Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 15(14)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35888477

RESUMEN

Green route is an economic, facile and eco-friendly method, employed for the synthesis of various types of nanoparticles, having it as a starting point biological entity, especially as a plant extract. The present study aims to obtain silver nanoparticles (AgNPs) starting from an ethanolic extract of Populi gemmae (Pg), by adjusting the reaction parameters. The morphological and structural characterization exhibited that both the reaction temperature and the concentration of metal salt, contributes to the obtaining of Pg-AgNPs with adjustable size and shape. The newly synthesized nanoparticles exhibited a good antibacterial activity on Gram-positive bacteria as well as antifungal activity. The in vitro antiproliferative activity of Pg-AgNPs was assessed on two different cancer cell lines (breast cancer cells-MCF7 and lung carcinoma epithelial cells-A549). Results have shown that the green-synthetized Pg-AgNPs_S2 (obtained at 60 °C, using AgNO3 of 5 M) induced a substantial decrease in tumor cell viability in a dose-dependent manner with an IC50 ranging from 5.03 to 5.07 µg/mL on A549 cell line and 3.24 to 4.93 µg/mL on MCF7 cell line.

2.
BMC Complement Med Ther ; 22(1): 74, 2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35296309

RESUMEN

PURPOSE: The aim of this study was to evaluate the antioxidant potential, antimicrobial activity, the in vitro anticancer effect (tested on MCF-7 breast cancer cell line), as well as the antiangiogenic and immunomodulatory potential of Populus nigra L. bud (Pg) extract collected from the western part of Romania. RESULTS: Populus nigra L. bud extract presents an important antioxidant activity, due to the rich phytochemical composition. Regarding the biological activity, results have shown that poplar bud extract presents a significant inhibitory activity against Gram-positive bacteria and a dose-dependent decrease of MCF-7 tumor cell viability with an IC50 of 66.26 µg/mL, while not affecting healthy cells. Phenomena of early apoptotic events at the maximum concentration tested (150 µg/mL) were detected by Annexin V-PI double staining. The extract induced G0/G1 phase cell cycle arrest. In addition, Pg extract showed antiangiogenic potential on the chorioallantoic membrane. Also, at the highest concentration (150 µg/mL), good tolerability and no signs of toxicity upon vascular plexus were observed. Moreover, in low concentrations, the Pg extract had immunomodulatory activity on primary human dendritic cells by upregulating IL-12 and IL-23 subunits. CONCLUSION: The study concludes that poplar bud extract elicited antioxidant activity, antitumor properties on the breast cancer cell line, followed by an antiangiogenic effect and an immunomodulatory potential on human primary dendritic cells. The biological activity of Populus nigra L. buds extract may open new directions of research on the topic addressed.


Asunto(s)
Antiinfecciosos , Neoplasias de la Mama , Populus , Antiinfecciosos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Humanos , Células MCF-7 , Extractos Vegetales/química , Extractos Vegetales/farmacología , Populus/química
3.
Cells ; 10(10)2021 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-34685524

RESUMEN

Mechanical stress in tree roots induces the production of reaction wood (RW) and the formation of new branch roots, both functioning to avoid anchorage failure and limb damage. The vascular cambium (VC) is the factor responsible for the onset of these responses as shown by their occurrence when all primary tissues and the root tips are removed. The data presented confirm that the VC is able to evaluate both the direction and magnitude of the mechanical forces experienced before coordinating the most fitting responses along the root axis whenever and wherever these are necessary. The coordination of these responses requires intense crosstalk between meristematic cells of the VC which may be very distant from the place where the mechanical stress is first detected. Signaling could be facilitated through plasmodesmata between meristematic cells. The mechanism of RW production also seems to be well conserved in the stem and this fact suggests that the VC could behave as a single structure spread along the plant body axis as a means to control the relationship between the plant and its environment. The observation that there are numerous morphological and functional similarities between different meristems and that some important regulatory mechanisms of meristem activity, such as homeostasis, are common to several meristems, supports the hypothesis that not only the VC but all apical, primary and secondary meristems present in the plant body behave as a single interconnected structure. We propose to name this structure "meristematic connectome" given the possibility that the sequence of meristems from root apex to shoot apex could represent a pluricellular network that facilitates long-distance signaling in the plant body. The possibility that the "meristematic connectome" could act as a single structure active in adjusting the plant body to its surrounding environment throughout the life of a plant is now proposed.


Asunto(s)
Cámbium/metabolismo , Meristema/citología , Proteínas de Plantas/metabolismo , Conectoma/métodos , Ambiente , Plantas
4.
Pharmaceutics ; 13(7)2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34209959

RESUMEN

Populus nigra L. is a plant from Salicaceae family, native in Europe. Many parts of this tree can be used as active ingredients, but the most valuable are the buds. In recent years, a growing number of studies reported their activity in the development of a wide range of pharmacological activities including diabetes, cardiovascular diseases, and cancer. The aim of this study was to determine the phytochemical composition and to evaluate the inorganic elements' concentration as well as the in vitro antiproliferative and pro-apoptotic potential of a Populus nigra L. buds extract collected from Timișoara (Romania) against A549 human lung cancer cell line. Populus nigra L. bud extract was found to contain twelve different phenolic compounds. The inorganic elements concentrations were below the limit of detection for Co, Pb, and As, whereas Cu = 6.66 µg/g; Cr = 0.79 µg/g; Ni = 3.28 µg/g; Fe = 39.00 µg/g; Zn = 14.84 µg/g; Mn = 0.59 µg/g; Al = 2109.87 µg/g; and Cd = 0.019 µg/g. The extract was tested for the in vitro antiproliferative and pro-apoptotic potential on A549 human lung cancer cell line using different concentrations, namely 10, 25, 50, 75, 100, and 150 µg/mL. Results have shown that poplar bud extract induced a significant decrease of tumor cell viability in a dose-dependent manner with an IC50 = 72.49 µg/mL and blocked the cells in the G0/G1 phase of the cell cycle. Phenomena of early apoptosis (from 1.34 ± 0.33% control cells to 2.68 ± 0.62% at 150 µg/mL) and late apoptosis (from 1.43 ± 0.14% control cells to 5.15 ± 1.02% at 150 µg/mL) were detected by Annexin V-PI double staining. Poplar bud extract can be regarded as a promising candidate for future studies involving lung cancer.

5.
Front Plant Sci ; 12: 661655, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33763105

RESUMEN

[This corrects the article DOI: 10.3389/fpls.2020.01123.].

6.
Plants (Basel) ; 9(11)2020 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-33138272

RESUMEN

Populus nigra L. (Salicaceae family) is one of the most popular trees that can be found in deciduous forests. Some particularities that characterize the Populus genus refer to the fact that it includes more than 40 species, being widespread especially in Europe and Asia. Many residues, parts of this tree can be used as a bioresource for different extracts as active ingredients in pharmaceuticals next to multiple benefits in many areas of medicine. The present review discusses the latest findings regarding the phytochemical composition and the therapeutic properties of Populus nigra L. buds. The vegetal product has been described mainly to contain phenolic compounds (phenols, phenolic acids and phenylpropanoids), terpenoids (mono and sesquiterpenoids), flavones (e.g., apigenol and crysin), flavanones (e.g., pinocembrin and pinostrombin), caffeic/ferulic acids and their derivates, and more than 48 phytocompounds in the essential oils. The resinous exudates present on the buds have been the major plant source used by bees to form propolis. Several studies depicted its antioxidant, anti-inflammatory, antibacterial, antifungal, antidiabetic, antitumor, hepatoprotective, hypouricemic properties and its effects on melanin production. All these lead to the conclusion that black poplar buds are a valuable and important source of bioactive compounds responsible for a wide range of therapeutic uses, being a promising candidate as a complementary and/or alternative source for a large number of health problems. The aim of the review is to gather the existing information and to bring an up to date regarding the phytochemical and therapeutic uses of Populus nigra L. buds.

7.
Front Plant Sci ; 11: 1123, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32793270

RESUMEN

Four exogenous genes, Cry3A, Cry1Ac, mtlD, and BADH, were inserted into the p1870 vector to obtain multigenic transgenic Populus nigra L. with improved insect resistance and salt tolerance. During vector construction, different promoters were used for each gene, the AtADH 5'-UTR enhancer was added between the Cry1Ac promoter and the target gene, and the matrix attachment region (MAR, GenBank: U67919.1) structure was added at both ends of the vector. It was then successfully transferred into the genome of European black poplar by Agrobacterium-mediated leaf disk transformation, and a total of 28 transgenic lines were obtained by kanamycin screening. Five events with the highest insect resistance were selected based on preliminary tests: nos. 1, 7, 9, 12, and 17. PCR, real-time PCR, and enzyme-linked immunosorbent assays (ELISA) were used to detect the expression of exogenous genes and to analyze the Bt protein toxin levels in transgenic lines from June to October. PCR results showed that all four genes were successfully introduced into the five selected lines. Fluorescence quantitative PCR showed no significant differences in the transcript abundance of the four exogenous genes between different lines. A Bt protein toxin assay showed that the Cry3A protein toxin content was significantly higher than the Cry1Ac protein toxin content by approximately three orders of magnitude. Levels of the two toxins were negatively correlated. Over the course of the growing season, Cry1Ac content raised and varied between 0.46 and 18.41 ng·g-1. Cry3A content decreased over the same time period and varied between 2642.75 and 15775.22 ng·g-1. Indoor insect feeding assay showed that the transgenic lines had high insect resistance, with mortality rates of 1-2-year-old Hyphantria cunea larvae reaching more than 80%, and those of Plagiodera versicolora larvae and nymphs reaching 100%. No. 17 and no. 12 lines had better insect resistance to Lepidoptera and Coleoptera pests. There was no clear improvement in salt tolerance of the transgenic lines, but comprehensive evaluation of 11 salt tolerance indicators showed that lines no. 17 and no. 7 had certain degrees of salt tolerance.

8.
Tree Physiol ; 39(7): 1251-1261, 2019 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-31180506

RESUMEN

A major environmental pollution problem is the release into the atmosphere of particulate matter, including nanoparticles (NPs), which causes serious hazards to human and ecosystem health, particularly in urban areas. However, knowledge about the uptake, translocation and accumulation of NPs in plant tissues is almost completely lacking. The uptake of silver nanoparticles (Ag-NPs) and their transport and accumulation in the leaves, stems and roots of three different tree species, downy oak (Quercus pubescens Willd.), Scots pine (Pinus sylvestris L.) and black poplar (Populus nigra L.), were assessed. In the experiment, Ag-NPs were supplied separately to the leaves (via spraying, the foliar treatment) and roots (via watering, the root treatment) of the three species. Uptake, transport and accumulation of Ag were investigated through spectroscopy. The concentration of Ag in the stem was higher in the foliar than in the root treatment, and in poplar more than in oak and pine. Foliar treatment with Ag-NPs reduced aboveground biomass and stem length in poplars, but not in oaks or pines. Species-specific signals of oxidative stress were observed; foliar treatment of oak caused the accumulation of H2O2 in leaves, and both foliar and root treatments of poplar led to increased O2- in leaves. Ag-NPs affected leaf and root bacteria and fungi; in the case of leaves, foliar treatment reduced bacterial populations in oak and poplar and fungi populations in pine, and in the case of roots, root treatment reduced bacteria and increased fungi in poplar. Species-specific mechanisms of interaction, transport, allocation and storage of NPs in trees were found. We demonstrated definitively that NPs enter into the tree stem through leaves faster than through roots in all of the investigated tree species.


Asunto(s)
Nanopartículas del Metal , Árboles , Ecosistema , Peróxido de Hidrógeno , Hojas de la Planta , Raíces de Plantas , Plata
9.
Plant Mol Biol ; 100(4-5): 481-494, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31073810

