RESUMEN
Colombian Creole pigs have adapted to tropical conditions for over 500 years. They have been modified by natural and artificial selection in different regions. At present, the diversity and current introgression status are unknown. The objective was to estimate the genomic diversity, linkage disequilibrium, population structure, and admixture of four Colombian pig breeds and their relationship with other breeds worldwide. Three Colombian pig breeds (SPE-San Pedreño, 11 samples; ZUN-Zungo, 11 samples; CM-Casco de Mula, ten samples) from the conservation nucleus and one biotype not recognized as a breed (CCH-Criollo Chocoano, seven samples) were genotyped using the Illumina GGP-Porcine80K chip. Open-access data from seven international breeds were also included. Colombian Creole pigs showed moderate genetic differentiation (FST 0.14) globally, but several groups of animals separated, suggesting local clustering due to geographical isolation or different founding effects. Colombian Creole pigs showed breed imprinting and specific grouping in all analyses except for CCH, which, like the Ecuadorian Creole, was a cluster of admixtures. The Colombian Creole pigs revealed a significant relationship with the Iberian pig and some other breeds to varying degrees. However, good maintenance of the conservation nucleus was evidenced. Potential adaptive genes, mainly related to immunological functions, were found, according to FST and pcadapt analyses. This study provides a foundation and scientific data for policy decisions on zoogenetic resources.
Asunto(s)
Variación Genética , Desequilibrio de Ligamiento , Sus scrofa , Animales , Colombia , Sus scrofa/genética , Genotipo , Cruzamiento , Polimorfismo de Nucleótido Simple , GenomaRESUMEN
BACKGROUND: Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) plays a critical role in the ecology and economy of Western North America. This conifer species comprises two distinct varieties: the coastal variety (var. menziesii) along the Pacific coast, and the interior variety (var. glauca) spanning the Rocky Mountains into Mexico, with instances of inter-varietal hybridization in Washington and British Columbia. Recent investigations have focused on assessing environmental pressures shaping Douglas-fir's genomic variation for a better understanding of its evolutionary and adaptive responses. Here, we characterize range-wide population structure, estimate inter-varietal hybridization levels, identify candidate loci for climate adaptation, and forecast shifts in species and variety distribution under future climates. RESULTS: Using a custom SNP-array, we genotyped 540 trees revealing four distinct clusters with asymmetric admixture patterns in the hybridization zone. Higher genetic diversity observed in coastal and hybrid populations contrasts with lower diversity in inland populations of the southern Rockies and Mexico, exhibiting a significant isolation by distance pattern, with less marked but still significant isolation by environment. For both varieties, we identified candidate loci associated with local adaptation, with hundreds of genes linked to processes such as stimulus response, reactions to chemical compounds, and metabolic functions. Ecological niche modeling revealed contrasting potential distribution shifts among the varieties in the coming decades, with interior populations projected to lose habitat and become more vulnerable, while coastal populations are expected to gain suitable areas. CONCLUSIONS: Overall, our findings provide crucial insights into the population structure and adaptive potential of Douglas-fir, with the coastal variety being the most likely to preserve its evolutionary path throughout the present century, which carry implications for the conservation and management of this species across their range.
Asunto(s)
Pseudotsuga , Pseudotsuga/genética , Adaptación Fisiológica/genética , Variación Genética/genética , Hibridación Genética , Selección Genética , México , Polimorfismo de Nucleótido Simple , Colombia BritánicaRESUMEN
Gene flow is important for maintaining the genetic diversity required for adaptation to environmental disturbances, though gene flow may be limited by site fidelity in small coastal sharks. Bonnethead sharks (Sphyrna tiburo)-a small coastal hammerhead species-demonstrate site fidelity, as females are philopatric while males migrate to mediate gene flow. Consequently, bonnetheads demonstrate population divergence with distance, and Atlantic populations are genetically distinct from those of the Gulf of Mexico. Indeed, Florida forms a vicariant zone between these two bodies of water for many marine species, including some sharks. However, while bonnetheads are expected to have limited dispersal, the extent and rate of bonnethead migration remain uncertain. Thus, we aimed to determine their dispersal capacity by evaluating connectivity between disparate populations from the Gulf of Mexico and Atlantic Ocean. Using 10,733 SNPs derived from 2bRAD sequences, we evaluated genetic connectivity between Tampa Bay on the Gulf Coast of Florida and Biscayne Bay on the Atlantic coast of Florida. While standard analyses of genetic structure revealed slight but significant differentiation between Tampa Bay and Biscayne Bay populations, demographic history inference based on the site frequency spectrum favored a model without divergence. However, we also estimate that if population divergence occurred, it would have been recent (between 1500 and 4500 years ago), with continuous unidirectional gene flow from Tampa Bay to Biscayne Bay. Our findings support the hypothesis that bonnetheads can migrate over relatively large distances (>300 miles) to find mates. Together, these results provide optimism that under proper management, a small-bodied globally endangered shark can undergo long migrations to sustain genetic diversity.
RESUMEN
Biologists currently have an assortment of high-throughput sequencing techniques allowing the study of population dynamics in increasing detail. The utility of genetic estimates depends on their ability to recover meaningful approximations while filtering out noise produced by artifacts. In this study, we empirically compared the congruence of two reduced representation approaches (genotyping-by-sequencing, GBS, and whole-exome sequencing, WES) in estimating genetic diversity and population structure using SNP markers typed in a small number of wild jaguar (Panthera onca) samples from South America. Due to its targeted nature, WES allowed for a more straightforward reconstruction of loci compared to GBS, facilitating the identification of true polymorphisms across individuals. We therefore used WES-derived metrics as a benchmark against which GBS-derived indicators were compared, adjusting parameters for locus assembly and SNP filtering in the latter. We observed significant variation in SNP call rates across samples in GBS datasets, leading to a recurrent miscalling of heterozygous sites. This issue was further amplified by small sample sizes, ultimately impacting the consistency of summary statistics between genotyping methods. Recognizing that the genetic markers obtained from GBS and WES are intrinsically different due to varying evolutionary pressures, particularly selection, we consider that our empirical comparison offers valuable insights and highlights critical considerations for estimating population genetic attributes using reduced representation datasets. Our results emphasize the critical need for careful evaluation of missing data and stringent filtering to achieve reliable estimates of genetic diversity and differentiation in elusive wildlife species.
Asunto(s)
Secuenciación del Exoma , Panthera , Polimorfismo de Nucleótido Simple , Animales , Panthera/genética , Secuenciación del Exoma/métodos , Técnicas de Genotipaje/métodos , Genética de Población , Tamaño de la Muestra , Secuenciación de Nucleótidos de Alto Rendimiento , Variación Genética , Animales Salvajes/genéticaRESUMEN
Pecan (Carya illinoinensis) is an economically important nut crop known for its genetic diversity and adaptability to various climates. Understanding the growth variability, phenological traits, and population structure of pecan populations is crucial for breeding programs and conservation. In this study, plant growth and phenological traits were evaluated over three consecutive seasons (2015-2017) for 550 genotypes from 26 provenances. Significant variations in plant height, stem diameter, and budbreak were observed among provenances, with Southern provenances exhibiting faster growth and earlier budbreak compared to Northern provenances. Population structure analysis using SNP markers revealed eight distinct subpopulations, reflecting genetic differentiation among provenances. Notably, Southern Mexico collections formed two separate clusters, while Western collections, such as 'Allen 3', 'Allen 4', and 'Riverside', were distinguished from others. 'Burkett' and 'Apache' were grouped together due to their shared maternal parentage. Principal component analysis and phylogenetic tree analysis further supported subpopulation differentiation. Genetic differentiation among the 26 populations was evident, with six clusters highly in agreement with the subpopulations identified by STRUCTURE and fastSTRUCTURE. Principal components analysis (PCA) revealed distinct groups, corresponding to subpopulations identified by genetic analysis. Discriminant analysis of PCA (DAPC) based on provenance origin further supported the genetic structure, with clear separation of provenances into distinct clusters. These findings provide valuable insights into the genetic diversity and growth patterns of pecan populations. Understanding the genetic basis of phenological traits and population structure is essential for selecting superior cultivars adapted to diverse environments. The identified subpopulations can guide breeding efforts to develop resilient rootstocks and contribute to the sustainable management of pecan genetic resources. Overall, this study enhances our understanding of pecan genetic diversity and informs conservation and breeding strategies for the long-term viability of pecan cultivation.
Asunto(s)
Carya , Variación Genética , Fenotipo , Carya/genética , Carya/crecimiento & desarrollo , Filogenia , Genotipo , México , Polimorfismo de Nucleótido Simple , Análisis de Componente Principal , Genética de PoblaciónRESUMEN
Consumption of raw, undercooked or contaminated animal food products is a frequent cause of Campylobacter jejuni infection. Brazil is the world's third largest producer and a major exporter of chicken meat, yet population-level genomic investigations of C. jejuni in the country remain scarce. Analysis of 221 C. jejuni genomes from Brazil shows that the overall core and accessory genomic features of C. jejuni are influenced by the identity of the human or animal source. Of the 60 sequence types detected, ST353 is the most prevalent and consists of samples from chicken and human sources. Notably, we identified the presence of diverse bla genes from the OXA-61 and OXA-184 families that confer beta-lactam resistance as well as the operon cmeABCR related to multidrug efflux pump, which contributes to resistance against tetracyclines, macrolides and quinolones. Based on limited data, we estimated the most recent common ancestor of ST353 to the late 1500s, coinciding with the time the Portuguese first arrived in Brazil and introduced domesticated chickens into the country. We identified at least two instances of ancestral chicken-to-human infections in ST353. The evolution of C. jejuni in Brazil was driven by the confluence of clinically relevant genetic elements, multi-host adaptation and clonal population growth that coincided with major socio-economic changes in poultry farming.
Asunto(s)
Campylobacter jejuni , Pollos , Evolución Molecular , Genoma Bacteriano , Campylobacter jejuni/genética , Campylobacter jejuni/efectos de los fármacos , Campylobacter jejuni/aislamiento & purificación , Campylobacter jejuni/clasificación , Brasil , Animales , Pollos/microbiología , Humanos , Infecciones por Campylobacter/microbiología , Infecciones por Campylobacter/veterinaria , Adaptación al Huésped/genética , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , FilogeniaRESUMEN
One of the limitations of implementing animal breeding programs in small-scale or extensive production systems is the lack of production records and genealogical records. In this context, molecular markers could help to gain information for the breeding program. This study addresses the inclusion of molecular data into traditional genetic evaluation models as a random effect by molecular pedigree reconstruction and as a fixed effect by Bayesian clustering. The methods were tested for lactation curve traits in 14 dairy goat herds with incomplete phenotypic data and pedigree information. The results showed an increment of 37.3% of the relationships regarding the originals with MOLCOAN and clustering into five genetic groups. Data leads to estimating additive variance, error variance, and heritability with four different models, including pedigree and molecular information. Deviance Information Criterion (DIC) values demonstrate a greater fitting of the models that include molecular information either as fixed (genetic clusters) or as random (molecular matrix) effects. The molecular information of simple markers can complement genetic improvement strategies in populations with little information.
Asunto(s)
Cabras , Lactancia , Femenino , Animales , Linaje , Teorema de Bayes , Lactancia/genética , Fenotipo , Cabras/genética , Modelos Genéticos , LecheRESUMEN
Recent estimates of the size at first maturity (L50) of Sardinella brasiliensis showed contradictory results with a decreasing in the fish stock biomass encompassed by increasing values of L50. The methodological approach used hereby allowed to separate sardines classified in the virginal maturity stage from those categorized in the recovery stage, and ready for one next spawning event. This study evaluated the hypothesis of the existence of separated stocks experiencing distinct environmental conditions and fishing pressures which may have altered L50 estimates using a robust dataset based on biological samples collected along the entire species distribution area in the southeast-south Brazilian coast [Rio de Janeiro (RJ), São Paulo (SP), Paraná (PR), Santa Catarina (SC) and Rio Grande do Sul (RS)] between 2000 and 2018. A reclassification of the gonadal maturity stages provided a more realistic estimate of L50. Combining biological, reproductive, fishing data and the mean temperature of the catch (MTC), the leave-one-out classification correctly re-assigned individuals with an overall accuracy of 85% [100% (RJ), 45% (SP), 99% (PR), 99% (SC) and 82% (RS)]. The connectivity between the local populations of S. brasiliensis off RJ (23°S) and the southern populations is limited, contrasting to spatial structured semi-discrete population-units found between SP and RS (24°S-30°S). The northern extreme population-unit (RJ, 22°S-23°S) showed an expressive reduction of L50, and a negative correlation was detected between the increasing MTC values and the abundance of early maturing individuals and recruits of the species. Stock specific L50 estimates seemed to act as indicators of long term environmental fluctuations.
Asunto(s)
Explotaciones Pesqueras , Reproducción , Animales , Brasil , Gónadas , Peces , Océano AtlánticoRESUMEN
Bidens pilosa L., native to South America and commonly used for medicinal purposes, has been understudied at molecular and genomic levels and in its relationship with soil microorganisms. In this study, restriction site-associated DNA markers (RADseq) techniques were implemented to analyze genetic diversity and population structure, and metabarcoding to examine microbial composition in soils from Palmira, Sibundoy, and Bogotá, Colombia. A total of 2,984,123 loci and 3485 single nucleotide polymorphisms (SNPs) were identified, revealing a genetic variation of 12% between populations and 88% within individuals, and distributing the population into three main genetic groups, FST = 0.115 (p < 0.001) and FIT = 0.013 (p > 0.05). In the soil analysis, significant correlations were found between effective cation exchange capacity (ECEC) and apparent density, soil texture, and levels of Mg and Fe, as well as negative correlations between ECEC and Mg, and Mg, Fe, and Ca. Proteobacteria and Ascomycota emerged as the predominant bacterial and fungal phyla, respectively. Analyses of alpha, beta, and multifactorial diversity highlight the influence of ecological and environmental factors on these microbial communities, revealing specific patterns of clustering and association between bacteria and fungi in the studied locations.
RESUMEN
KEY MESSAGE: Interspecific comparison of two Paspalum species has demonstrated that mating systems (selfing and outcrossing) contribute to variation (genetically and morphologically) within species through similar but mutually exclusive processes. Mating systems play a key role in the genetic dynamics of populations. Studies show that populations of selfing plants have less genetic diversity than outcrossing plants. Yet, many such studies have ignored morphological diversity. Here, we compared the morphological and molecular diversity patterns in populations of two phylogenetically-related sexual diploids that differ in their mating system: self-sterile Paspalum indecorum and self-fertile P. pumilum. We assessed the morphological variation using 16 morpho-phenological characters and the molecular diversity using three combinations of AFLPs. We compared the morphological and molecular diversity within and among populations in each mating system. Contrary to expectations, selfers showed higher morphological variation within populations, mainly in vegetative and phenological traits, compared to outcrossers. The high morphological variation within populations of selfers led to a low differentiation among populations. At molecular level, selfing populations showed lower levels of genotypic and genetic diversity than outcrossing populations. As expected, selfers showed higher population structure than outcrossers (PhiST = 0.301 and PhiST = 0.108, respectively). Increased homozygous combinations for the same trait/locus enhance morphological variation and reduce molecular variation within populations in selfing P. pumilum. Thus, selfing outcomes are opposite when comparing morphological and molecular variation in P. pumilum. Meanwhile, pollen flow in obligate outcrossing populations of P. indecorum increases within-population molecular variation, but tends to homogenize phenotypes within-population. Pollen flow in obligate outcrossers tends to merge geographically closer populations; but isolation by distance can lead to a weak differentiation among distant populations of P. indecorum.
Asunto(s)
Paspalum , Paspalum/genética , Diploidia , Reproducción , Polen , PlantasRESUMEN
Urban ecosystems could jeopardize the existence of vascular epiphytes (VE) given that their occurrence is linked to phorophyte availability and particular climatic conditions. Despite reports of VE in cities, nothing is known about their demography. A first step in this direction is to describe their population structures (PS). We established the PS of VE present in urban parks in Oaxaca City (Mexico), addressing the following questions: 1) what is their demographic status? and 2) are there differences in the structure of populations growing in native versus exotic phorophytes? During 2021, we censused all the trees in six urban parks, recording their origin (native or exotic), the epiphytic species found on them and the development stages present in each VE population. Overall, five VE species were documented: Tillandsia ionantha, T. makoyana, T. sp., T. schiedeana and T. recurvata (Bromeliaceae); the first three with only one individual and the latter two with 95 and 5,694, respectively. A MANOVA test indicated significant differences in PS between T. recurvata (type I structure, suggesting a growing population) and T. schiedeana (type III structure, suggesting a senile population) (Wilkes' λ= 0.821, F-Radio= 11.96 P<0.001). PS showed no differences related to tree origin. Our results indicate that it is necessary to conduct demographic studies to have a more accurate idea of the current condition of vascular epiphytes in cities. For instance, even though we found five VS species, only one of them seems to have viable populations in Oaxaca city.
Ecossistemas urbanos podem comprometer a existência de epífitas vasculares (EV), dado que sua ocorrência está ligada à disponibilidade de forófitos e condições climáticas particulares. Apesar dos relatos de EV nas cidades, nada se sabe sobre sua demografia. Um primeiro passo nessa direção é descrever suas estruturas populacionais (PS). Estabelecemos o PS dos EV presentes nos parques urbanos da cidade de Oaxaca (Mexico), abordando as seguintes questões: 1) qual é a sua situação demográfica? e 2) existem diferenças na estrutura das populações crescendo em forófitos nativos versus exóticos? Durante o ano de 2021, realizamos o censo de todas as árvores em seis parques urbanos, registrando sua origem (nativa ou exótica), as espécies epífitas encontradas nelas e os estágios de desenvolvimento presentes em cada população de EV. Ao todo, cinco espécies de EV foram documentadas: Tillandsia ionantha, T. makoyana, T. sp, T. recurvata e T. schiedeana; as três primeiras com apenas um indivíduo e as duas últimas com 5.694 e 95, respectivamente. Um teste MANOVA indicou diferenças significativas no PS entre T. recurvata (estrutura tipo I, sugerindo uma população crescente) e T. schiedeana (estrutura tipo III, sugerindo uma população senil) (Wilkes' λ= 0,821, F-Radio= 11,96 e P < 0,001). PS não apresentou diferenças relacionadas à origem da árvore. Os resultados do presente trabalho indicam a necessidade de se realizar estudos demográficos para se ter uma ideia mais precisa da condição atual das epífitas vasculares nas cidades. Embora tenhamos encontrado cinco espécies de VS, apenas uma delas parece ter populações viáveis na cidade de Oaxaca.
Asunto(s)
Tillandsia/clasificación , Ciudades , MéxicoRESUMEN
The river basins of Brazil contain a highly diverse ichthyofauna of remarkable endemism, including several threatened species. Accordingly, Lignobrycon myersi is a fish species distributed only in a few rivers from the state of Bahia, northeastern Brazil. Since this species is classified as Near Threatened and is poorly studied, efforts to understand the genetic structure of populations and putative cryptic forms should help define efficient strategies of management and conservation. Herein, the molecular identification and the population genetic diversity of specimens of L. myersi across their range (Almada, Contas, and Cachoeira river basins) were assessed using mitochondrial markers (16S rDNA and D-Loop, respectively). The inferences based on phylogenetics, genetic distance, and species delimitation methods invariably identified all samples as L. myersi. In addition, sequencing of D-loop fragments revealed significant haplotype diversity and a considerable level of population genetic structure. Despite their geographic isolation, these data suggested that populations from Almada and Contas rivers represent a single evolutionary lineage that could be managed as a whole. In contrast, the population from Cachoeira River was highly differentiated from the others and should be managed separately as a unique and endemic unit, particularly focused on the conservation of native habitats.
Asunto(s)
Characiformes , Animales , Characiformes/genética , Especies en Peligro de Extinción , Pez Cebra , Filogenia , Ríos , Variación GenéticaRESUMEN
Soybean sudden death syndrome (SDS) is a destructive disease that causes substantial yield losses in South and North America. Whereas four Fusarium species were identified as the causal agents, F. virguliforme is the primary SDS-causing pathogen in North America and it also contributes substantially to SDS in Argentina. In this study, we comparatively analyzed genome assemblies of four F. virguliforme strains and identified 29 informative microsatellite markers. Sixteen of the 29 markers were used to investigate the genetic diversity and population structure of this pathogen in a collection of 90 strains from Argentina and the USA. A total of 37 multilocus genotypes (MLGs) were identified, including 10 MLGs in Argentina and 26 in the USA. Only MLG2, the most dominant MLG, was found in both countries. Analyses with three different approaches showed that these MLGs could be grouped into three clusters. Cluster IA consisting of four MLGs exclusively from the USA has much higher genetic diversity than the other two clusters, suggesting that it may be the ancestral cluster although additional data are necessary to support this hypothesis. Clusters IB and II consisted of 13 and 21 MLGs, respectively. MLGs belonging to these two clusters were present in all four sampled states in Argentina and all five sampled states in the USA.
RESUMEN
Sweet sorghum is an attractive feedstock for the production of renewable chemicals and fuels due to the readily available fermentable sugars that can be extracted from the juice, and the additional stream of fermentable sugars that can be obtained from the cell wall polysaccharides in the bagasse. An important selection criterion for new sweet sorghum germplasm is resistance to anthracnose, a disease caused by the fungal pathogen Colletotrichum sublineolum. The identification of novel anthracnose-resistance sources present in sweet sorghum germplasm offers a fast track towards the development of new resistant sweet sorghum germplasm. We established a sweet sorghum diversity panel (SWDP) of 272 accessions from the USDA-ARS National Plant Germplasm (NPGS) collection that includes landraces from 22 countries and advanced breeding material, and that represents ~15% of the NPGS sweet sorghum collection. Genomic characterization of the SWDP identified 171,954 single nucleotide polymorphisms (SNPs) with an average of one SNP per 4,071 kb. Population structure analysis revealed that the SWDP could be stratified into four populations and one admixed group, and that this population structure could be aligned to sorghum's racial classification. Results from a two-year replicated trial of the SWDP for anthracnose resistance response in Texas, Georgia, Florida, and Puerto Rico showed 27 accessions to be resistant across locations, while 145 accessions showed variable resistance response against local pathotypes. A genome-wide association study identified 16 novel genomic regions associated with anthracnose resistance. Four resistance loci on chromosomes 3, 6, 8 and 9 were identified against pathotypes from Puerto Rico, and two resistance loci on chromosomes 3 and 8 against pathotypes from Texas. In Georgia and Florida, three resistance loci were detected on chromosomes 4, 5, 6 and four on chromosomes 4, 5 (two loci) and 7, respectively. One resistance locus on chromosome 2 was effective against pathotypes from Texas and Puerto Rico and a genomic region of 41.6 kb at the tip of chromosome 8 was associated with resistance response observed in Georgia, Texas, and Puerto Rico. This publicly available SWDP and the extensive evaluation of anthracnose resistance represent a valuable genomic resource for the improvement of sorghum.
RESUMEN
Objetivo: Determinar la ancestría de Helicobacter pylori aislado de pacientes provenientes de una zona de alto riesgo de cáncer gástrico del departamento de Nariño. Materiales y Métodos: Se incluyeron 16 pacientes con síntomas de dispepsia e infectados con Helicobacter pylori. Se utilizaron biopsias gástricas para el cultivo de Helicobacter pylori y subsecuente secuenciación del genoma total por Illumina MiSeq, 2x300 pb. El ensamblaje y anotación de los genomas se procedió mediante el uso de los algoritmos SPAdes y RASTtk. Las proporciones ancestrales de Helicobacter pylori se determinaron por STRUCTURE con el modelo de mezcla. Las diferencias entre estas proporciones se establecieron con las pruebas H de Kruskal Wallis y post hoc. Resultados: La estructura de la población de Helicobacter pylori deriva de cuatro poblaciones ancestrales: Ancestral Europa (AE) (61.2%), Ancestral Africa1 (AA1) (35.7%), Ancestral Este de Asia (AEA) (3%) y Ancestral Africa2 (AA2) (0.1%), siendo significativas las diferencias entre las proporciones de los ancestros de Helicobacter pylori (p<0.05). Se identificaron diferencias estadísticamente significativas entre: AA2 y AEA (p=0.022); AA2 y AA1 (p<0.05); AA2 y AE (p<0.05); AEA y AA1 (p=0.014) y AEA con AE (p<0.05), sin embargo, no se encontró diferencias significativas entre AA1 y AE (p=0.098), evaluadas por post hoc. Conclusión: Helicobacter pylori que coloniza la mucosa gástrica de una población de alto riesgo de cáncer gástrico en Nariño, deriva su acervo genético principalmente de ancestros europeos y africanos, confiriéndole a la bacteria alta capacidad competitiva asociada al desarrollo de lesiones severas en nichos gástricos amerindios.
Objective: To determine the ancestry of Helicobacter pylori isolated from patients from a high-risk area for gastric cancer in the department of Nariño. Materials and Methods: Sixteen patients with dyspepsia symptoms and infected with Helicobacter pylori were included. Gastric biopsies were used for Helicobacter pylori culture and subsequent whole genome sequencing by Illumina MiSeq, 2x300 bp. Genome assembly and annotation proceeded by using the SPAdes and RASTtk algorithms. The ancestral proportions of Helicobacter pylori were determined by STRUCTURE with the mixture model. Differences between these proportions were established with Kruskal Wallis and post hoc H-tests. Results: The population structure of Helicobacter pylori derived from four ancestral populations: Ancestral Europe (AE) (61.2%), Ancestral Africa1 (AA1) (35.7%), Ancestral East Asia (AEA) (3%) and Ancestral Africa2 (AA2) (0.1%), with differences between the proportions of Helicobacter pylori ancestors being significant (p<0.05). Statistically significant differences were identified between: AA2 and AEA (p=0.022); AA2 and AA1 (p<0.05); AA2 and AE (p<0.05); AEA and AA1 (p=0.014) and AEA with AE (p<0.05), however, no significant differences were found between AA1 and AE (p=0.098), evaluated by post hoc. Conclusion: Helicobacter pylori colonizing the gastric mucosa of a population at high risk of gastric cancer in Nariño, derives its gene pool mainly from European and African ancestors, giving the bacterium highly competitive capacity associated with the development of severe lesions in Amerindian gastric niches.
Asunto(s)
Helicobacter pylori , Neoplasias GástricasRESUMEN
Previous studies about the genetic diversity, connectivity and demographic history in Lutjanidae fishes have reported a common pattern of genetic homogeneity and expansion in populations from Western South Atlantic. In the present work, we inferred the population structure, the levels of genetic diversity and the demographic history of the Brazilian snapper Lutjanus alexandrei, a recently described and endemic species from Northeastern coast of Brazil. Five different fragments, including mitochondrial DNA (Control Region, Cyt b and ND4) and nuclear DNA (Myostatin and S7) regions were analyzed in 120 specimens of L. alexandrei from four localities in Northeastern Brazil, representing the first study of population genetics in this species. High levels of genetic diversity were observed following a panmictic pattern, probably related to the larval dispersal by the current tides along the Brazilian coast. In addition, both demographic history and neutrality tests indicated that L. alexandrei has undergone population expansion during Pleistocene. In this sense, the sea level variation from this period could have increased the available resources and suitable habitats for the Brazilian snapper.
Asunto(s)
Peces , Perciformes , Animales , Brasil/epidemiología , Peces/genética , Perciformes/genética , Genética de Población , ADN Mitocondrial/genéticaRESUMEN
Climate change is expected to impact both the population structure and geographic distribution of plants. Species distribution models are widely used to assess range shifts and the vulnerability of plants to climate change. Despite the abundance of modeling studies, little is known about how existing populations respond to climate change. We investigated the demographic structure and vulnerability to climate change in Anemone moorei, a sub-shrub with a highly restricted distribution in a biodiversity hotspot. We improved the distribution knowledge through intensive field work. We conducted a census of stem length as a proxy for age for all known populations. We used ensemble forecasting to project distributions considering 10 future climate scenarios and developed a novel climate change vulnerability index for the species' distribution. We found that the mean stem length decreases and the proportion of young plants increases, while the size of fruiting plants decreases as A. moorei faces greater climate change vulnerability. We interpret these results as evidence for the onset of recent adaptation to climate change, consisting of reduced adult longevity and an earlier onset of reproduction. As a result of these changes, the proportion of juveniles in the population increases.
RESUMEN
Sporotrichosis is a neglected subcutaneous fungal infection that affects humans and animals worldwide caused by species belonging to the genus Sporothrix. This study aims to examine the range of genetic variations, assess molecular epidemiology significance, and explore potential modes of transmission of the Sporothrix species associated with the current sporotrichosis outbreaks in Espírito Santo, Brazil. In this investigation, 262 samples were evaluated, including 142 from humans and 120 from felines, collected between 2016 and 2021. The isolates were identified based on morphological and molecular characteristics. Sexual idiomorphs were determined by mating-type PCR using primers specific to the MAT1-1 and MAT1-2 loci. Amplified fragment length polymorphism (AFLP) was employed to assess the genetic variability of Sporothrix spp. Finally, antifungal susceptibility testing was performed following the CLSI M38-A2 protocol. Of the 142 human samples, 125 were identified as S. brasiliensis and 17 as S. schenckii s. str. The presence of S. brasiliensis was overwhelming (100%) during outbreaks, highlighting the significant role of domestic cats in the emergence of this species. Heterothallism was the only observed mating strategy. However, the MAT1-2 idiomorph was predominant in cases of cat-transmitted sporotrichosis (χ2 = 202.976; p < 0.0001). Our AFLP results show significant intraspecific variability observed among S. brasiliensis isolates in Espírito Santo. Different genotypes forming subgroups within the same population suggest that these isolates do not originate from a single ancestor, indicating multiple emergences. Furthermore, terbinafine was the antifungal with the best results in vitro. However, in clinical practice, itraconazole remains the primary treatment choice. Sporotrichosis continues to advance in the state; therefore, the health system must outline one-health strategies to contain the disease to prevent future epidemics.
RESUMEN
The dusky grouper (Epinephelus marginatus) is an overfished and threatened fish species with coastal distribution. In the Southwestern Atlantic, it occurs across a broad region influenced by two major oceanographic features: the Cabo Frio (23°S) and the Cabo Santa Marta (28°S) upwelling systems. Along the Brazilian coast, the species may present continuous or discrete populations, depending on the methodological approach used. In this study we combined otolith chemistry and muscle stable isotope analyses to examine the population structure of dusky groupers and its association with the two upwelling systems. Fish were collected in shallow coastal waters of the Southwest Atlantic Ocean, covering the southeastern and southern Brazilian coasts, among Macaé (22°S), Santos (24°S), Florianópolis (27°S), and in Rio Grande (32°S). The results show three statistically well-separated population groups along the region. We named these population groups as North (north of Cabo Frio); Center (between upwelling regions); and South (south of the Cabo Santa Marta system). Our findings allow to suggest that the upwelling systems may influence the distribution of E. marginatus stocks along the Brazilian south-western coast, even though a causal effect may not be attributed at this point. Overall, this combined approach, leveraging information from distinct natural tags, and reflecting variability of water chemistry and food webs with latitude, allowed us to enhance our understanding on how major upwelling systems influence the structuring of fish populations along the southwestern Atlantic Ocean.
Asunto(s)
Lubina , Animales , Membrana Otolítica , Especies en Peligro de Extinción , Alimentos Marinos , MúsculosRESUMEN
Fasciola hepatica is a zoonotic trematode that affects a wide range of hosts, including cattle, sheep, and goats. The economic impact of the parasite on the cattle industry is significant, with high losses reported worldwide. While its impact on human health was previously underestimated, recent years have seen a rise in fascioliasis cases, leading to increased interest among researchers globally. To characterize the genetic diversity and intraspecific variation of this parasite in South America, specifically in Colombia, we collected 105 adult parasites from cattle bile ducts in seven Colombian departments (Antioquia, Boyacá, Santander, Cauca, Cundinamarca, Nariño, Norte de Santander, and Santander) to assess the parasite's phenotypic analyses, genetic diversity, and population structure. A computer image analysis system (CIAS) was applied based on standardized morphological measurements. Liver-fluke size was studied by principal component analysis (PCA). DNA sequences were obtained for nuclear markers such as the 28S, ß-tubulin 3, ITS1, ITS2, and the mitochondrial marker Cytochrome Oxidase I (COI). Multiple statistical tests were performed, and the parasite's population structure was analyzed. Maximum Likelihood (ML) phylogenetic reconstructions were carried out using the sequences obtained herein and sequences available in GenBank. Morphological results revealed that all the obtained individuals matched F. hepatica's morphology. There was no evidence of high genetic diversity, and the absence of genetic structure at the country-level was notable, possibly caused by a demographic expansion of this trematode in Colombia or the low resolution of the molecular markers employed. Future studies are still needed to unveil the genetic population structure of F. hepatica across the country.