RESUMEN
By-products of Capsicum chinense Jacq., var Jaguar could be a source of bioactive compounds. Therefore, we evaluated the anti-inflammatory effect, antioxidant activity, and their relationship with the polyphenol content of extracts of habanero pepper by-products obtained from plants grown on black or red soils of Yucatán, Mexico. Moreover, the impact of the type of extraction on their activities was evaluated. The dry by-product extracts were obtained by maceration (ME), Soxhlet (SOX), and supercritical fluid extraction (SFE). Afterward, the in vivo anti-inflammatory effect (TPA-induced ear inflammation) and the in vitro antioxidant activity (ABTS) were evaluated. Finally, the polyphenolic content was quantified by Ultra-Performance Liquid Chromatography (UPLC), and its correlation with both bioactivities was analyzed. The results showed that the SFE extract of stems of plants grown on red soil yielded the highest anti-inflammatory effect (66.1 ± 3.1%), while the extracts obtained by ME and SOX had the highest antioxidant activity (2.80 ± 0.0052 mM Trolox equivalent) and polyphenol content (3280 ± 15.59 mg·100 g-1 dry basis), respectively. A negative correlation between the anti-inflammatory effect, the antioxidant activity, and the polyphenolic content was found. Overall, the present study proposed C. chinense by-products as a valuable source of compounds with anti-inflammatory effect and antioxidant activity.
Asunto(s)
Antiinflamatorios/química , Antiinflamatorios/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Capsicum/química , Extractos Vegetales/química , Polifenoles/química , Antiinflamatorios/aislamiento & purificación , Antioxidantes/aislamiento & purificación , Fraccionamiento Químico/métodos , Cromatografía con Fluido Supercrítico , Especificidad de Órganos , Fitoquímicos/químicaRESUMEN
BACKGROUND: Chia (Salvia hispanica L.) is a functional food from Central America. Interest in it is growing rapidly due to the many health benefits from the seed. However, when chia is grown at high latitudes, seed yield may be low whereas a high stem biomass and immature inflorescences are produced. Little is known about the chemical composition and the properties of stems and flowers. In this work, the metabolite profile, the antioxidant activity, and the total polyphenol content of stems and inflorescences were evaluated in a factorial experiment with different chia populations (commercial black chia and long-day flowering mutants G3, G8, and G17) and irrigation (100% and 50% of evapotranspiration). RESULTS: The results show the influence of irrigation and seed source on the antioxidant activity and total polyphenol content of chia flower and stem. Inflorescences exhibit higher antioxidant activity, suggesting their potential use as natural antioxidant. The mutants G3 and G8, at 50% irrigation, contained the highest amounts of compounds with nutraceutical value, especially within the flower. The mutant G17 showed lower antioxidant activity and polyphenol content compared to other seed sources but exhibited high omega 3 content in flowers but low in stems. This indicates that chia varieties should be chosen according to the objective of cultivation. CONCLUSION: These findings, indicating a close relation of metabolite content with irrigation and seed source, may provide the basis for the use of chia flower and stem for their nutraceutical value in the food, feed, and supplement industries. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Asunto(s)
Antioxidantes/química , Extractos Vegetales/química , Salvia/crecimiento & desarrollo , Salvia/metabolismo , Riego Agrícola , Antioxidantes/metabolismo , América Central , Suplementos Dietéticos/análisis , Flores/química , Flores/genética , Flores/crecimiento & desarrollo , Flores/metabolismo , Metabolómica , Mutación , Extractos Vegetales/metabolismo , Tallos de la Planta/química , Tallos de la Planta/genética , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/metabolismo , Salvia/química , Salvia/genética , Agua/análisis , Agua/metabolismoRESUMEN
Brown algae biomass has been shown to be a highly important industrial source for the production of alginates and different nutraceutical products. The characterization of this biomass is necessary in order to allocate its use to specific applications according to the chemical and biological characteristics of this highly variable resource. The methods commonly used for algae characterization require a long time for the analysis and rigorous pretreatments of samples. In this work, nondestructive and fast analyses of different morphological structures from Lessonia spicata and Macrocystis pyrifera, which were collected during different seasons, were performed using Fourier transform infrared (FT-IR) techniques in combination with chemometric methods. Mid-infrared (IR) and near-infrared (NIR) spectral ranges were tested to evaluate the spectral differences between the species, seasons, and morphological structures of algae using a principal component analysis (PCA). Quantitative analyses of the polyphenol and alginate contents and the anti-oxidant capacity of the samples were performed using partial least squares (PLS) with both spectral ranges in order to build a predictive model for the rapid quantification of these parameters with industrial purposes. The PCA mainly showed differences in the samples based on seasonal sampling, where changes were observed in the bands corresponding to polysaccharides, proteins, and lipids. The obtained PLS models had high correlation coefficients (r) for the polyphenol content and anti-oxidant capacity (r > 0.9) and lower values for the alginate determination (0.7 < r < 0.8). Fourier transform infrared-based techniques were suitable tools for the rapid characterization of algae biomass, in which high variability in the samples was incorporated for the qualitative and quantitative analyses, and have the potential to be used on an industrial scale.
Asunto(s)
Antioxidantes/análisis , Phaeophyceae/química , Espectrofotometría Infrarroja/métodos , Alginatos/análisis , Alginatos/química , Biomasa , Ácido Glucurónico/análisis , Ácido Glucurónico/química , Ácidos Hexurónicos/análisis , Ácidos Hexurónicos/química , Análisis Multivariante , Polifenoles/análisis , Polifenoles/química , Análisis de RegresiónRESUMEN
Background The effect of polyamines (PAs) along with cytokinins (TDZ and BAP) and auxin (IBA) was induced by the multiple shoot regeneration from leaf explants of gherkin (Cucumis anguria L.). The polyphenolic content, antioxidant and antibacterial potential were studied from in vitro regenerated and in vivo plants. Results Murashige and Skoog (MS) medium supplemented with 3% sucrose containing a combination of 3.0 µM TDZ, 1.0 µM IBA and 75 µM spermidine induced maximum number of shoots (45 shoots per explant) was achieved. Regenerated shoots elongated in shoot elongation medium containing 1.5 µM GA3 and 50 µM spermine. The well-developed shoots were transferred to root induction medium containing 1.0 µM IBA and 50 µM putrescine. Rooted plants were hardened and successfully established in soil with a 95% survival rate. Twenty-five phenolic compounds were identified by ultra-performance liquid chromatography (UPLC) analysis The individual polyphenolic compounds, total phenolic and flavonoid contents, antioxidant and antibacterial potential were significantly higher with in vitro regenerated plants than in vivo plants. Conclusions Plant growth regulators (PGRs) and PAs had a significant effect on in vitro plant regeneration and also a biochemical accumulation of flavonols, hydroxybenzoic and hydroxycinnamic acid derivatives in C. anguria. Due to these metabolic variations, the antioxidant and antibacterial activities were increased with in vitro regenerated plants than in vivo plants. This is the first report describing the production of phenolic compounds and biological activities from in vitro and in vivo regenerated plants of C. anguria.
Asunto(s)
Cucumis/crecimiento & desarrollo , Cucumis/química , Compuestos Fenólicos/análisis , Antibacterianos , Antioxidantes , Reguladores del Crecimiento de las Plantas , Regeneración , Productos Biológicos , Técnicas In Vitro , Brotes de la Planta , FitoquímicosRESUMEN
Two apricot genotypes, 'Gonci magyarkajszi' and 'Preventa' were assayed at three ripening stages for flesh color indices (L*, a*, b*, C* and Hº), contents of total phenolics and vitamin C, and both water- and lipid-soluble antioxidant capacities (ferric reducing antioxidant power; 2,2'-diphenyl-1-picrylhydrazyl scavenging activity; total radical scavenging activity; and Photochem lipid-soluble antioxidant capacity) to compare their dynamics in the accumulation of antioxidant compounds and capacities through ripening. The increase in a*, b* and C* and decrease in Hº during ripening represented a color shift from green to yellow and orange due to carotenoid accumulation. Parallel to carotenoid accumulation, contents of total phenolics and vitamin C and antioxidant capacity increased significantly (p < 0.05) from unripe to fully ripe fruits. More phenolics and vitamin C accumulated in fully ripe fruits of 'Preventa' than 'Gonci magyarkajszi'. The accumulation patterns of these compounds were different: while the vitamin C contents in unripe fruit of 'Preventa' and 'Gonci magyarkajszi' were identical (approx. 6 mg/100 g fresh weight), unripe 'Preventa' contained even more phenolics (approx. 12 mmolGA/l) than fully ripe 'Gonci magyarkajszi' (8 mmolGA/l). Our results confirm that fully ripe 'Preventa' fruits are characterized by outstanding functional properties due to the increased accumulation of vitamin C and phenolics throughout the ripening process.