RESUMEN

KEY MESSAGE: Modification of the poplar defense pathway through pathogen-induced expression of an amphibian host defense peptide modulates plant innate immunity and confers robust and reliable resistance against a major poplar pathogen, Septoria musiva. Host defense peptides (HDPs), also known as cationic antimicrobial peptides, represent a diverse group of small membrane-active molecules that are part of the innate defense system of their hosts against pathogen invasion. Here we describe a strategy for development of poplar plants with enhanced HDP production and resistance to the commercially significant fungal pathogen Septoria musiva. The naturally occurring linear amphipathic α-helical HDP dermaseptin B1, which has 31 residues and originated from the skin secretion of arboreal frogs, was N-terminally modified (MsrA2) and evaluated in vitro for antifungal activity and phytotoxicity. The MsrA2 peptide inhibited germination of S. musiva conidia at physiologically relevant low micromolar concentrations that were non-toxic to poplar protoplasts. The nucleotide sequence of MsrA2, optimized for expression in plants, was introduced into the commercial hybrid poplar Populus nigra L. × P. maximowiczii A. Henry (NM6) via Agrobacterium-mediated transformation. Transgene expression was regulated by the pathogen-inducible poplar promoter win3.12T, a part of the poplar innate defense system. Most importantly, the induced accumulation of MsrA2 peptide in poplar leaves was sufficient to confer resistance against S. musiva. The antifungal resistance of plants with high MsrA2 expression and MsrA2 accumulation was strong and reproducible, and without deleterious effects on plant growth and development. These results provide an insight into development of new technologies for engineering durable disease resistance against major pathogens of poplar and other plants.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/metabolismo , Ascomicetos/inmunología , Resistencia a la Enfermedad/genética , Populus/inmunología , Genoma de Planta , Plantas Modificadas Genéticamente/inmunología , Populus/genética , Populus/microbiología , Regiones Promotoras Genéticas , Transformación Genética , Transgenes
10.
J Hazard Mater ; 350: 121-127, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29462763

RESUMEN

Titanium dioxide (TiO2) nanoparticles have been applied in diverse commercial products, which could lead to toxic effects on aquatic microbes and would inhibit some important ecosystem processes. The study aimed to investigate the chronic impacts of TiO2 nanoparticles with different concentrations (5, 50, and 500 mg L-1) on Populus nigra L. leaf decomposition in the freshwater ecosystem. After 50 d of decomposing, a significant decrease in decomposition rates was observed with higher concentrations of TiO2 nanoparticles. During the period of litter decomposition, exposure of TiO2 nanoparticles led to decreases in extracellular enzyme activities, which was caused by the reduction of microbial especially fungal biomass. In addition, the diversity and composition of the fungal community associated with litter decomposition were strongly affected by the concentrations of TiO2 nanoparticles. The diversity and composition of the fungal community associated with litter decomposition was strongly affected. The abundance of Tricladium chaetocladium decreased with the increasing concentrations of TiO2 nanoparticles, indicating the little contribution of the species to the litter decomposition. In conclusion, this study provided the evidence for the chronic exposure effects of TiO2 nanoparticles on the litter decomposition and further the functions of freshwater ecosystems.


Asunto(s)
Nanopartículas/toxicidad , Hojas de la Planta/efectos de los fármacos , Populus/efectos de los fármacos , Titanio/toxicidad , Biodegradación Ambiental/efectos de los fármacos , Biomasa , ADN de Hongos/genética , Ecosistema , Agua Dulce , Hongos/genética , Hongos/metabolismo , Oxidorreductasas/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Populus/metabolismo , Populus/microbiología
11.
Sci Total Environ ; 579: 620-627, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-27887831

RESUMEN

A 2-year pot experiment was carried out to examine the aging effect of biochar (B), alone or combined with iron grit (Z), on Cu stabilization and plant growth in a contaminated soil (964mg Cu kg-1) from a wood preservation site. The experiment consisted in 3 soil treatments, either planted with Arundo donax L. (Ad) or Populus nigra L. (Pn): (1) untreated Cu-contaminated soil (Ad, Pn); (2) Unt+1% (w/w) B (AdB, PnB), and (3) Unt+1% B+1% Z (AdBZ, PnBZ). After 22months, the soil pore water (SPW) was sampled and roots and shoots were harvested. The SPW compositions at 3 and 22months were compared, showing that the SPW Cu2+ concentration increased again in the PnB and PnBZ soils. Cultivation of A. donax enhanced the dissolved organic matter concentration in the SPW, which decreased its Cu2+ concentration but promoted its total Cu concentration in the Ad and AdB soils. Adding Z with B reduced both SPW Cu2+ and Cu concentrations in the pots cultivated by A. donax and P. nigra as compared to B alone. The B and BZ treatments did not enhance root and shoot yields of both plant species as compared to the Unt soil but their shoot Cu concentrations were in the range of common values.


Asunto(s)
Cobre/química , Restauración y Remediación Ambiental/métodos , Contaminantes del Suelo/química , Biomasa , Carbón Orgánico , Cobre/análisis , Hierro , Populus , Suelo , Contaminantes del Suelo/análisis , Madera/química
12.
Phytochemistry ; 128: 35-49, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27179685

RESUMEN

Three main species of Popululs L. (Salicaceae) have been reported to occur in the Iberian Peninsula: Populus nigra L., Populus alba L. and Populus tremula L. The degree of pilosity of the bracts of the male catkins is a key character for their differentiation. The anthers of these poplar species possess anthocyanins that provide them a red colouration. Since these poplars are wind-pollinated and, consequently, do not need to attract pollinators, anthocyanins in the anthers might be acting as photoprotectors, shielding pollen grains from excessive sunlight. In order to verify this hypothesis, the first objective of this study was to establish if there is any relationship between the degree of pilosity of the bracts (related to the physical shading of the pollen grains) and the levels and types of anthocyanins in the anthers of these three species. This study also aimed to check the usefulness of the anthocyanins of the anthers as chemotaxonomic markers, through the study of the differences in the anthocyanin composition between these poplar species. Anthocyanins were identified from the data supplied by HPLC-DAD-MS(n) analyses. Seventeen different compounds, including mono-, di- and triglycosides and anthocyanin-derived pigments (F-A(+) dimers) have been identified. Cyanidin 3-O-glucoside was the major compound in all the samples (>60% of the total content), which may be in accordance with the photoprotective role proposed for them. However, qualitative and quantitative differences were detected among samples. Cyanidin and delphinidin 3-O-sambubiosides have been detected only in the anthers of P. tremula as well as cyanidin 3-O-(2″-O-xyloxyl)rutinoside, making them valuable chemotaxonomic markers for this species. Hierarchical Cluster and Principal Components Analyses (HCA and PCA) carried out with the anthocyanin percent composition data have allowed a separation of the samples that is in accordance with the initial classification of the samples made from the morphological characters of the specimens. Furthermore, these analyses have revealed intraspecific differences among samples that point out to different clones or varieties of a same species.


Asunto(s)
Antocianinas , Populus/química , Tricomas/química , Antocianinas/análisis , Antocianinas/química , Antocianinas/metabolismo , Flores/química , Glucósidos , Populus/genética
13.
J Environ Manage ; 146: 94-99, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25163599

RESUMEN

Plant biodiversity and intra-population genetic variability have not yet been properly exploited in the framework of phytoremediation and soil reclamation. For this reason, iron and other metal accumulation capacity of two Cu and Zn tolerant poplar clones, namely AL22 (Populus alba L.) and N12 (Populus nigra L.), was investigated in a pot experiment. Cuttings of the two clones were planted in iron rich soil collected from an urban-industrial area. Concentrations of Cd, Cu, Fe, Pb and Zn were analysed in leaves (at different times), as well as in stems and in roots (at the end of the experiment), both in control plants and in plants grown on a soil whose Fe availability was artificially enhanced. Results showed that Cd and Zn were preferentially accumulated in leaves, whereas Cu, Fe and Pb were mainly accumulated in roots. The main differences in metal accumulation between clones were related to Cd (about tenfold higher concentrations in N12) and Cu (higher concentrations in AL22). Once soil Fe availability was enhanced, the uptake and accumulation of all metals declined, with the exception of Fe at the first sampling time in AL22 leaves. The different behaviour of the two poplar clones suggests that a thoughtful choice should be made for their use in relation to soil heavy metal remediation.


Asunto(s)
Hierro/metabolismo , Metales Pesados/metabolismo , Populus/metabolismo , Contaminantes del Suelo/metabolismo , Oligoelementos/metabolismo , Biodegradación Ambiental , Humanos , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Populus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA