Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 668
Filtrar
1.
Polymers (Basel) ; 16(19)2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39408416

RESUMEN

Water repellency has significant potential in applications like self-cleaning coatings, anti-staining textiles, and electronics. This study introduces a novel nanocomposite system incorporating functionalized Al2O3 and CeO2 nanoparticles within a polyurethane matrix to achieve hydrophobic and UV-blocking properties. The nanoparticles were functionalized using an octadecyl phosphonic acid solution and characterized by FTIR and XPS, confirming non-covalent functionalization. Spin-coated polyurethane coatings with functionalized and non-functionalized Al2O3, CeO2, and binary Al2O3-CeO2 nanoparticles were analyzed. The three-layered Al2O3-CeO2-ODPA binary system achieved a contact angle of 166.4° and 85% transmittance in the visible range. Incorporating this binary functionalized system into a 0.4% w/v polyurethane solution resulted in a nanocomposite with 75% visible transmittance, 60% at 365 nm UV, and a 147.7° contact angle after three layers. These findings suggest that ODPA-functionalized nanoparticles, when combined with a polymer matrix, offer a promising approach to developing advanced hydrophobic and UV-protective coatings with potential applications across various industrial sectors.

2.
Polymers (Basel) ; 16(19)2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39408500

RESUMEN

Conducting polymers used in chemical sensors are attractive because of their ability to confer reversible properties controlled by the doping/de-doping process. Polyaniline (PANI) is one of the most prominent materials used due to its ease of synthesis, tailored properties, and higher stability. Here, PANI thin films deposited by the drop-casting method on fluorine-doped tin oxide (FTO) substrates were used in electrochemical and optical sensors for pH measurement. The response of the devices was correlated with the deposition parameters; namely, the volume of deposition solution dropped on the substrate and the concentration of the solution, which was determined by the weight ratio of polymer to solvent. The characterisation of the samples aimed to determine the structure-property relationship of the films and showed that the chemical properties, oxidation states, and protonation level are similar for all samples, as concluded from the cyclic voltammetry and UV-VIS spectroscopic analysis. The sensing performance of the PANI film is correlated with its relative physical properties, thickness, and surface roughness. The highest electrochemical sensitivity obtained was 127.3 ± 6.2 mV/pH, twice the Nernst limit-the highest pH sensitivity reported to our knowledge-from the thicker and rougher sample. The highest optical sensitivity, 0.45 ± 0.05 1/pH, was obtained from a less rough sample, which is desirable as it reduces light scattering and sample oxidation. The results presented demonstrate the importance of understanding the structure-property relationship of materials for optimised sensors and their potential applications where high-sensitivity pH measurement is required.

3.
Polymers (Basel) ; 16(18)2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39339021

RESUMEN

Low-density polyethylene (LDPE) has been widely used in various applications due to its flexibility, lightness, and low production cost. However, its massive use in disposable products has raised environmental concerns, prompting the search for more sustainable alternatives. This study aims to investigate the mechanical properties achievable in a composite material utilizing low-density polyethylene (LDPE), potato starch (PS), and cellulose microfibrils (MFCA) at loadings of 0.05%, 0.15%, and 0.30%. Initially, the cellulose acetate microfibrils (MFCA) were produced via an electrospinning process. Subsequently, a dispersive mixture of the aforementioned materials was created through the extrusion and pelletizing process to form pellets. These pellets were then molded by injection molding to produce test specimens in accordance with ASTM D 638, the standard for tensile strength testing. The evaluation of the properties was conducted through mechanical tensile tests (ASTM D638), hardness tests (ASTM D 2240), melt flow index (ASTM D1238), and scanning electron microscopy (SEM). This study determined the influence of cellulose acetate microfibril loadings below 0.3% as reinforcement within a thermoplastic LDPE matrix. It was demonstrated that these microfibrils, due to their length-to-diameter ratio, contribute to an enhancement in the mechanical properties.

4.
Polymers (Basel) ; 16(18)2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39339038

RESUMEN

The influence of fiber orientation on the mechanical behavior of a polymer matrix composite reinforced with natural jute fibers is investigated in this study. Two fiber orientation configurations are examined: the first involves woven fibers aligned in the direction of testing, while the second considers a 45° orientation. The research involves manufacturing composite plates using jute fabric with the mentioned orientations, followed by cutting rectangular specimens for tensile testing to determine which orientation yields superior properties. Displacement fields are measured using a digital image correlation technique, synchronized with load data obtained from a universal testing machine equipped with a load cell to obtain stress-strain curves for each configuration. Results indicate that 0° specimens achieve higher stress but lower strain compared to 45° specimens. This research contributes to understanding the optimal fiber alignment for enhancing the mechanical performance of fiber-reinforced polymer composites.

5.
Polymers (Basel) ; 16(18)2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39339080

RESUMEN

The aim of this study was to develop a material capable of rapidly absorbing bodily fluids and forming a resilient, adhesive, viscoelastic hydrogel in situ to prevent post-surgical adhesions. This material was formulated using O-carboxymethyl chitosan (O-CMCS), oxidized hyaluronic acid (OHA), and a crosslinking pigment derived from genipin and glutamic acid (G/GluP). Both crosslinked (O-CMCS/OHA-G/GluP) and non-crosslinked hydrogels (O-CMCS/OHA) were evaluated using a HAAKE™ MARS™ rheometer for their potential as post-surgical barriers. A rheological analysis, including dynamic oscillatory measurements, revealed that the crosslinked hydrogels exhibited significantly higher elastic moduli (G'), indicating superior gel formation and mechanical stability compared to non-crosslinked hydrogels. The G/GluP crosslinker enhanced gel stability by increasing the separation between G' and G″ and achieving a lower loss tangent (tan δ < 1.0), indicating robustness under dynamic physiological conditions. The rapid hydration and gelation properties of the hydrogels underscore their effectiveness as physical barriers. Furthermore, the O-CMCS/OHA-G/GluP hydrogel demonstrated rapid self-healing and efficient application via spraying or spreading, with tissue adherence and viscoelasticity to facilitate movement between tissues and organs, effectively preventing adhesions. Additionally, the hydrogel proved to be both cost effective and scalable, highlighting its potential for clinical applications aimed at preventing post-surgical adhesions.

6.
Acta Crystallogr C Struct Chem ; 80(Pt 10): 620-626, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39229749

RESUMEN

Research concerning coordination polymers has been intense due to their significant variability and structural stability. With this in mind, an ionic neodymium coordination polymer was synthesized, composed of an anionic one-dimensional polymer interconnected to a cationic three-dimensional porous polymer, poly[dodecaaquabis(µ-pyridine-4-carbohydrazide-κ2N:O)bis(µ2-4-sulfobenzoato-κ2O:O')bis(µ3-4-sulfobenzoato-κ3O:O':O'')trineodymium(III)] catena-poly[aquabis(µ-pyridine-4-carbohydrazide-κ2N:O)bis(µ2-4-sulfobenzoato-κ2O:O')neodymium(III)] 4.33-hydrate, {[Nd3(C7H4O5S)4(C6H7N3O)2(H2O)12][Nd(C7H4O5S)2(C6H7N3O)2(H2O)]·4.33H2O}n. The ligands used were 4-sulfobenzoate (PSB) and pyridine-4-carbohydrazide, popularly known as isoniazid (INH), an antibiotic drug. The compound crystallizes in the monoclinic space group C2/c, with Z = 4. Solid-state calculations suggest that the crystal structure is mainly stabilized by hydrogen bonds, i.e. O-H...O and N-H...O interactions among the polymers, and by van der Waals interactions involving the organic side chains. This net is tetragonal, 2-nodal 3,4-connected, and can be described as the dmd (sqc 528) type.

7.
Gels ; 10(9)2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39330189

RESUMEN

Zn-air batteries (ZABs) are a promising technology; however, their commercialization is limited by challenges, including those occurring in the electrolyte, and thus, gel polymer electrolytes (GPEs) and hydrogels have emerged as substitutes for traditional aqueous electrolytes. In this work, PVA/PAA membranes were synthesized by the solvent casting method and soaked in 6 M KOH to act as GPEs. The thickness of the membrane was modified (50, 100, and 150 µm), and after determining the best thickness, the membrane was modified with synthesized SiO2 nanospheres and multi-walled carbon nanotubes (CNTs). SEM micrographs revealed that the CNTs displayed lengths of tens of micrometers, having a narrow diameter (95 ± 7 nm). In addition, SEM revealed that the SiO2 nanospheres had homogeneous shapes with sizes of 110 ± 10 nm. Physicochemical experiments revealed that SiO2 incorporation at 5 wt.% increased the water uptake of the PVA/PAA membrane from 465% to 525% and the ionic conductivity to 170 mS cm-1. The further addition of 0.5 wt.% CNTs did not impact the water uptake but it promoted a porous structure, increasing the power density and the stability, showing three-times-higher rechargeability than the ZAB operated with the PVA/PAA GPE.

8.
Molecules ; 29(17)2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39275117

RESUMEN

This study proposes an affordable plasma device that utilizes a parallel-plate dielectric barrier discharge geometry with a metallic mesh electrode, featuring a straightforward 3D-printed design. Powered by a high-voltage supply adapted from a cosmetic plasma device, it operates on atmospheric air, eliminating the need for gas flux. Surface modification of polyethylene treated with this device was characterized and showed that the elemental composition after 15 min of plasma treatment decreased the amount of C to ~80 at% due to the insertion of O (~15 at%). Tested against Candida albicans and Staphylococcus aureus, the device achieved a reduction of over 99% in microbial load with exposure times ranging from 1 to 10 min. Simultaneously, the Vero cell viability remained consistently high, namely between 91% and 96% across exposure times. These results highlight this device's potential for the surface modification of materials and various infection-related applications, boasting affordability and facilitating effective antimicrobial interventions.


Asunto(s)
Candida albicans , Gases em Plasma , Staphylococcus aureus , Propiedades de Superficie , Candida albicans/efectos de los fármacos , Gases em Plasma/química , Gases em Plasma/farmacología , Staphylococcus aureus/efectos de los fármacos , Animales , Células Vero , Chlorocebus aethiops , Viabilidad Microbiana/efectos de los fármacos , Polímeros/química
9.
World J Microbiol Biotechnol ; 40(10): 309, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39179751

RESUMEN

Polyethylene, one of the most used petroleum-derived polymers, causes serious environmental pollution. The ability of Pleurotus ostreatus to degrade UV-treated and untreated recycled and unused (new) low-density polyethylene (LDPE) films was studied. We determined the fungal biomass production, enzyme production, and enzyme yield. Changes in the chemical structure and surface morphology of the LDPE after fungal growth were analyzed using FTIR spectroscopy and SEM. Functional group indices and contact angles were also evaluated. In general, the highest Lac (6013 U/L), LiP (2432 U/L), MnP (995 U/L) and UP (6671 U/L) activities were observed in irradiated recycled LDPE (IrRPE). The contact angle of all samples was negatively correlated with fermentation time; the smaller the contact angle, the longer the fermentation time, indicating effective biodegradation. The IrRPE samples exhibited the smallest contact angle (49°) at 4 weeks, and the samples were fragmented (into two pieces) at 5 weeks. This fungus could degrade unused (new) LDPE significantly within 6 weeks. The biodegradation of LDPE proceeded faster in recycled than in unused samples, which can be enhanced by exposing LDPE to UV radiation. Enzymatic production during fungal growth suggest that LDPE degradation is initiated by laccase (Lac) followed by lignin peroxidase (LiP), whereas manganese peroxidase (MnP) and unspecific peroxygenase (UP) are involved in the final degradation process. This is the first experimental study on the fungal growth and its main enzymes involved in LDPE biodegradation. This fungus has great promise as a safe, efficient, and environmentally friendly organism capable of degrading LDPE.


Asunto(s)
Biodegradación Ambiental , Lacasa , Pleurotus , Polietileno , Rayos Ultravioleta , Pleurotus/crecimiento & desarrollo , Pleurotus/metabolismo , Polietileno/química , Polietileno/metabolismo , Lacasa/metabolismo , Fermentación , Reciclaje , Biomasa , Peroxidasas/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier
10.
Chem Asian J ; : e202400739, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39152948

RESUMEN

In the present study, both short-range and long-range structural features of an ionic bridged silsesquioxane, specifically one containing the 1,4-diazoniabicyclo[2.2.2]octane chloride group (ISSQ), were elucidated. This ionic silsesquioxane was synthesized via direct polycondensation of a bridged organosilane precursor, without any additional functionalization step. Si-O-Si cage structures typical of Polyhedral Oligomeric Silsesquioxanes (POSS) were identified. The average interatomic distances of the POSS cages, including the open T8 cage and the T12 cage for the ISSQ, as well as the T8 cage for a commercially available pendant POSS were determined. It is the first report of the interatomic distance determination of POSS cage; achieved by using total pair distribution function G(r) values obtained through high-resolution synchrotron X-ray diffraction combined with density functional theory (DFT) calculations. The application of DFT was crucial for accurately assigning X-ray peaks and verifying structural details. Furthermore, the analysis of X-ray diffraction peaks and the examination of crystalline domains via transmission electron microscopy enabled the proposal of a hexagonal arrangement of Si-O-Si cages over long ranges within the ionic bridged silsesquioxane. This proposed arrangement highlights a distinctive structural organization that could impact the material's properties and applications.

11.
Int J Biol Macromol ; 278(Pt 2): 134697, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39147352

RESUMEN

In this study, lignin derived from corncobs was chemically modified by substituting the hydroxyl groups present in its structure with methacrylate groups through a catalytic reaction using methacrylic anhydride, resulting in methacrylated lignin (ML). These MLs were incorporated in polymerization reaction of the monomer 2-[(acryloyloxy)ethyl trimethylammonium] chloride (Cl-AETA) and Cl-AETA, Cl-AETA/ML polymers were obtained, characterized (spectroscopic, thermal and microscopic analysis), and evaluated for removing Cr (VI) and As (V) from aqueous media in function of pH, contact time, initial metal concentrations and adsorbent amount. The Cl-AETA/ML polymers followed the Langmuir adsorption model for the evaluated metal anions and were able to remove up to 91 % of Cr (VI) with a qmax (maximum adsorption capacity) of 201 mg/g, while for As (V), up to 60 % could be removed with a qmax of 58 mg/g. The results demonstrate that simple modifications in lignin enhance its functionalization and properties, making it suitable for removing contaminants from aqueous media, showing promising results for potential future applications.


Asunto(s)
Cromo , Lignina , Contaminantes Químicos del Agua , Lignina/química , Cromo/química , Cromo/aislamiento & purificación , Adsorción , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos , Polímeros/química , Polímeros/síntesis química , Agua/química , Concentración de Iones de Hidrógeno , Polimerizacion
12.
Polymers (Basel) ; 16(16)2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39204606

RESUMEN

Amid the current environmental crisis caused by plastic accumulation, one of the proposed solutions to manage this problem is using biodegradable polymers. However, the impact of adding biodegradable polymers to the well-established circular economy of recyclable polymers, such as HDPE, has not been fully considered. Therefore, there is a need to reconsider the way we consume, dispose of, and manage biodegradable polymers after use. This study evaluates the effect of varying the contents of a biodegradable polymer, taking poly(lactic acid) (PLA) as a model biodegradable polymer, on the thermal and mechanical properties of HDPE. The study highlights the importance of identifying and disposing of biodegradable polymers to avoid mixtures with HDPE, in order not to affect mechanical performance when considering reprocessing and a new life cycle of this conventional polymer.

13.
Environ Pollut ; 361: 124812, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39182811

RESUMEN

Microplastic (MP) environmental contamination has been widely studied in Mexico. However, the evaluation of the associated risk to MPs in environmental compartments is scarce. Therefore, this study addresses this issue using diverse indicators such as the Pollution Load Index (PLI), the Polymer Risk Index (PRI), and the Potential Ecological Risk Index (PERI). The results of a meta-analysis revealed high MP contamination levels in most of the studied compartments, which included marine and estuarine waters, beach sand, freshwater, sediments, and biota. Regarding the risk assessment indicators, PLIs indicated low (56%), dangerous (22%), moderate (12%), and high (10%) levels across compartments. Meanwhile, PRIs displayed concerning values, with 36%, 35%, 20%, and 9% exhibiting dangerous, high, moderate, and low levels, respectively. Thus, high PRI values emphasized the significant rise in MP pollution, largely attributed to high-hazard polymer compositions. Otherwise, PERIs showed low (56%), very dangerous (29%), moderate (6%), high (5%), and dangerous (4%) levels. Thus, the ecological risk in Mexico is widespread and mainly linked to MP abundance, polymer type, environmental matrix, and characteristics of organisms. This study represents the first attempt at MP ecological risk assessment in Mexico, providing crucial insights for developing mitigation strategies to address concerns about MP contamination.


Asunto(s)
Monitoreo del Ambiente , Microplásticos , Contaminantes Químicos del Agua , México , Medición de Riesgo , Microplásticos/análisis , Contaminantes Químicos del Agua/análisis , Agua Dulce/química , Sedimentos Geológicos/química
14.
Materials (Basel) ; 17(13)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38998334

RESUMEN

The automotive industry is entering a digital revolution, driven by the need to develop new products in less time that are high-quality and environmentally friendly. A proper manufacturing process influences the performance of the door grommet during its lifetime. In this work, uniaxial tensile tests based on molecular dynamics simulations have been performed on an ethylene-propylene-diene monomer (EPDM) material to investigate the effect of the crosslink density and its variation with temperature. The Mooney-Rivlin (MR) model is used to fit the results of molecular dynamics (MD) simulations in this paper and an exponential-type model is proposed to calculate the parameters C1(T) and C2T. The experimental results, confirmed by hardness tests of the cured part according to ASTM 1415-88, show that the free volume fraction and the crosslink density have a significant effect on the stiffness of the EPDM material in a deformed state. The results of molecular dynamics superposition on the MR model agree reasonably well with the macroscopically observed mechanical behavior and tensile stress of the EPDM at the molecular level. This work allows the accurate characterization of the stress-strain behavior of rubber-like materials subjected to deformation and can provide valuable information for their widespread application in the injection molding industry.

15.
Heliyon ; 10(12): e32794, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38975128

RESUMEN

Thermoplastic polyurethane (TPU) doped with multi-walled carbon nanotubes (MWCNTs) at 1, 3, 5, and 7 wt% has been studied. The effect of MWCNTs on thermal, viscoelastic, and electric properties in the TPU matrix was characterized by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and by impedance spectroscopy. The results show that the thermal, electrical, and viscoelastic properties, such as the glass transition temperature, shifted towards high temperatures. The melting temperature decreased, and the conductivity and the storage modulus increased by 61.5 % and 58.3 %. The previously observed behavior on the films is due to the increase in the mass percentage of carbon nanotubes (CNTs) in the TPU matrix. Also, it can be said that the CNTs were homogeneously dispersed in the TPU matrix, preventing the movement of the polymer chains, and generating channels or connections that increase the conductivity and improve the thermal properties of the material.

16.
Colloids Surf B Biointerfaces ; 242: 114098, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39067191

RESUMEN

Despite the promising potential of Solanum plant glycoalkaloids in combating skin cancer, their clinical trials have been halted due to dose-dependent toxicity and poor water solubility. In this study, we present a rational approach to address these limitations and ensure colloidal stability of the nanoformulation over time by designing solid lipid-polymer hybrid nanoparticles (SLPH). Leveraging the biocompatible and cationic properties of polyaspartamides, we employed a new polyaspartamide derivative (P1) as a raw material for this class of nanostructures. Subsequently, we prepared SLPH through a one-step process involving hot-melt emulsification followed by ultrasonication. The physicochemical properties of the SLPH were thoroughly characterized using dynamic light scattering (DLS), ζ-potential analysis, nanoparticle tracking analysis (NTA), differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM). The optimized formulation exhibited long-term stability over six months under low temperatures, maintaining a particle size around 200 nm, a polydispersity index (PdI) lower than 0.2, and a ζ-potential between +35-40 mV. Furthermore, we evaluated the cytotoxic effect of the SLPH against human cutaneous melanoma cells (SK-MEL-28) compared to human foreskin fibroblast cells (HFF-1). Encapsulation of glycoalkaloids into the nanoparticles (SLPH-GE) resulted in a two-fold greater selective cytotoxic profile for melanoma cells than glycoalkaloids-free (GE). The nanoparticles disrupted the stratum corneum barrier with a penetration depth of approximately 77 µm. These findings underscore the potential of the developed nanosystem as an effective glycoalkaloid carrier with suitable colloidal and biological properties for further studies in topical treatment strategies for cutaneous melanoma.


Asunto(s)
Lípidos , Melanoma , Nanopartículas , Polímeros , Humanos , Nanopartículas/química , Lípidos/química , Melanoma/tratamiento farmacológico , Melanoma/patología , Polímeros/química , Polímeros/farmacología , Supervivencia Celular/efectos de los fármacos , Portadores de Fármacos/química , Tamaño de la Partícula , Alcaloides/química , Alcaloides/farmacología , Línea Celular Tumoral , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/patología , Antineoplásicos/farmacología , Antineoplásicos/química , Administración Tópica , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Propiedades de Superficie
17.
Int J Pharm ; 661: 124411, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38960341

RESUMEN

Solasonine (SS) and solamargine (SM) are alkaloids known for their antioxidant and anticancer properties, which can be further enhanced by encapsulating them in nanoparticles. This led to a study on the potential therapeutic benefits of SS and SM against bladder cancer when encapsulated in lipid-polymer hybrid nanoparticles (LPHNP). The LPHNP loaded with SS/SM were prepared using the emulsion and sonication method and their physical-chemical properties characterized. The biological effects of these nanoparticles were then tested in both 2D and 3D bladder cancer cell culture models, as well as in a syngeneic orthotopic mouse model based on the MB49 cell line and ethanol epithelial injury. The LPHNP-SS/SM had an average size of 130 nm, a polydispersity index of 0.22 and a positive zeta potential, indicating the presence of chitosan coating on the nanoparticle surface. The dispersion of LPHNP-SS/SM was found to be monodispersed with a span index of 0.539, as measured by nanoparticle tracking analysis (NTA). The recrystallization index, calculated from DSC data, was higher for the LPHNP-SS/SM compared to LPHNPs alone, confirming the presence of alkaloids within the lipid matrix. The encapsulation efficiency (EE%) was also high, with 91.08 % for SS and 88.35 % for SM. Morphological analysis by AFM and Cryo-TEM revealed that the nanoparticles had a spherical shape and core-shell structure. The study showed that the LPHNP-SS/SM exhibited mucoadhesive properties by physically interacting with mucin, suggesting a potential improvement in interaction with mucous membrane. Both the free and nanoencapsulated SS/SM demonstrated dose-dependent cytotoxicity against bladder cancer cell lines after 24 and 72 h of treatment. In 3D bladder cell culture, the nanoencapsulated SS/SM showed an IC50 two-fold lower than free SS/SM. In vivo studies, the LPHNP-SS/SM displayed an antitumoral effect at high doses, leading to a significant reduction in bladder volume compared to the positive control. However, there were observed instances of systemic toxicity and liver damage, indicated by elevated levels of transaminases (TGO and TGP). Overall, these results indicate that the LPHNPs effectively encapsulated SS/SM, showing high encapsulation efficiency and stability, along with promising in vitro and in vivo antitumoral effects against bladder cancer. Further evaluation of its systemic toxicity effects is necessary to ensure its safety and efficacy for potential clinical application.


Asunto(s)
Lípidos , Nanopartículas , Alcaloides Solanáceos , Neoplasias de la Vejiga Urinaria , Animales , Nanopartículas/química , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/patología , Línea Celular Tumoral , Lípidos/química , Alcaloides Solanáceos/administración & dosificación , Alcaloides Solanáceos/química , Alcaloides Solanáceos/farmacología , Polímeros/química , Ratones , Humanos , Femenino , Portadores de Fármacos/química , Antineoplásicos/química , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Tamaño de la Partícula , Supervivencia Celular/efectos de los fármacos , Ratones Endogámicos C57BL
18.
Polymers (Basel) ; 16(11)2024 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-38891527

RESUMEN

Using a modified co-precipitation method, 11(2) nm γ-Fe2O3 nanoparticles functionalized with PSSNa [Poly(sodium 4-styrenesulfonate)] saloplastic polymer were successfully synthesized, and their structural, vibrational, electronic, thermal, colloidal, hyperfine, and magnetic properties were systematically studied using various analytic techniques. The results showed that the functionalized γ-Fe2O3/PSSNa nanohybrid has physicochemical properties that allow it to be applied in the magnetic remediation process of water. Before being applied as a nanoadsorbent in real water treatment, a short-term acute assay was developed and standardized using a Daphnia magna biomarker. The ecotoxicological tests indicated that the different concentrations of the functionalized nanohybrid may affect the mortality of the Daphnia magna population during the first 24 h of exposure. A lethal concentration of 533(5) mg L-1 was found. At high concentrations, morphological changes were also seen in the body, heart, and antenna. Therefore, these results suggested the presence of alterations in normal growth and swimming skills. The main changes observed in the D. magna features were basically caused by the PSSNa polymer due to its highly stable colloidal properties (zeta potential > -30 mV) that permit a direct and constant interaction with the Daphnia magna neonates.

19.
Mar Pollut Bull ; 205: 116575, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38885574

RESUMEN

Marine plastic litter (MPL) was collected from beaches (n = 3) of the Arauco Gulf in central Chile in spring 2021 and summer 2022. MPL was analyzed for physical and chemical characteristics, and plasticizers were also screened using FTIR-ATR. Three hundred seventeen plastic items with an accumulated weight of 226.8 g were found. MPL densities ranged from 0.4 to 17.1 items m-2. Significant differences (p < 0.05) between seasons were observed for Arauco and Maule beaches, being ∼ten times higher in summer compared to spring. Solid pieces were the predominant shape, macroplastics were the most abundant (>2.5 cm), and white and blue colors were dominant. Polypropylene (52 %) and polyethylene (31 %) were the predominant polymers. Plasticizers (n = 3) were detected in the MPL in the study area (dioctyl phthalate, polybutene, and alpha-methylstyrene) for the first time. This study contributes new information related to MPL in coastal areas of central Chile and their chemical composition.


Asunto(s)
Monitoreo del Ambiente , Plastificantes , Plásticos , Contaminantes Químicos del Agua , Chile , Plásticos/análisis , Plastificantes/análisis , Contaminantes Químicos del Agua/análisis , Playas
20.
Int J Biol Macromol ; 273(Pt 1): 132992, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38857718

RESUMEN

ß-D-galactosidase is a hydrolase enzyme capable of hydrolyzing lactose in milk-based foods. Its free form can be inactivated in solution during the production of low-dosage lactose foods. Then, it is important to study strategies for avoiding the free enzyme inactivation with the aim of circumventing this problem. The stabilization of ß-D-galactosidase in aqueous solution after interactions with chitosan/eucalyptus sawdust composite membrane proved to be a potential strategy when optimized by central composite rotatable (CCR) design. In this case, the best experimental conditions for ß-D-galactosidase partitioning and stability in an aqueous medium containing the chitosan-based composite membrane reinforced with eucalyptus sawdust were i) enzyme/buffer solution ratio of 0.0057, ii) pH 5.6, iii) membrane mass of 50 mg, and iv) temperature lower than 37 °C. Significance was found for the linear enzyme/buffer solution ratio, linear temperature, and quadratic pH (p < 0.05) in the interval between 0 and 60 min of study. In the interval between 60 and 120 min, there was significance (p < 0.12) for linear temperature, the temperature-enzyme/buffer solution ratio interaction and the interaction between linear pH and linear enzyme/buffer solution ratio. The Pareto charts and response surfaces clearly showed all the effects of the experimental variables on the stabilization of ß-D-galactosidase in solution after interactions with the chitosan composite membrane. In this case, industrial food reactors covered with chitosan/eucalyptus sawdust composite membrane could be a strategy for the hydrolysis of lactose during milk-producing processes.


Asunto(s)
Quitosano , Estabilidad de Enzimas , beta-Galactosidasa , Quitosano/química , beta-Galactosidasa/química , beta-Galactosidasa/metabolismo , Concentración de Iones de Hidrógeno , Membranas Artificiales , Soluciones , Temperatura , Lactosa/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA