Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(25): 37862-37876, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38795290

RESUMEN

Ports have an indisputable effect on the decarbonization of urban areas, helping to minimize air and environmental pollution and achieve sustainable development. In this instance, it is crucial to do research that can advance our understanding of how to increase ports' energy independence by utilizing renewable energy sources. The current study aims to study the environmental benefits and techno-economic challenges of converting three Egyptian ports to eco-friendly green ports by using solar panels, offshore wind turbines, and hydrogen fuel cells. The study shows that from a technical point of view, the required green power to be installed at Alexandria, Port Said, and Suez ports is around 13 MW, 5 MW, and 1.5 MW, respectively. Furthermore, the environmental analysis findings demonstrate that integrating green energy will significantly lower emissions in seaports. It is anticipated that the ports of Alexandria, Port Said, and Suez will achieve annual reductions in carbon dioxide emissions of roughly 68,7 k-tons, 25,8 k-tons, and 6,4 k-tons, respectively. From an economic point of view, the ports could be supplied with green energy from wind turbines for a cost of between 0.115 and 0.125 USD/kWh, while solar panels have a cost range of 0.098 to 0.129 USD/kWh. Additionally, hydrogen fuel cell systems cost about 0.102 USD/kWh.


Asunto(s)
Energía Renovable , Egipto , Dióxido de Carbono/análisis
2.
J Environ Manage ; 279: 111807, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33338769

RESUMEN

This paper provides insights into the potential of cold-ironing for the reduction of externalities. External cost derived from the emissions of CO2, NOx, SOx, and PM from berthed ships in the Spanish port system during 2016 are estimated providing a Spain-wide empirical evidence into where the highest externalities exist and where, on a port by port level, the introduction of cold ironing could yield the highest potential on reducing said externalities. The combined overall external costs from both local and global effects of shipping emissions from berthed vessels were between 326 and 440 million Euro. Eco-efficiency parameters are also obtained. It is found that the population in the port city as well as the composition of traffic are key factors when the external costs are determined, and they should be considered when the investment decision about where cold ironing should be placed is taken.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Ciudades , Monitoreo del Ambiente , Navíos , España , Emisiones de Vehículos/análisis
3.
Environ Sci Pollut Res Int ; 27(5): 5547-5558, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31853847

RESUMEN

Seaports are considered one of the sources involved in the deterioration of the maritime environment due to the excessive amount of exhaust gases emitted from their activities. The majority of seaports depend on the national electric grid as a source of power for the domestic and ships' electric demands. This paper discusses the possibility of shifting ports from relying on the national grid electricity to green power-based ports. Offshore wind turbines and fuel cell units appear as two typical promising clean energy sources for ports. As a case study, the paper investigates the prospect of converting Alexandria Port in Egypt to be an eco-friendly port with the study of technical, logistic, and financial requirements. The results show that the fuel cell, followed by a combined system of wind turbines and fuel cells, is the best choice regarding electricity production unit cost by 0.101 and 0.107 $/kWh, respectively. Furthermore, using fuel cells and offshore wind turbine as a green power concept will achieve a reduction in emissions' quantity of CO2, NOx, and CO emissions by 80,441, 20,814, and 133,025 ton per year, respectively. Finally, the paper highlights the role that renewable energy can play when supplying Alexandria Port with green energy to lift the burden on the government in supporting the electricity, with a possibility of achieving a profit from 3.85 to 22.31% of the annual electricity cost compared with the international prices.


Asunto(s)
Centrales Eléctricas , Energía Renovable , Egipto , Electricidad , Fuentes Generadoras de Energía
4.
Sci Total Environ ; 719: 134984, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-31837859

RESUMEN

Current shipping activities employ about 3% of the world-delivered energy. Most of this energy is conveyed by diesel engines. In Europe, release of NOx and particulate matter (PM) from shipping is expected to equal the road-transport one by the year 2020. This paper addresses a typical central Mediterranean city-port condition to evaluate the relative contribution of shipping activities to the local air quality. A 3-year long air quality dataset collected at the boundary between the port of Civitavecchia (the major port in central Italy) and the city itself was analyzed to evaluate the long-term, relative contribution of the port and of the city at determining the loads of EU-regulated pollutants (NO2, PM10 and SO2). In addition, black carbon and ultrafine-to-coarse particles data collected along a short-term, intensive campaign were used to assess the port's role at emitting these unregulated pollutants. Cross-analysis of the measurements, allowed to assess which shipping-related activities and port's sectors represent the principal emitters. At the city-port boundary, the annual share of regulated pollutants originating in the port area by shipping and ground movements is of 33% for PM10, 43% for NO2, and 60% for SO2. Analysis of non-regulated pollutants shows the in-port, high polluting potential of some ship categories, in particular those employing low-sulfur but poorly refined oils. These conditions appear to be more often associated with Ro-Ro passenger ships. Piers closest to the Civitavecchia urban settlements are also observed to host the largest emissions. Meteorology and location of the piers with respect to residential areas are confirmed to govern the port's share at impacting the city air quality. Even though air quality thresholds for regulated pollutants are not exceeded in Civitavecchia, constant consideration of an enlarged set of environmental variables should drive actions implemented to mitigate the port's impact onto the nearby city's air quality.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA