclic aromatic hydrocarbons (NPAHs, 12 species) and oxygenated polycyclic aromatic hydrocarbons (OPAHs, 4 species) in seven coastal cities of the Bohai and Yellow Seas were determined throughout the year. The annual arithmetical mean concentrations of ΣNPAH12 and ΣOPAH4 were 737 ± 475 pg/m3 and 35.3 ± 26.8 ng/m3. NPAHs and OPAHs existed mainly in the gaseous phase, accounted for 88.5% and 95.2% of the total concentrations. Air concentrations of ΣNPAH12 and ΣOPAH4 in the coastal cities of the Yellow Sea were significantly lower (p < 0.05) than those of the Bohai Sea. Air concentrations of ΣNPAH12 and ΣOPAH4 were significantly higher (p < 0.01) in winter than in summer. Strong secondary formation of atmospheric NPAHs and OPAHs occurred in all of the studied cities. The sequence of annual contribution of the emission sources of airborne NPAHs determined by positive matrix factorization was traffic exhaust > combustion of solid fuels (coal and biomass) > secondary formation, while for OPAHs, it was combustion of solid fuels > secondary formation > traffic exhaust. The combustion of solid fuels served as the main source of NPAHs and OPAHs in winter, while secondary formation was the predominant source in summer. Interregional transport may exert an important effect on the local atmospheric NPAHs and OPAHs by potential source contribution function analysis. The estimated incremental lifetime cancer risk (ILCR) due to inhalation exposure to specific NPAHs ranged from 2.9 × 10-12 to 6.2 × 10-6 (median at 4.8 × 10-9) was mainly attributed to exposure before the age of 16.


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Policíclicos Aromáticos , Contaminantes Atmosféricos/análisis , China , Ciudades , Monitoreo del Ambiente , Nitratos/análisis , Océanos y Mares , Material Particulado/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Estaciones del Año
7.
Biol Trace Elem Res ; 199(7): 2770-2778, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32875541

RESUMEN

The different parts of Platycodon grandiflorum were collected from a medicinal herb garden to determine five heavy metal(loid)s (Pb, Cd, As, Hg, and Cu) contents at different growth stages. The data showed that the plant accumulated varying amounts of metal(loid)s in the order Cu > Hg > Pb > As > Cd. Five heavy metal(loid) concentrations decreased in the early growth stage and then increased in the flowering season. The contents of heavy metal(loid)s except Hg in the stem were relatively lower than other tissues. The flower of Platycodon grandiflorum can highly accumulate heavy metal(loid)s, especially for Cu in the flowering period. Pb, Cd, and Cu contents in stem generally increased with growth time, while Cd and Cu in root decreased during growth time. The average daily intake doses of five heavy metal(loid)s in the root of Platycodon grandiflorum were all below the safety guideline and the target hazard quotient was less than 1.


Asunto(s)
Metaloides , Metales Pesados , Plantas Medicinales , Platycodon , Contaminantes del Suelo , China , Monitoreo del Ambiente , Metales Pesados/análisis , Medición de Riesgo , Contaminantes del Suelo/análisis
8.
BMC Public Health ; 20(1): 1729, 2020 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-33198713

RESUMEN

BACKGROUND: Industrial and agricultural activities result in elevated levels of potentially toxic elements (PTEs) in the local environment. PTEs can enter the human body through the food chain and pose severe health risks to inhabitants. In this study, PTE levels in maize, soil, and irrigation water were detected, and health risks through maize consumption were evaluated. METHODS: Maize, soil, and irrigation water samples were collected in northern Ningxia, China. Inductively coupled plasma-optical emission spectrometry was applied to determine the contents of six PTEs. Bioaccumulation factor was used to reflect the transfer potential of a metal from soil to maize. Health risks associated with maize consumption were assessed by deterministic and probabilistic estimation. Sensitivity analysis was performed to determine variables that pose the greatest effect on health risk results. RESULTS: The levels of Pb and Cr in maize exceeded the standards, while the PTE levels in soil and irrigation water did not exceed the corresponding standards. The bioaccumulation factor values of the six PTEs in maize were all lower than 1 and followed the order of Cd > Zn = As > Cr > Cu > Pb. The hazard index (0.0986) was far less than 1 for all inhabitants implying no obvious non-carcinogenic risk. The carcinogenic risk value was 3.261 × 10- 5, which was lower than the maximum acceptable level of 1 × 10- 4 suggested by United States Environmental Protection Agency (USEPA). Females were at greater risk than males, and the age group of below 20 years had the greater risk among all the groups evaluated. Approximately 0.62% of inhabitants exceeded the level for non-carcinogenic risk, while 8.23% exceeded the level for carcinogenic risk. The As concentration and daily intake of maize contributed 35.8, and 29.4% for non-carcinogenic risk results as well as 61.0 and 18.5% for carcinogenic risk results. CONCLUSIONS: Maize was contaminated by Pb and Cr, whereas the associated soil and irrigation water were not contaminated by PTEs. Inhabitants would not suffer obvious harmful health risks through maize consumption. Arsenic level and daily intake of maize were the most sensitive factors that impact health risks.


Asunto(s)
Dieta/efectos adversos , Contaminantes del Suelo/toxicidad , Contaminantes del Agua/toxicidad , Zea mays/toxicidad , Adulto , China , Femenino , Humanos , Masculino , Persona de Mediana Edad , Medición de Riesgo , Contaminantes del Suelo/análisis , Contaminantes del Agua/análisis , Adulto Joven , Zea mays/química
9.
Med Pr ; 71(4): 405-411, 2020 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-32644053

RESUMEN

BACKGROUND: Allergic reactions to metals and metal salts used in tattoo pigments occur surprisingly frequently. For this reason, this study focused on the determination of thallium (Tl) in the samples of color tattoo inks. These inks are commonly used in tattooing processes worldwide. MATERIAL AND METHODS: The samples were analyzed with the use of differential pulse anodic stripping voltammetry. The stripping anodic peak current of Tl was linear over its concentration range of 0.5-6.0 µg/l, which corresponds to 2.45×10-9-2.94×10-8 M. The determined value of the limit of detection (LOD) was equal to 0.149 µg/l (7.29×10-10 M). RESULTS: The obtained results revealed a wide range of Tl contents in tattoo inks, i.e., 0.0029-0.4275 µg/g. The content of this metal varied substantially depending on the pigment used in tattoo inks. CONCLUSIONS: Thallium was identified and determined in all tested samples. Its content depends on the country of origin but it does not depend directly on the color. The lowest content of Tl was found in the pink ink and the highest in the violet ink (from Israel), and a similar content was also found in the yellow ink (from Israel). The use of colored inks in larger quantities (a dense pattern and a larger surface area covered) may potentially pose a health risk. The danger of Tl poisoning from tattooing depends on the type of the ink (color) and its origin. As Tl is not considered a micronutrient, introducing such a Tl content into the body may be associated with a potentially harmful accumulation of this metal in body organs, causing various types of ailments and toxic effects primarily on the nervous, skeletal and circulatory systems. The obtained results suggest that tattooists may be exposed to the toxic effects of Tl in tattoo inks. The analytical data presented in the paper may constitute the basis for determining the acceptable limits of toxic Tl contents in tattoo inks. Med Pr. 2020;71(4):405-11.


Asunto(s)
Tinta , Tatuaje , Talio/análisis , Humanos , Límite de Detección
10.
Artículo en Inglés | MEDLINE | ID: mdl-32575720

RESUMEN

Geothermal springs are natural geological phenomena that occur throughout the world. South Africa is blessed with several springs of this nature. Limpopo province contains 31% of all geothermal springs in the country. The springs are classified according to the residing mountain: Soutpansberg, Waterberg and Drakensberg. This study focused on the geothermal springs within the Soutpansberg region; that is, Mphephu, Siloam, Sagole and Tshipise. The study was aimed at assessing the occurrence and potential health risk associated with drinking water from geothermal springs within Soutpansberg. Geothermal springs and boreholes were sampled for a period of 12 months (May 2017-May 2018) to accommodate two major seasons in the study areas. The physicochemical and trace metal compositions of the geothermal springs and boreholes (tepid and hot) were analyzed using ion chromatography (IC) (Dionex Model DX 500) and inductively coupled plasma-mass spectrometer (ICP-MS). Trace metal concentrations of the geothermal springs and boreholes were within permissible drinking water guidelines by the South African National Standards (SANS) and World Health Organisation (WHO), with exception of mercury (Hg), which is high in summer season. The bioaccumulation from regular consumption could, however, result in negative effects. Pearson's correlation revealed that there is a direct relationship between temperature and pH, and some of the trace metals (V, Zn, Hg, Pb). This implies dissolution of minerals (rock-water interaction) under slightly high temperature. Multivariate statistics further elucidate the relationship and possible sources of the trace metals. Therefore, it can be inferred that the rock-water interaction is the main geochemical process governing the release of trace metals in groundwater. Hazard Index values for both children and adults were higher than 1, and this implies that the communities are at high risk of non-cancer health effects. Further, As, Cr and Cd were found to be the highest contributors to the potential cancer risk in the study areas, with children having a higher risk than adults. Therefore, there is a need for clinical/epidemiological study, and regular monitoring and control measures, to verify actual prevalence of cancer and protect human health, particularly the children, within the study areas.


Asunto(s)
Manantiales de Aguas Termales , Metales Pesados , Oligoelementos , Contaminantes Químicos del Agua , Adulto , Niño , Monitoreo del Ambiente , Humanos , Metales Pesados/toxicidad , Medición de Riesgo , Sudáfrica , Oligoelementos/toxicidad , Contaminantes Químicos del Agua/toxicidad
11.
Sci Total Environ ; 716: 137049, 2020 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-32059313

RESUMEN

Food, including rice, is the major source of toxic element cadmium (Cd) for human exposure. Globally, many populations rely on the consumption of significant amounts of rice as a staple food. Using dietary intake and concentration of Cd, this study determines the risk posed to both adults and children due to Cd exposure from consumption of rice sold in Bangladeshi markets. Polished rice samples (n = 144) were collected from the markets of 16 districts of Bangladesh to determine the distribution, regional variability and associated health risk from Cd. The mean and median concentrations of Cd in rice were 44 µg/kg and 34 µg/kg, respectively, ranging between 1 and 180 µg/kg, dry weight. The Cd concentrations of the rice samples did not exceed the safe limit of EU/CODEX but 9% exceeded the safe limit of FSANZ (Food standards Australia New Zealand) values. Results indicated that there were significant variations of Cd among (33%) and within (67%) the districts. Some rice brands such as Najirshail, Katarivogh and Chinigura had Cd levels of 81, 70 and 68 µg/kg, respectively. Cadmium ingested on a daily basis ranged between 0.09 and 0.58 µg/kg body weight (bw) with the incremental lifetime cancer risk (ILCR) for individuals varying between 1.35 × 10-3 and 8.7 × 10-3 in different districts. The age groups (2-5 yrs) and (6-10 yrs) experienced higher risks than others and both males and females were found to be susceptible from Cd exposure of rice.


Asunto(s)
Oryza , Adulto , Bangladesh , Cadmio , Niño , Preescolar , Femenino , Contaminación de Alimentos , Humanos , Masculino , Medición de Riesgo
12.
Biol Trace Elem Res ; 195(2): 696-706, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31625054

RESUMEN

This research conducted an exploration of the content of microelements (As, Cr, Cd, Pb, Cu, Zn, Mn, and Hg) in raw Pu-erh tea with different storage years. The contents of As, Cr, Cd, Pb, Cu, Zn, Mn, and Hg were 0.14, 0.82, 0.02, 0.52, 14.59, 33.51, 564.02, and 0.01 µg/g, respectively, and were all less than the national standard limit values in China. The target hazard quotients (THQs) of each heavy metal were all lower than 1, and the value of combined risk hazard index (HI) of all to adults was 0.221, which presents no health risk when consumed properly by adults of the raw Pu-erh tea infusions. Interestingly, there was no significant correlation between the heavy metal element (As, Cr, Cd, Pb, Cu, Zn, Mn, and Hg) contents and the THQ values of raw Pu-erh tea samples and storage years; the correlation coefficients (R2) range from 0.01 to 0.33 and from 0.01 to 0.57, respectively. The result showed that the storage years showed no effect on the exposure risk of heavy metals; the heavy metal elements in tea samples come from the atmosphere and soil.


Asunto(s)
Contaminantes del Suelo/efectos adversos , Té/química , Oligoelementos/efectos adversos , China , Monitoreo del Ambiente , Humanos , Medición de Riesgo , Contaminantes del Suelo/análisis , Oligoelementos/análisis
13.
Environ Pollut ; 252(Pt B): 1902-1909, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31227346

RESUMEN

Inhalation exposure to flame retardants used as additives to minimize fire risk and plasticizers is ubiquitous in human daily activities, but has not been adequately assessed. To address this research gap, the present study conducted an assessment of human health risk for four age groups through inhalation exposure to size fractionated particle-bound and gaseous halogenated flame retardants (polybrominated diphenyl ethers (PBDEs) and alternative halogenated flame retardants (AHFRs)) and organophosphate esters (OPEs) at indoor and outdoor environments (school, office, and residence) in three districts of a megacity (Guangzhou, China). Results demonstrated that OPEs were the dominant components among all targets. Indoor daily intakes of PBDEs and OPEs were 13-16 times greater than outdoor levels for all age groups. Gaseous OPEs contributed significantly greater than particle-bound compounds to daily intakes of all target compounds. Based on the different life scenarios, hazard quotient (HQ) and incremental life cancer risk (ILCR) from adults exposure to PBDEs and OPEs in indoor and outdoor settings were the greatest, followed by adolescents, children, and seniors. The estimated HQ and ILCR for all age groups both indoors and outdoors were lower than the safe level (HQ = 1 and ILCR = 10-6), indicating that the potential health risk for local residents in Guangzhou via inhalation exposure to atmospheric halogenated flame retardants and OPEs was low.


Asunto(s)
Retardadores de Llama/análisis , Éteres Difenilos Halogenados/análisis , Exposición por Inhalación/efectos adversos , Exposición por Inhalación/análisis , Organofosfatos/análisis , Plastificantes/análisis , Adolescente , Adulto , Contaminación del Aire Interior/análisis , Niño , China , Gases , Vivienda , Humanos , Persona de Mediana Edad , Medición de Riesgo , Adulto Joven
14.
Environ Pollut ; 238: 431-439, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29587214

RESUMEN

Although a number of studies have assessed the occurrence of atmospheric polycyclic aromatic hydrocarbons (PAHs) in indoor environment, few studies have systemically examined the indoor-outdoor interplay of size-dependent particulate PAHs and potential health risk based on daily lifestyles. In the present study, size-dependent particle and gaseous samples were collected both indoors and outdoors within selected schools, offices and residences located in three districts of Guangzhou, China with different urbanization levels during the dry and wet weather seasons. Results from measurements of PAHs showed that higher total PAH concentrations occurred in residential areas than in other settings and in indoor than in outdoor environments. Compositional profiles and size distribution patterns of particle-bound PAHs were similar indoors and outdoors, predominated by 4-and 5-ring PAHs and the 0.56-1.0 µm particle fraction. Statistical analyses indicated that outdoor sources may have contributed to 38-99% and 62-100% of the variations for indoor particle-bound and gaseous PAH concentrations, respectively. Incremental life cancer risk (ILCR) from human exposure to indoor and outdoor PAHs based on different lifestyles followed the order of adults > children > adolescents > seniors. All average ILCR values for four age groups were below the lower limit of the Safe Acceptable Range (10-6). In addition, the ILCR value for adults (average: 7.2 × 10-7; 95% CI: 5.4 × 10-8‒2.5 × 10-6), estimated from outdoor air PAH levels with 24-h exposure time, was significantly higher than our assessment results (average: 5.9 × 10-7; 95% CI: 6.3 × 10-8‒1.9 × 10-6), suggesting the significance of assessing human inhalation exposure risks of indoor and outdoor PAHs in urban air based on daily lifestyles.


Asunto(s)
Contaminantes Atmosféricos/análisis , Exposición por Inhalación/estadística & datos numéricos , Hidrocarburos Policíclicos Aromáticos/análisis , Adolescente , Adulto , Anciano , Contaminación del Aire Interior/análisis , Contaminación del Aire Interior/estadística & datos numéricos , Niño , China , Gases/análisis , Vivienda , Humanos , Exposición por Inhalación/análisis , Tamaño de la Partícula , Riesgo , Instituciones Académicas , Estaciones del Año , Adulto Joven
15.
Artículo en Inglés | MEDLINE | ID: mdl-29342877

RESUMEN

This study features a survey of the concentrations of aluminum (Al) and heavy metals (Mn, Pb, Cd, Hg, As, Cr, Ni, Cu, and Zn) in tea leaves and the corresponding cultivation soils (0-30 cm), carried out in Puan County (Guizhou Province, China). The average concentrations of Al, Mn, Pb, Cd, Hg, As, Cr, Ni, Cu, and Zn in the soil were 106 × 10³, 214, 20.9, 0.09, 0.12, 17.5, 121, 27.8, 131.2, and 64 mg·kg-1, respectively. The heavy metals' pollution indexes in the soil can be ranked as follows: Cu > Cr > Hg > As > Ni > Zn > Pb > Mn > Cd. The soil was moderately polluted by Cu because of the high geochemical background value of Cu in the area. The potential environment risk index (RI) showed that 7.69% out of the total sample sites were within the moderate level. Moreover, the ranges of Al, Mn, Pb, Cd, Hg, As, Cr, Ni, Cu, and Zn concentrations in young tea leaves were 250-660, 194-1130, 0.107-0.400, 0.012-0.092, 0.014-0.085, 0.073-0.456, 0.33-1.26, 6.33-14.90, 14.90-26.10, and 35.8-50.3 mg·kg-1, respectively. While in mature tea leaves, they were 4300-10,400, 536-4610, 0.560-1.265, 0.040-0.087, 0.043-0.089, 0.189-0.453, 0.69-2.91, 3.43-14.20, 6.17-16.25, and 9.1-20.0 mg·kg-1, respectively. Furthermore, the concentrations of Pb, Cu, As, Hg, Cd, and Cr in young tea leaves and mature tea leaves were all lower than the standard limit values (5.0, 30, 2.0, 0.3, 1.0, and 5.0 mg·kg-1 for Pb, Cu, As, Hg, Cd, and Cr, respectively) in China. Besides, the accumulation ability of tea leaves to Mn was the strongest, and the average bioconcentration factor (BCF) of Mn in mature tea leaves was 12.5. In addition, the average target hazard quotients (THQ) were all less than one for the young tea leaves and the average aggregate risk hazard index (HI) to adults was 0.272, indicating that there was not a potential health risk for adults through the consumption of the infusions brewed by young tea leaves. However, for mature tea leaves, the percentage which HI values were above one was 38.46%, and the risk to adults via the consumption of mature tea infusions were mainly contributed by Mn and Al.


Asunto(s)
Arsénico/análisis , Camellia sinensis , Metales/análisis , Hojas de la Planta/química , Contaminantes del Suelo/análisis , Adulto , China , Monitoreo del Ambiente , Humanos , Medición de Riesgo ,
16.
Environ Pollut ; 233: 501-509, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29102880

RESUMEN

Rapid development of industrial production has stimulated the growth of consumption of raw and auxiliary materials including organic paints, among which volatile organic compounds (VOCs) are proved harmful to the population who inhale the polluted air based on epidemiologic studies. Therefore, new types of environment-friendly paints were developed to replace solvent-based paints (SBPs). Nevertheless, new types of paints containing VOCs failed to replace SBPs entirely due to certain disadvantages. Hence, five kinds of paints were employed in simulation experiments to assess the health risk of primary receptor including three kinds of water-based paints (WBPs) and two kinds of SBPs. Conclusions showed that mean TVOC concentration in breathing zone of primary receptor ranged from 9.5 to 13.6 mg/m3 and 3.4 × 103 to 1.4 × 104 mg/m3 for WBPs and SBPs, respectively. Assessments of non-cancer risk concluded that nearly one third quantified compounds exceeded corresponding thresholds for WBPs, and the maximum risk value was 101.33; for SBPs, the maximum risk value reached 50760.20, and twenty-two compounds exceeded the reference limits. The calculation of cancer risk values showed that seventeen compounds were higher than acceptable limit amongst which 1,2-dibromoethane had maximum values of 1.27 × 10-2 to 3.24 × 10-2 for WBPs; for SBPs, all quantified compounds exceeded the acceptable limit, and 82.61% VOCs were distributed in a scope larger than 1 × 10-3. Additionally, a removal efficiency of 60% was considered for primary receptor with personal protective equipment, and subsequent results confirmed its inability of lowering the risk resulted from hazardous VOCs. The calculated potential health risk could be applied to estimate the total health risk for both primary and secondary receptor based on consumed materials. The finding suggested that WBPs could improve VOCs exposure condition and reduce the direct and potential health risk significantly for primary receptor, although they might dissatisfy acceptable limit.


Asunto(s)
Contaminación del Aire/estadística & datos numéricos , Exposición a Riesgos Ambientales/estadística & datos numéricos , Solventes/análisis , Compuestos Orgánicos Volátiles/análisis , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Dibromuro de Etileno , Humanos , Pintura , Medición de Riesgo
17.
Sci Total Environ ; 609: 1126-1131, 2017 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-28787787

RESUMEN

Eight low-ring PAHs were detected in 21 polystyrene (PS) food contact materials (FCMs) samples while high-ring PAHs (>4 rings) were not found. This is because the reaction pathway for formation of high-ring PAHs consists of more steps than it does for low-high PAHs. The concentrations of Σ8PAH were from 18.9±5.16ng/g for product colorless fruit fork to 476±52.0ng/g for foam instant noodle container. These data were far beyond levels of PAHs in other plastics. Of the eight PAHs detected, Phe had the highest average concentration, followed by Nap. These two PAHs collectively accounted for over 80% of the Σ8PAH concentrations in all PS FCMs. Levels of Σ8PAH in expanded PS FCMs were higher than those in extruded ones due to utilization of foaming agent. The concentrations of Σ8PAH were lower in colorless PS FCMs than in colored ones. Auxochromes and chromophores contributed to the change of short-chain hydrocarbons to aromatic hydrocarbon. Simulated migration values of PAHs from PS FCMs to food varied widely. The migration value of Σ8PAH with maximum probability was below 10ng/g, which the maximum tolerated migration level for substance according to the European Union standards. However, higher migration values were possible and the potential health risk should still be concerned because the simulated migration displayed a log-normal distribution. Furthermore, water was used as food simulant would always lead to an underestimate of PAHs migration to real daily food, and then lead to an underestimate of risk.


Asunto(s)
Contaminación de Alimentos/análisis , Embalaje de Alimentos , Hidrocarburos Policíclicos Aromáticos/análisis , Poliestirenos , Monitoreo del Ambiente , Hidrocarburos , Plásticos , Agua
18.
Environ Sci Pollut Res Int ; 24(25): 20360-20371, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28707239

RESUMEN

Environmental pollutants such as microplastics have become a major concern over the last few decades. We investigated the presence, characteristics, and potential health risks of microplastic dust ingestion. The plastic load of 88 to 605 microplastics per 30 g dry dust with a dominance of black and yellow granule microplastics ranging in size from 250 to 500 µm was determined in 10 street dust samples using a binocular microscope. Fluorescence microscopy was found to be ineffective for detecting and counting plastic debris. Scanning electron microscopy, however, was useful for accurate detection of microplastic particles of different sizes, colors, and shapes (e.g., fiber, spherule, hexagonal, irregular polyhedron). Trace amounts of Al, Na, Ca, Mg, and Si, detected using energy dispersive X-ray spectroscopy, revealed additives of plastic polymers or adsorbed debris on microplastic surfaces. As a first step to estimate the adverse health effects of microplastics in street dust, the frequency of microplastic ingestion per day/year via ingestion of street dust was calculated. Considering exposure during outdoor activities and workspaces with high abundant microplastics as acute exposure, a mean of 3223 and 1063 microplastic particles per year is ingested by children and adults, respectively. Consequently, street dust is a potentially important source of microplastic contamination in the urban environment and control measures are required.


Asunto(s)
Polvo/análisis , Monitoreo del Ambiente , Material Particulado/análisis , Plásticos/análisis , Adulto , Niño , Ciudades , Polvo/prevención & control , Humanos , Irán , Tamaño de la Partícula , Material Particulado/química , Plásticos/química
19.
Ecotoxicol Environ Saf ; 144: 1-10, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28595096

RESUMEN

Fluorine (F) is a topic of great interest in coal-combustion related endemic fluorosis areas. However, little extent research exists regarding the environmental geochemistry of toxic elements that are enriched in coals and coal wastes in traditional endemic fluorosis areas, particularly focusing on their occurrences and mobilities during the weathering-leaching processes of coals and coal wastes in the surface environment. This paper addressed the issue of toxic elements in coals and coal wastes in the Three Gorges Region, Southwest (SW) China, where endemic fluorosis has historically prevailed, and investigated the distribution, occurrence, mobility features, and associated potential health risks. For this purpose, a modified experiment combined with long-term humidity cell test and column leaching trial was applied to elucidate the mobility of toxic elements in coals and coal wastes. In addition, sequential chemical extraction (SCE) was used to ascertain the modes of occurrence of toxic elements. The results demonstrated that the contents of toxic elements in the study area followed the order: stone coals > gangues > coal balls > coals. Furthermore, modes of occurrence of toxic elements were obviously different in coals and coal wastes. For example, cadmium (Cd) was mainly associated with monosulfide fraction in coals, molybdenum (Mo) and arsenic (As) were mainly associated with carbonate and silicate in coal gangues and stone coals, chromium (Cr) mainly existed in silicate and insoluble matter in coal gangues and coal balls, thallium (Tl) mainly occurred in organic matter in stone coals and sulfide in coals, and the occurrence of antimony (Sb) varied with different kinds of samples. Moreover, a large amount of toxic elements released to the leachates during the weathering and leaching process, which might pollute the environment and threaten human health. Based on the geo-accumulation index (Igeo), single factor index (Pi) and Nemerow index (PN), soils in the study area were mainly polluted by Cd, which constituted a potential risk to locally planted crops.


Asunto(s)
Cadmio , Carbón Mineral/análisis , Enfermedades Endémicas , Contaminantes Ambientales , Fluoruros , Fluorosis Dental/epidemiología , Cadmio/análisis , Cadmio/toxicidad , China , Contaminantes Ambientales/análisis , Contaminantes Ambientales/toxicidad , Fluoruros/análisis , Fluoruros/toxicidad , Humanos , Incineración , Suelo/química
20.
Med Pr ; 68(1): 1-9, 2017 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-28244999

RESUMEN

BACKGROUND: In working environment of waste treatment facilities, employees are exposed to high concentrations of airborne microorganisms. Fungi constitute an essential part of them. This study aims at evaluating the diurnal variation in concentrations and species composition of the fungal contamination in 2 plastic waste sorting facilities in different seasons. MATERIAL AND METHODS: Air samples from the 2 sorting facilities were collected through the membrane filters method on 4 different types of cultivation media. Isolated fungi were classified to genera or species by using a light microscopy. RESULTS: Overall, the highest concentrations of airborne fungi were recorded in summer (9.1×103-9.0×105 colony-forming units (CFU)/m3), while the lowest ones in winter (2.7×103-2.9×105 CFU/m3). The concentration increased from the beginning of the work shift and reached a plateau after 6-7 h of the sorting. The most frequently isolated airborne fungi were those of the genera Penicillium and Aspergillus. The turnover of fungal species between seasons was relatively high as well as changes in the number of detected species, but potentially toxigenic and allergenic fungi were detected in both facilities during all seasons. CONCLUSIONS: Generally, high concentrations of airborne fungi were detected in the working environment of plastic waste sorting facilities, which raises the question of health risk taken by the employees. Based on our results, the use of protective equipment by employees is recommended and preventive measures should be introduced into the working environment of waste sorting facilities to reduce health risk for employees. Med Pr 2017;68(1):1-9.


Asunto(s)
Microbiología del Aire , Contaminantes Ocupacionales del Aire/aislamiento & purificación , Monitoreo del Ambiente/métodos , Hongos/aislamiento & purificación , Exposición Profesional/estadística & datos numéricos , Instalaciones de Eliminación de Residuos , Recuento de Colonia Microbiana , Humanos , Plásticos/análisis , Polonia , Residuos Sólidos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA