Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 20643, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39232177

RESUMEN

To reduce the number of casualties in explosion accidents, blast-resistant shelters can be used to protect personnel in high-risk areas of petrochemical processing plants. In this work, the deformation behaviours of uncoated and polyurea-coated blast-resistant plates were studied through gas explosion tests. An ANSYS/LS-DYNA model of a polyurea-coated shelter was established, and the dynamic responses of the shelter under various explosion loads were analysed. A series of fuel-air explosion tests were carried out to investigate the explosion resistance of the full-scale shelter. The results showed that compared with the uncoated blast-resistant plate, the deformation of the polyurea-coated blast-resistant plate was significantly reduced. The overall deformation of the shelter was the central depression of the wall and the inward bending of the frame. The damage effect of a typical high-overpressure, low-duration load was greater than that of typical low-overpressure, long-duration load. The shelter remained intact under three repeated explosive loads, with cracks appearing on the inner wall but no collapse or debris splashing. The shock wave attenuation rate of the shelter reached over 90%, which could significantly reduce the number of indoor casualties.

2.
Polymers (Basel) ; 16(17)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39274071

RESUMEN

For probing the structure-property relationships of the polyurea elastomers, we synthesize the siloxane polyurea copolymer elastomer by using two aminopropyl-terminated polysiloxane monomers with low and high number-average molecular weight (Mn), i.e., L-30D and H-130D. To study the influence of the copolymer structures on the film properties, these films are analyzed to obtain the tensile performance, UV-vis spectra, cross-sectional topographies, and glass transition temperature (Tg). The two synthetic thermoplastic elastomer films are characterized by transparency, ductility, and the Tg of the hard domains, depending on the reacting compositions. Furthermore, the film elasticity behavior is studied by the strain recovery and cyclic tensile test, and then, the linear fitting of the tensile data is used to describe the film elasticity based on the Mooney-Rivlin model. Moreover, the temperature-dependent infrared (IR) spectra during heating and cooling are conducted to study the strength and recovery rate of the hydrogen bonding, respectively, and their influence on the film performance is further analyzed; the calculated Mn of the hard segment chains is correlated to the macroscopic recovery rate of the hydrogen bonding. These results can add deep insight to the structure-property relationships of the siloxane polyurea copolymer.

3.
Adv Sci (Weinh) ; : e2404913, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39119888

RESUMEN

Actuators based on shape memory polymers and composites incorporating nanomaterial additives have been extensively studied; achieving both high output stress and precise shape change by low-cost, scalable methods is a long-term-desired yet challenging task. Here, conventional polymers (polyurea) and carbon nanotube (CNT) fillers are combined to fabricate reinforced composite fibers with exceptional actuation performance, by a wet-spinning method amenable for continuous production. It is found that a thermal-induced shrinkage step could obtain densified strong fibers, and the presence of CNTs effectively promotes the tensile orientation of polymer molecular chains, leading to much improved mechanical properties. Consequently, the CNT/ polyurea composite fibers exhibit stresses as high as 33 MPa within 0.36 s during thermal actuation, and stresses up to 22 MPa upon electrical stimulation enabled by the built-in conductive CNT networks. Utilizing the flexible thin fibers, various shape change behavior are also demonstrated including the conversion between different structures/curvatures, and recovery of predefined simple patterns. This high-performance composite fibers, capable of both thermal and electrical actuation and produced by low-cost materials and fabrication process, may find many potential applications in wearable devices, robotics, and biomedical areas.

4.
Artículo en Inglés | MEDLINE | ID: mdl-39177231

RESUMEN

Exploiting the chirality of nanometric structures to modulate biological systems is an emerging and compelling area of research. In this study, we reveal that chiral polyurea nanocapsules exhibit significant stereoselective interactions with albumins from various sources despite their nearly neutral surface potential. Moreover, these interactions can be modulated by altering the nanocapsule surface composition, offering new opportunities to impact their distribution and, if used as a drug delivery system, the pharmacokinetics of the drug. Notably, these interactions promote preferential cellular internalization of only one chiral configuration. We synthesized chiral polyurea nanocapsules with reproducible sizes via interfacial polymerization between toluene 2,4-diisocyanate and d- or l-lysine enantiomers on a volatile oil-in-water emulsion interface, followed by solvent evaporation. Further synthesis optimization reduced the capsule size to a range compatible with in vivo administration, and capsules with alternating chiral patterns were also produced. The stereoselective interactions with albumins were assessed through capsule size changes, fluorescence quenching, and surface charge measurements. Biocompatibility, stability, and cellular internalization were evaluated. Additionally, scanning transmission electron and atomic force microscopy were carried out to assess the capsule shape, surface composition, and morphology. We discovered that d-nanocapsules exhibited 2.1-2.6 times greater albumin adsorption compared with their l-counterparts. This difference is attributed to the distinct morphology of d-nanocapsules, characterized by a more concave shape, central depression, and rougher surface. The extent of adsorption could be finely tuned by adjusting the d- and l-lysine monomer ratios during synthesis. Both chiral configurations demonstrated biocompatibility and stability with d-nanocapsules showing a 2.5-fold increase in cellular internalization.

5.
Angew Chem Int Ed Engl ; : e202410335, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967098

RESUMEN

Ionogels are promising for soft iontronics, with their network structure playing a pivotal role in determining their performance and potential applications. However, simultaneously achieving mechanical toughness, low hysteresis, self-healing, and fluorescence using existing network structures is challenging. Drawing inspiration from jellyfish, we propose a novel hierarchical crosslinking network structure design for in situ formation of hyperbranched cluster aggregates (HCA) to fabricate polyurea ionogels to overcome these challenges. Leveraging the disparate reactivity of isocyanate groups, we induce the in situ formation of HCA through competing reactions, enhancing toughness and imparting the clustering-triggered emission of ionogel. This synergy between supramolecular interactions in the network and plasticizing effect in ionic liquid leads to reduced hysteresis of the ionogel. Furthermore, the incorporation of NCO-terminated prepolymer with dynamic oxime-urethane bonds (NPU) enables self-healing and enhances stretchability. Our investigations highlight the significant influence of HCA on ionogel performance, showcasing mechanical robustness including high strength (3.5 MPa), exceptional toughness (5.5 MJ m-3), resistance to puncture, and low hysteresis, self-healing, as well as fluorescence, surpassing conventional dynamic crosslinking approaches. This network design strategy is versatile and can meet the various demands of flexible electronics applications.

6.
Macromol Rapid Commun ; 45(16): e2400145, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38776530

RESUMEN

Mechanochromic materials have received broad research interests recently, owing to its ability to monitor the in situ stress/strain in polymer materials in a straightforward way. However, one major setback that hinders the practical application of these materials is their low sensitivity toward tensile strain. Here a new strategy for pre-stretching of the mechanochromic agent in a polymer film on the molecular scale, which can effectively enhance the mechanochromic sensitivity of a polymer film toward tensile strain, is shown. In situ fluorescent measurement during tensile test shows an early activation of the mechanochromic agent at tensile strain as low as 50%. The pre-stretching effect is realized by first inducing ring-opening of the mechanochromic agent by molecular functionalization, and then compelling the ring-closure process in the cured film by elevated temperature. This post-curing ring-closure process will result in pre-stretched mechanochromic agent in a crosslinked network. The mechanism for mechanochromic activation of polymer films with different composition is elaborated by visco-elastic measurements, and the effect of pre-stretching is further confirmed by films with other compositions. Combined with the simplicity of the method developed, this work could offer an alternative strategy to enhance the sensitivity of different mechanochromic agents toward tensile strain.


Asunto(s)
Polímeros , Resistencia a la Tracción , Polímeros/química , Estructura Molecular , Estrés Mecánico
7.
Int J Biol Macromol ; 271(Pt 2): 132711, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38815942

RESUMEN

Biobased materials are expanding dramatically in various industrial applications due to their unique intrinsic properties. In this study, various chemical functionalization procedures were used to synthesize guar gum, a naturally occurring polysaccharide-based polyurea, and its iodine complexes. Firstly, guar gum was subjected to tosylation reaction using p-toluene sulphonyl chloride to introduce tosyl moieties in the polymer chain with the degree of substitution (DS) ranging between 0.16 and 1.54. Sample having the highest degree of tosyl moiety was further reacted with tris(2-aminoethyl) amine to produce 6-deoxy-6-tris(2-aminoethyl) amine derivative via nucleophilic substitution reaction to impart amino functional groups. The degree of substitution in 6-deoxy-6-tris(2-aminoethyl) amine derivative was found to be 0.59. 6-deoxy-6-tris(2-aminoethyl) amine derivative was reacted with different diisocyanates (Toluene-2,4-diisocyanate (TDI), 1,6-diisocyanatohexane (HMDI)) to produce guar gum based polyurea. Iodine complexes of the resulting polyurea were prepared by reacting with different iodinating agents. Different chemical reactions, formation of polyurea and its iodine complexes were thoroughly analyzed by different analytical techniques such as FT-IR, NMR, elemental analysis, XRD, UV-Vis spectroscopy, and a reaction scheme has been proposed. Morphological and rheological characteristics were analyzed by SEM and viscosity measurement. Thermal analysis was carried out by TGA and DSC studies. Finally, by examining the complex's UV-Vis spectra, the iodine release characteristics from polyurea­iodine complexes were investigated.


Asunto(s)
Galactanos , Yodo , Mananos , Gomas de Plantas , Polímeros , Gomas de Plantas/química , Galactanos/química , Mananos/química , Yodo/química , Polímeros/química , Polímeros/síntesis química , Técnicas de Química Sintética
8.
ACS Appl Mater Interfaces ; 16(20): 26733-26742, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38718383

RESUMEN

Polyurea has found applications in protective coatings. Yet, the too fast polymerization and lack of functions limit its application. Herein, we report a high-performance polyurea via the stepwise polymerization of an isocyanate (NCO)-terminated prepolymer consisting of poly(propylene glycol)-block-poly(ethylene glycol)-block-poly(propylene glycol) (PPG-b-PEG-b-PPG) with a nanocluster synthesized via the hydrolysis of N-phenylaminomethyltriethoxysilane. Such a nanocluster contains low-reactivity secondary amines, so the polymerization of polyurea can be slowed down (over 1 h), which improves its wetting and adhesion to a substrate. The residual silanol groups on the nanocluster further increase the adhesion. Such polyurea exhibits high adhesion on various substrates, including glass, ceramic, steel, copper, titanium, wood, and natural rubber (∼2.35-14.64 MPa). Besides, the nanoclusters can cross-link the prepolymer into a tough network, endowing the polyurea with a high mechanical strength of ∼25 MPa, much higher than the traditional polyaspartic ester polyurea. On the other hand, the PEG segments enable the polyurea to have good fouling resistance against proteins (fibrinogen absorption was reduced by over 90%), bacteria (RBA of S. aureusE. coli and Pseudomonas sp. was less than 10%), as well as diatom (diatom density was less than 100 cells/mm2). The polyurea is expected to find applications in biomedical engineering and marine antifouling.

9.
Polymers (Basel) ; 16(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732718

RESUMEN

A composite structure containing a metallic skeleton and polyurea elastomer interpenetrating phase was fabricated, and its anti-penetration performance for low-velocity large mass fragments was experimentally studied. The protection capacity of three polyurea was compared based on the penetration resistance force measurement. Results show that the polyurea coating layer at the backside improves the performance of the polyurea-filled spherical cell porous aluminum (SCPA) plate due to its backside support effect and phase transition effect, which are accompanied by a large amount of energy absorption. The frontal-side-coated polyurea layer failed to shear and provided a very limited strengthening effect on the penetration resistance of the interpenetrating phase composite panel. The filling polyurea in SCPA increased the damage area and formed a compression cone for the backside coating layer, leading to a significant stress diffusion effect. The anti-penetration performance was synergistically improved by the plug block effect of the interpenetrating phase composite and the backside support effect of the PU coating layer. Compared with SCPA, the initial impact failure strength and the average resistance force of the composite plate were improved by 120-200% and 108-274%, respectively.

10.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124502, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-38815296

RESUMEN

In this study, four polyureas with triazine moiety (PUAs) were successfully synthesized through the polymerization of triazine-containing diamine and diisocyanate. The intramolecular aggregation of triazine rings and urea groups along the macromolecular backbone gives PUAs a significant polymerization-induced emission (PIE). Among the four PUAs, PUA-LP shows a significant fluorescent emission at 450 nm, compared to non/weak fluorescent 2,4-diamino-6-phenyl-1,3,5-triazine and L-Lysine diisocyanate ethyl ester monomers. Additionally, the external factors such as solution concentration, excitation wavelength, and precipitants also play a crucial role in the fluorescence of PUAs. As expected, PUA-LP can selectively recognize and detect Fe3+/Fe2+ ions even in the presence of 12 other metal ions and 10 anions. The limit of detection of PUA-LP to Fe3+/Fe2+ is as low as 1.02 µM (0.06 mg/L) and 0.86 µM (0.05 mg/L), respectively, and far below 0.3 mg/L of the allowable national standard for drinking water by WHO. Furthermore, the quenching mechanism of Fe3+/Fe2+ to PUA-LP is attributed to static quenching caused by the coordination of Fe3+/Fe2+ ions with a coordination ratio of 2:1. Based on PIE, the fluorescent PUA-LP was made into an observable and portable testing paper for detecting Fe3+/Fe2+ ions. Finally, we measured the recovery rate of the actual tap water samples and compared the performance of PIE-active PUA-LP with the other reported fluorescent probes to Fe3+/Fe2+ ions.

11.
Mikrochim Acta ; 191(6): 315, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720091

RESUMEN

A novel solid-phase microextraction fiber based on MXene-chitosan-polyurea (MXene/CS/EPPU) nanocomposite decorated on a graphenized pencil lead fiber (MXene/CS/EPPU/GPLF) was prepared and utilized for electro-enhanced solid-phase microextraction (EE-SPME) of diclofenac (DCF) in biological samples. After extraction and desorption of DCF, it was determined by differential pulse voltammetry (DPV). For this purpose, the working electrode was prepared by deposition of the mentioned MXene/CS/EPPU nanocomposite onto the graphenized pencil lead. The synthesized SPME fiber was characterized using scanning electron microscopy and X-ray diffraction techniques. The effect of various parameters influencing the extraction and the desorption process were investigated, including applied voltage in the extraction and desorption steps, extraction and desorption times, and pH. The developed method exhibited a rather wide linearity in the range 2-1200 ng mL-1 (R2 = 0.985) for the determination of DCF in plasma samples. The limit of detection and the limit of quantification for plasma samples were estimated to be 0.58 and 1.9 ng mL-1 based on the 3Sb/m and 10Sb/m definitions, respectively. The method's accuracy and applicability have been evaluated by the analysis of plasma samples, leading to the relative recoveries in the range 87.0% and 98.0% with the relative standard deviations lower than 3.1%.

12.
Heliyon ; 10(7): e28908, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38601646

RESUMEN

Polyurea coatings are well recognized for their remarkable protective properties, making them highly appropriate for practical use in the field of concrete building. The use of polyurea coatings in the concrete building business is currently constrained, despite its prevalent application in industrialized nations. The limited use may be ascribed to ambiguities about the determinants of effective implementation in this particular setting, as well as the dearth of extensive study in the realm of new building materials. The primary objective of this research is to assess and conceptualize the key determinants linked to the use of polyurea coatings in concrete building endeavors. Utilizing a quantitative research approach, a comprehensive literature analysis was conducted to identify a total of 21 probable success variables. The reliability of the questionnaire was established by the administration of a pilot survey, and afterwards, an exploratory factor analysis (EFA) was performed to enhance the clarity and precision of the underlying components. The researchers used structural modeling (SEM) approaches to develop a robust model using the primary data obtained from the questionnaire survey. The EFA revealed the presence of five unique constructs that have an impact on the effectiveness of polyurea coatings in concrete building projects. These constructions comprise several characteristics, including environmental considerations, functional requirements, protective properties, execution processes, and creative elements. The significance and relevance of this research are shown by the validation of the study's results using SEM. The study makes a valuable contribution towards the progression of polyurea coating use within the concrete building sector.

13.
ACS Appl Mater Interfaces ; 16(15): 19625-19641, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38588400

RESUMEN

Herein, the development of new nanocomposite systems is reported based on one-part polyurea (PU) and aminopropyl isobutyl polyhedral oligomeric silsesquioxane (POSS)-functionalized graphene nanoplatelets (GNP-POSS) as compatible nanoreinforcements with the PU resin. GNP-POSS was effectively synthesized via a two-step synthesis protocol, including ultrasonication-assisted reaction and precipitation, and carefully characterized with respect to its chemical and crystalline structure, morphology, and thermal stability. FTIR and XPS spectroscopy analyses revealed that POSS interacts with the residual oxygen moieties of the GNPs through both covalent and noncovalent bonding. The X-ray diffraction pattern of GNP-POSS further revealed that the crystallinity of the GNPs was not altered after their functionalization with POSS. GNP-POSS was successfully incorporated in PU at contents of 1, 3, 5, and 10 wt % to yield PU/GNP-POSS nanocomposite films. An ATR-FTIR analysis of these films confirmed the presence of strong interfacial interactions between the urea groups of PU and the GNP-POSS functionalities. Moreover, the PU/GNP-POSS nanocomposite films exhibited enhanced thermal stability and mechanical properties compared to those of the neat PU film. The quasi-static tensile testing of the PU/GNP-POSS samples revealed remarkable enhancements in the tensile strength (from 7.9 for the neat PU to 25.1 MPa for PU/GNP-POSS) and Young's modulus (238-617 MPa), while elongation at break and toughness also showed 14 and 125% improvements, respectively. Finally, the effects of GNP-POSS content on the morphological, quasistatic tensile, and high-strain-rate dynamic behavior of the PU/GNP-POSS nanocomposite films were also investigated. Overall, the tests performed using a split-Hopkinson pressure bar setup revealed a large increase in the film strength (from 147.6 for the neat PU film to 199 MPa for the PU/GNP-POSS film) and a marginal increase in the energy density of the film (38.1-40.8 kJ/m3). These findings support the suitability of the PU/GNP-POSS nanocomposite films for force protection applications.

14.
Polymers (Basel) ; 16(7)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38611176

RESUMEN

Within the realm of dental material innovation, this study pioneers the incorporation of tung oil into polyurea coatings, setting a new precedent for enhancing self-healing functionality and durability. Originating from an ancient practice, tung oil is distinguished by its outstanding water resistance and microbial barrier efficacy. By synergizing it with polyurea, we developed coatings that unite mechanical strength with biological compatibility. The study notably quantifies self-healing efficiency, highlighting the coatings' exceptional capacity to mend physical damages and thwart microbial incursions. Findings confirm that tung oil markedly enhances the self-repair capabilities of polyurea, leading to improved wear resistance and the inhibition of microbial growth, particularly against Streptococcus mutans, a principal dental caries pathogen. These advancements not only signify a leap forward in dental material science but also suggest a potential redefinition of dental restorative practices aimed at prolonging the lifespan of restorations and optimizing patient outcomes. Although this study lays a substantial foundation for the utilization of natural oils in the development of medical-grade materials, it also identifies the critical need for comprehensive cytotoxicity assays. Such evaluations are essential to thoroughly assess the biocompatibility and the safety profile of these innovative materials for clinical application. Future research will concentrate on this aspect, ensuring that the safety and efficacy of the materials align with clinical expectations for dental restorations.

15.
Polymers (Basel) ; 16(7)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38611251

RESUMEN

Polyureas have been widely applied in many fields, such as coatings, fibers, foams and dielectric materials. Traditionally, polyureas are prepared from isocyanates, which are highly toxic and harmful to humans and the environment. Synthesis of polyureas via non-isocyanate routes is green, environmentally friendly and sustainable. However, the application of non-isocyanate polyureas is quite restrained due to their brittleness as the result of the lack of a soft segment in their molecular blocks. To address this issue, we have prepared polyester polyureas via an isocyanate-free route and introduced polyester-based soft segments to improve their toughness and endow high impact resistance to the polyureas. In this paper, the soft segments of polyureas were synthesized by the esterification and polycondensation of dodecanedioic acid and 1,4-butanediol. Hard segments of polyureas were synthesized by melt polycondensation of urea and 1,10-diaminodecane without a catalyst or high pressure. A series of polyester polyureas were synthesized by the polycondensation of the soft and hard segments. These synthesized polyester-type polyureas exhibit excellent mechanical and thermal properties. Therefore, they have high potential to substitute traditional polyureas.

16.
Heliyon ; 10(8): e29113, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38628747

RESUMEN

With the increasing lethality of modern weapons, the development of body armor has become increasingly important. The main objective of current research is to make protective gear lighter and increase material ballistic performance. Here, a model ballistic-resistant composite material was produced consisting of a polyurea coating on Kevlar plain weave fabric. The effects of coating location and thickness on the ballistic performance of this aramid fabric was examined using yarn pull-out test, ballistic impact test, and numerical simulation. The results demonstrated that the polyurea coating significantly increased the friction between yarns. The maximum yarn pull-out force of the polyurea-coated fiber composite was 40-fold greater than that of the uncoated fiber. Moreover, the application of the coating on the front side outperformed the rear side in terms of ballistic performance. In particular, the front-side 0.2 mm coating was observed to result in the most considerable ballistic limit improvement, increasing the ballistic limit of a single layer of Kevlar fabric from 90.8 to 143.45 m/s. A high precision mesoscale simulation model was developed to analyze the impact of the polyurea coating on the deformation and damage of the Kevlar fabric. These results will contribute to developing new bullet-proof composite materials for the safety protection of personnel.

17.
Materials (Basel) ; 17(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38673139

RESUMEN

In the lining of water conveyance tunnels, the expansion joint is susceptible to leakage issues, significantly impacting the long-term safety of tunnel operations. Polyurea is a type of protective coating commonly used on concrete surfaces, offering multiple advantages such as resistance to seepage, erosion, and wear. Polyurea coatings are applied by spraying them onto the surfaces of concrete linings in water conveyance tunnels to seal the expansion joint. These coatings endure prolonged exposure to environmental elements such as water flow erosion, internal and external water pressure, and temperature variations. However, the mechanism of polyurea coating's long-term leakage prevention failure in tunnel operations remains unclear. This study is a field investigation to assess the anti-seepage performance of polyurea coating in a water conveyance tunnel project located in Henan Province, China. The testing apparatus can replicate the anti-seepage conditions experienced in water conveyance tunnels. An indoor accelerated aging test plan was formulated to investigate the degradation regular pattern of the cohesive strength between polyurea coating and concrete substrates. This study specifically examines the combined impacts of temperature, water flow, and water pressure on the performance of cohesive strength. The cohesive strength serves as the metric for predicting the service lifetime based on laboratory aging test data. This analysis aims to evaluate the polyurea coating's cohesive strength on the tunnel lining surface after five years of operation.

18.
Polymers (Basel) ; 16(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38543418

RESUMEN

This paper explores a novel structure aimed at enhancing its blast resistance performance by adding a layer of polyurea coating to the steel-PVC foam-steel sandwich panel. The response of 13 different arrangements of sandwich panels under explosive loading was studied using numerical simulation. The response process can be divided into three deformation stages: (1) Fluid-structure interaction; (2) Compression of the sandwich panel; (3) Dynamic structural response. The dynamic responses of the various sandwich panels to close-range air blast loading were analyzed based on the deformation characteristics, deflection, effective plastic strain, energy absorption, and pressure of the shock wave. The study draws the following conclusions: Reasonably adding a layer of polyurea to the traditional PVC foam sandwich panel can enhance its resistance to shock wave absorption, with a maximum increase of 29.8%; the optimal arrangement for explosion resistance is steel plate-PVC foam-polyurea-steel plate when the polyurea is coated on the back; and the best quality ratio between polyurea and PVC foam is 1:7 when the polyurea is coated on the front.

19.
ACS Appl Mater Interfaces ; 16(12): 15227-15241, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38498312

RESUMEN

Biobased-functionalized metal-organic frameworks (Bio-FUN-MOFs) stand out from the crowd of candidates in the flame-retardant field due to their multipathway flame-retardant mechanisms and green synthesis processes. However, exploring and designing Bio-FUN-MOFs tend to counteract the problem of compromising the flame-retardant advantages of MOFs themselves, which inevitably results in a waste of resources. Herein, a strategy in which MOFs are ecologically regulated through acid-base balance is presented for controllable preparation of Bio-FUN-MOFs by two birds with one stone, i.e., higher flame-retardant element loading and retention of more MOF structures. Specifically, the buffer layer is created on the periphery of ZIF-67 by weak etching of biobased alkali arginine to resist the excessive etching of ZIF-67 by phytic acid when loading phosphorus source and to preserve the integrity of internal crystals as much as possible. As a proof of concept, ZIF-67 was almost completely etched out by phytic acid in the absence of arginine. The arginine and phytic acid-functionalized ZIF-67 with yolk@shell structure (ZIF@Arg-Co-PA) obtained by this strategy, as a biobased flame retardant, reduces fire hazards for polyurea composites. At only 5 wt % loading, ZIF@Arg-Co-PA imparted polyurea composites with a limiting oxygen index of 23.2%, and the peaks of heat release rate, total heat release, and total smoke production were reduced by 43.8, 32.3, and 34.3%, respectively, compared to neat polyurea. Additionally, the prepared polyurea composites have acceptable mechanical properties. This work will shed light on the advanced structural design of polymer composites with excellent fire safety, especially environmentally friendly and efficient biobased MOF flame retardants.

20.
Polymers (Basel) ; 16(3)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38337329

RESUMEN

Polyurea has gained significant attention in recent years as a functional polymer material, specifically regarding blast and impact protection. The molecular structure of polyurea is characterized by the rapid reaction between isocyanate and the terminal amine component, and forms an elastomeric copolymer that enhances substrate protection against blast impact and fragmentation penetration. At the nanoscale, a phase-separated microstructure emerges, with dispersed hard segment microregions within a continuous matrix of soft segments. This unique microstructure contributes to the remarkable mechanical properties of polyurea. To maximize these properties, it is crucial to analyze the molecular structure and explore methods like formulation optimization and the incorporation of reinforcing materials or fibers. Current research efforts in polyurea applications for protective purposes primarily concentrate on construction, infrastructure, military, transportation and industrial products and facilities. Future research directions should encompass deliberate formulation design and modification, systematic exploration of factors influencing protective performance across various applications and the integration of numerical simulations and experiments to reveal the protective mechanisms of polyurea. This paper provides an extensive literature review that specifically examines the utilization of polyurea for blast and impact protection. It encompasses discussions on material optimization, protective mechanisms and its applications in blast and impact protection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA