Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Intervalo de año de publicación
1.
Purinergic Signal ; 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37981630

RESUMEN

Inflammatory pain, sustained by a complex network of inflammatory mediators, is a severe and persistent illness affecting many of the general population. We explore possible anti-inflammatory pathways of Polyphyllin VI (PPVI) based on our prior study, which showed that PPVI reduces inflammation in mice to reduce pain. Network pharmacology and RNA-Seq identified the contribution of the MAPK signaling pathway to inflammatory pain. In the LPS/ATP-induced RAW264.7 cell model, pretreatment with PPVI for 1 h inhibited the release of IL-6 and IL-8, down-regulated expression of the P2X7 receptor(P2X7R), and decreased phosphorylation of p38 and ERK1/2 components of the MAPK pathway. Moreover, PPVI decreased expression of IL-6 and IL-8 was observed in the serum of the inflammatory pain mice model and reduced phosphorylation of p38 and ERK1/2 in the dorsal root ganglia while the reductions of expression of IL-6 and phosphorylation of ERK1/2 were not observed after the pre-treatment with A740003 (an antagonist of the P2X7R). These results suggest that PPVI may inhibit the release of IL-8 by regulating P2X7R to reduce the phosphorylation of p38. However, the modulation of PPVI on the release of IL-6 and phosphorylation of ERK1/2 may mediated by other P2X7R-independent signals.

2.
Dose Response ; 21(2): 15593258231169585, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37283817

RESUMEN

Context: Among the Tujia people, the root or rhizome of Trillium tschonoskii Maxim.in Bull.Acad (TTM) is considered a miraculous herb for headaches. Previous studies have shown ethyl acetate extract (TTM1) can protect SH-SY5Y cells against glutamate injury. Objective: This study clarified TTM1's mechanism against glutamate-induced cell damage, focusing on the regulation of apoptosis. The compounds were separated, identified, and performed molecular docking with pro-apoptotic proteins. Materials and Methods: SH-SY5Y cells were treated with glutamate (2 mM) for 12 hour, and the effect of TTM1 (2.5, 5, 10, and 20 µg/mL) was evaluated with MTT and LDH release assays, taking EGb761(40 µg/mL) as a control. Cell apoptosis was detected with Hoechst 33258 and Annexin V-FITC and measurements of intracellular calcium and caspase-3. The major components were separated and identified by LCMS-IT-TOF and NMR, then the proapoptotic activity of TTM1 was confirmed by molecular docking method. Results: TTM1 protected SH-SY5Y cells by resisting apoptosis, TTM1 (10 and 20 µg/mL) decreased apoptotic bodies and nuclear fragments, increased the proportion of normal cells to 68.38 ± 5.63% and 92.80 ± .88%, decreased VA cells to 4.30 ± .76% and 3.58 ± .45% and caspase-3 to .365 ± .034 and .344 ± .047 ng/mL.TTM1 (10 µg/mL) decreased intracellular free calcium to 2.77 ± .40. Polyphyllin VI and pennogenin 3-O-ß-chacotrioside were identified in TTM1 at 15.04% and 2.84%, and had potential anti-apoptosis activities. Discussion and Conclusions: Folk records of TTM for headache may be related to its anti-apoptosis of nerve cells. Identification and content determination of index components based on effective extract provides research paradigms for rare and endangered ethnic plants.

3.
Front Pharmacol ; 14: 1095786, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36895945

RESUMEN

Cancer is a major threat to human health, with high mortality and a low cure rate, continuously challenging public health worldwide. Extensive clinical application of traditional Chinese medicine (TCM) for patients with poor outcomes of radiotherapy and chemotherapy provides a new direction in anticancer therapy. Anticancer mechanisms of the active ingredients in TCM have also been extensively studied in the medical field. As a type of TCM against cancer, Rhizoma Paridis (Chinese name: Chonglou) has important antitumor effects in clinical application. The main active ingredients of Rhizoma Paridis (e.g., total saponins, polyphyllin I, polyphyllin II, polyphyllin VI, and polyphyllin VII) have shown strong antitumor activities in various cancers, such as breast cancer, lung cancer, colorectal cancer, hepatocellular carcinoma (HCC), and gastric cancer. Rhizoma Paridis also has low concentrations of certain other active ingredients with antitumor effects, such as saponins polyphyllin E, polyphyllin H, Paris polyphylla-22, gracillin, and formosanin-C. Many researchers have studied the anticancer mechanism of Rhizoma Paridis and its active ingredients. This review article describes research progress regarding the molecular mechanism and antitumor effects of the active ingredients in Rhizoma Paridis, suggesting that various active ingredients in Rhizoma Paridis may be potentially therapeutic against cancer.

4.
Front Pharmacol ; 14: 1117762, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36865911

RESUMEN

Objective: Inflammatory pain is one of the most common diseases in daily life and clinic. In this work, we analysed bioactive components of the traditional Chinese medicine Chonglou and studied mechanisms of their analgesic effects. Material and methods: Molecular docking technology and U373 cells overexpressing P2X3 receptors combined with the cell membrane immobilized chromatography were used to screen possible CL bioactive molecules interacting with the P2X3 receptor. Moreover, we investigated the analgesic and anti-inflammatory effects of Polyphyllin VI (PPIV), in mice with chronic neuroinflammatory pain induced by CFA (complete Freund's adjuvant). Results: The results of cell membrane immobilized chromatography and molecular docking showed that PPVI was one of the effective compounds of Chonglou. In mice with CFA-induced chronic neuroinflammatory pain, PPVI decreased the thermal paw withdrawal latency and mechanical paw withdrawal threshold and diminished foot edema. Additionally, in mice with CFA-induced chronic neuroinflammatory pain, PPIV reduced the expression of the pro-inflammatory factors IL-1, IL-6, TNF-α, and downregulated the expression of P2X3 receptors in the dorsal root ganglion and spinal cord. Conclusion: Our work identifies PPVI as a potential analgesic component in the Chonglou extract. We demonstrated that PPVI reduces pain by inhibiting inflammation and normalizing P2X3 receptor expression in the dorsal root ganglion and spinal cord.

5.
Int J Oncol ; 62(3)2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36825585

RESUMEN

Hepatocellular carcinoma (HCC) is a lethal malignancy. Although considerable efforts have been made in recent years regarding treatments, effective therapeutic drugs for HCC remain insufficient. In the present study, polyphyllin VI was identified as a potential therapeutic drug for HCC by screening natural herbal compounds. The therapeutic effects of polyphyllin VI were assessed using Cell Counting Kit­8, lactate dehydrogenase release and colony formation assays. The occurrence of ferroptosis was determined by assessing lipid peroxidation by reactive oxygen species, malondialdehyde levels, intracellular ferrous iron levels, and the mRNA and protein levels of glutathione peroxidase 4 (GPX4). The migratory and invasive abilities of HCC cells were examined using wound healing and Transwell assays. The results revealed that polyphyllin VI inhibited the proliferation, invasion and metastasis of HCC cells (HCCLM3 and Huh7 cells) by inducing ferroptosis. In addition, through a network pharmacology­based approach and molecular docking analyses, it was found that polyphyllin VI may target the signal transducer and activator of transcription 3 (STAT3). HCC cells were treated with polyphyllin VI or a STAT3 inhibitor (Stattic), both of which exerted similar inhibitory effects on protein expression. Furthermore, immunofluorescence staining revealed that polyphyllin VI significantly inhibited the nuclear translocation of p­STAT3 in HCC cells. Mechanistically, by the overexpression of STAT3, it was confirmed that STAT3 binds to GPX4 and promotes its protein expression and transcription, whereas polyphyllin VI induces ferroptosis by inhibiting the STAT3/GPX4 axis. Subsequently, in vivo experiments revealed that polyphyllin VI inhibited the growth of subcutaneously transplanted tumors. On the whole, findings of the present study suggest that polyphyllin VI inhibits STAT3 phosphorylation, which inhibits GPX4 expression and induces the ferroptosis of HCC cells, eventually inhibiting their invasion and metastasis. These data suggest that polyphyllin VI may be a candidate for the prevention and treatment of HCC.


Asunto(s)
Carcinoma Hepatocelular , Ferroptosis , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Ensayos Analíticos de Alto Rendimiento , Factor de Transcripción STAT3/metabolismo , Simulación del Acoplamiento Molecular , Línea Celular Tumoral , Apoptosis
6.
Onco Targets Ther ; 13: 2275-2288, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32214827

RESUMEN

BACKGROUND: Polyphyllin VI (PPVI), a bioactive component derived from a traditional Chinese herb Paris polyphylla, exhibits potential antitumor activity against hepatocellular carcinoma, as well as breast and lung cancers. However, its effect on glioma remains unknown. METHODS: Five glioma cell lines (U251, U343, LN229, U87 and HEB) and an animal model were employed in the study. Anti-proliferation effects of PPVI were first determined using CCK-8 cell proliferation and clone formation assays, then reactive oxygen species (ROS), cell cycle progression and apoptosis effects measured by flow cytometry. The effect of PPVI on protein expression was quantified by Western blot analysis. RESULTS: Data showed that PPVI inhibited the proliferation of glioma cell lines by modulating the G2/M phase. Additionally, incubation of cells with PPVI promoted apoptosis, autophagy, increased accumulation of ROS and activated ROS-modulated JNK and p38 pathways. On the other hand, N-acetyl cysteine, a ROS inhibitor, attenuated PPVI-triggered effects. Furthermore, JNK and p38 inhibitors ameliorated PPVI-triggered autophagy and apoptosis in glioma cells. In vivo assays showed that PPVI inhibited tumor growth of U87 cell line in nude mice. CONCLUSION: Overall, these data suggested that PPVI might be an effective therapeutic agent for glioma.

7.
Cancers (Basel) ; 12(1)2020 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-31941010

RESUMEN

Trillium tschonoskii Maxim (TTM), a traditional Chinese medicine, has been demonstrated to have a potent anti-tumor effect. Recently, polyphyllin VI (PPVI), a main saponin isolated from TTM, was reported by us to significantly suppress the proliferation of non-small cell lung cancer (NSCLC) via the induction of apoptosis and autophagy in vitro and in vivo. In this study, we further found that the NLRP3 inflammasome was activated in PPVI administrated A549-bearing athymic nude mice. As is known to us, pyroptosis is an inflammatory form of caspase-1-dependent programmed cell death that plays an important role in cancer. By using A549 and H1299 cells, the in vitro effect and action mechanism by which PPVI induces activation of the NLRP3 inflammasome in NSCLC were investigated. The anti-proliferative effect of PPVI in A549 and H1299 cells was firstly measured and validated by MTT assay. The activation of the NLRP3 inflammasome was detected by using Hoechst33324/PI staining, flow cytometry analysis and real-time live cell imaging methods. We found that PPVI significantly increased the percentage of cells with PI signal in A549 and H1299, and the dynamic change in cell morphology and the process of cell death of A549 cells indicated that PPVI induced an apoptosis-to-pyroptosis switch, and, ultimately, lytic cell death. In addition, belnacasan (VX-765), an inhibitor of caspase-1, could remarkably decrease the pyroptotic cell death of PPVI-treated A549 and H1299 cells. Moreover, by detecting the expression of NLRP3, ASC, caspase-1, IL-1ß, IL-18 and GSDMD in A549 and h1299 cells using Western blotting, immunofluorescence imaging and flow cytometric analysis, measuring the caspase-1 activity using colorimetric assay, and quantifying the cytokines level of IL-1ß and IL-18 using ELISA, the NLRP3 inflammasome was found to be activated in a dose manner, while VX-765 and necrosulfonamide (NSA), an inhibitor of GSDMD, could inhibit PPVI-induced activation of the NLRP3 inflammasome. Furthermore, the mechanism study found that PPVI could activate the NF-κB signaling pathway via increasing reactive oxygen species (ROS) levels in A549 and H1299 cells, and N-acetyl-L-cysteine (NAC), a scavenger of ROS, remarkably inhibited the cell death, and the activation of NF-κB and the NLRP3 inflammasome in PPVI-treated A549 and H1299 cells. Taken together, these data suggested that PPVI-induced, caspase-1-mediated pyroptosis via the induction of the ROS/NF-κB/NLRP3/GSDMD signal axis in NSCLC, which further clarified the mechanism of PPVI in the inhibition of NSCLC, and thereby provided a possibility for PPVI to serve as a novel therapeutic agent for NSCLC in the future.

8.
Drug Des Devel Ther ; 13: 3091-3103, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31695327

RESUMEN

PURPOSE: Polyphyllin VI, a main active saponin isolated from traditional medicinal plant Paris polyphylla, has exhibited antitumor activities in several cancer cell lines. In the present study, we investigated the antitumor effect of Polyphyllin VI against human osteosarcoma cells (U2OS) and the underlying molecular mechanisms. METHODS: The U2OS cell lines were used to determine the antiproliferative effect of Polyphyllin VI by CCK8 assay. Cell cycle was analyzed by flow cytometry. The Polyphyllin VI-induced apoptosis was determined by Annexin V-APC/7-AAD apoptosis detection kit and JC-1 staining. Meanwhile, the autophagy was determined by acridine orange staining. The apoptosis and autophagy-related proteins were monitored by Western blot assay. Subsequently, intracellular hydrogen peroxide (H2O2) and the activation of ROS/JNK pathway were detected. RESULTS: Polyphyllin VI could potently inhibit cell proliferation by causing G2/M phase arrest. Polyphyllin VI induced mitochondria-mediated apoptosis with the upregulation of proapoptotic proteins Bax and poly ADP-ribose polymerase, and downregulation of antiapoptotic protein Bcl-2 in U2OS cells. Concomitantly, Polyphyllin VI provoked autophagy with the upregulation of critical Atg proteins and accumulation of LC3B-II. Intracellular H2O2 production was triggered upon exposure to Polyphyllin VI, which could be blocked by ROS scavenger. Polyphyllin VI dramatically promoted JNK phosphorylation, whereas it decreased the levels of phospho-p38 and ERK. CONCLUSION: Our results reveal that Polyphyllin VI may effectively induce apoptosis and autophagy to suppress cell growth via ROS/JNK activation in U2OS cells, suggesting that Polyphyllin VI is a potential drug candidate for the treatment of osteosarcomas.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Neoplasias Óseas/tratamiento farmacológico , Osteosarcoma/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Neoplasias Óseas/patología , Línea Celular Tumoral , Humanos , Peróxido de Hidrógeno/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Mitocondrias/metabolismo , Osteosarcoma/patología , Especies Reactivas de Oxígeno/metabolismo
9.
Pharmacol Res ; 147: 104396, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31404628

RESUMEN

Non-small cell lung cancer (NSCLC) accounts for approximately 85% of all lung cancers. Our previous studies have proven that Trillium tschonoskii Maxim. (TTM), a traditional Chinese medicine, possesses potent anti-tumor effect. However, the detailed components and molecular mechanism of TTM in anti-NSCLC are still unknown. In the present experiment, polyphyllin VI (PPVI) was successfully isolated from TTM with guidance of the anti-proliferative effect in A549 cells, and the cell death of PPVI treated A549 and H1299 cells was closely linked with the increased intracellular ROS levels. In addition, PPVI induced apoptosis by promoting the protein expression of Bax/Bcl2, caspase-3 and caspase-9, and activated autophagy by improving LC3 II conversion and GFP-LC3 puncta formation in A549 and H1299 cells. The mechanism study found that the activity of mTOR which regulates cell growth, proliferation and autophagy was significantly suppressed by PPVI. Accordingly, the PI3K/AKT and MEK/ERK pathways positively regulating mTOR were inhibited, and AMPK negatively regulating mTOR was activated. In addition, the downstream of mTOR, ULK1 at Ser 757 which downregulates autophagy was inhibited by PPVI. The apoptotic cell death induced by PPVI was confirmed, and it was significantly suppressed by the overexpression of AKT, ERK and mTOR, and the induced autophagic cell death which was depended on the Atg7 was decreased by the inhibitors, such as LY294002 (LY), Bafilomycin A1 (Baf), Compound C (CC) and SBI-0206965 (SBI). Furthermore, the mTOR signaling pathway was regulated by the increased ROS as the initial signal in A549 and H1299 cells. Finally, the anti-tumor growth activity of PPVI in vivo was validated in A549 bearing athymic nude mice. Taken together, our data have firstly demonstrated that PPVI is the main component in TTM that exerts the anti-proliferative effect by inducing apoptotic and autophagic cell death in NSCLC via the ROS-triggered mTOR signaling pathway, and PPVI may be a promising candidate for the treatment of NSCLC in future.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Saponinas/farmacología , Saponinas/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Muerte Celular Autofágica/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Femenino , Humanos , Neoplasias Pulmonares/metabolismo , Masculino , Ratones Desnudos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Trillium
10.
Eur J Pharmacol ; 851: 161-173, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-30817902

RESUMEN

Polyphyllin VI (PP-VI) is one of the major saponins present in Paris polyphylla Sm., a medicinal plant primarily used for cancer treatment in China and India. However, its anti-metastatic activity remains largely unknown. The current study thus investigated the anti-metastatic activity of PP-VI in mouse mammary carcinoma 4T1 and human breast cancer MDA-MB-231 cells. The anti-metastatic effect of PP-VI was investigated at a sub-cytotoxic dose in migration and invasion assays in vitro. Experimental metastasis mouse model was used to examine the anti-metastatic effect of PP-VI in vivo. Additionally, target prediction, real-time PCR, Western blotting and luciferase assay were performed to identify the target gene of a pro-metastatic microRNA, miR-18a in 4T1 cells. The effect of PP-VI on the identified target of miR-18a was further investigated. The results showed that PP-VI impaired the viability of 4T1 and MDA-MB-231 cells. Moreover, when applied at a sub-cytotoxic dose, PP-VI suppressed the metastatic potential of 4T1 and MDA-MB-231 cells. Receptor expressed in lymphoid tissue (RELT)-like 2 (Rell2) was identified as a direct target of miR-18a with anti-metastatic functions in 4T1 and MDA-MB-231 cells. PP-VI treatment resulted in increased expression of Rell2 and decreased level of miR-18a in 4T1 and MDA-MB-231 cells. PP-VI treatment also attenuated miR-18a mimic or Rell2 siRNA-augmented migration of MDA-MB-231 cells. The current work thus demonstrates for the first time that targeted regulation of Rell2 by miR-18a is in part implicated in the anti-metastatic effect of PP-VI in breast cancer cells, providing novel pharmacological insights into the anti-cancer effect of PP-VI.


Asunto(s)
Neoplasias de la Mama/patología , Proteínas Portadoras/genética , Proteínas de la Membrana/genética , MicroARNs/genética , Saponinas/farmacología , Animales , Secuencia de Bases , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Invasividad Neoplásica , Metástasis de la Neoplasia , Puntos de Control de la Fase S del Ciclo Celular/efectos de los fármacos , Puntos de Control de la Fase S del Ciclo Celular/genética
11.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-851427

RESUMEN

Objective Mining Paris resources with medicinal value could underlay the breeding selection and relieve the pressure on wild resources. Methods Twenty-one Paris resources in the mountain area of Sichuan Basin were collected and selected according to their phenotype and rhizome features. Two resources GQ, MH with bigger rhizome and one resource (GK) with polygemmic feature were screened. After preliminary identification, based on Kimura-2-parameter model, molecular phylogenetic trees were constructed based on the different sequence of ITS and psbA-trnH between the screened resources and the homologous sequences from NCBI using the Maximum Like (ML) method. Main active saponin was determinated by HPLC method to predict its potential medicinal value. Results GQ, GK, and MH were special resources of P. polyphylla var. chinensis, P. polyphylla var. yunnanensis, and P. forrestii, respectively, in mountains around Sichuan Basin. The content and proportion of polyphyllin I, II, VI, VII in GQ, GK, MH were different. The total content was GQ > MH > CK > GK. The proportion of polyphyllin I in GQ and MH was 67.61% and 73.25% higher than CK, respectively. While the proportion of polyphyllin VII was most in GK (56.38%). Conclusion This study specified three Sichuan local Paris resources with excellent rhizome features. And they performed well after introduced to Chengdu Plain providing the material basis for the follow-up breeding study of Paris. Three resources have medicinal potential, especially the polyphyllin I and polyphyllin content in MH (P. forrestii) is higher, which can provide a new choice for screening substitution materials of P. polyphylla var. chinensis and P. polyphylla var. yunnanensis.

12.
Toxins (Basel) ; 10(5)2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29762502

RESUMEN

Polyphyllin VI, which is an active saponin, is mainly isolated from traditional medicinal plant Paris polyphylla, which causes liver damage in rats. In the present study, we aimed to explore the potential cytotoxicity of polyphyllin VI on the growth of HepaRG cells and to determine the molecular mechanism. The results revealed that polyphyllin VI changed cell morphology and induced apoptosis in HepaRG cells. Flow cytometric assay displayed that polyphyllin VI promoted the generation of reactive oxygen species (ROS), depolarized the mitochondrial membrane potential (MMP), and induced S phase cell cycle arrest by decreasing the expression of cyclin A2 and CDK2, while significantly increasing the expression of p21 protein. Polyphyllin VI induced the release of cytochrome c from the mitochondria to the cytosol and activated Fas, caspase-3, -8, -9, and PARP proteins. Pretreatment with NAC and Z-VAD-FMK (ROS scavenger and caspase inhibitor, respectively) on HepaRG cells increased the percentage of viable cells, which indicated that polyphyllin VI induced cell apoptosis through mitochondrial pathway by the generation of ROS and Fas death-dependent pathway. All of the effects are in dose- and time-dependent manners. Taken together, these findings emphasize the necessity of risk assessment to polyphyllin VI and offer an insight into polyphyllin VI-induced apoptosis of HepaRG cells.


Asunto(s)
Potencial de la Membrana Mitocondrial/efectos de los fármacos , Saponinas/farmacología , Receptor fas/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA