Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 14741, 2024 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926601

RESUMEN

Potentially toxic metal(loid) assessment of tea and tea garden soil is a vital guarantee of tea safety and is very necessary. This study analyzed the distribution of seven potentially toxic metal(loid)s in different organs of the tea plants and soil at various depths in the Yangai tea farm of Guiyang City, Guizhou Province, China. Although soil potentially toxic metal(loid) in the study area is safe, there should be attention to the health risks of Cu, Ni, As, and Pb in the later stages of tea garden management. Soil As and Pb are primarily from anthropogenic sources, soil Zn is mainly affected by natural sources and human activities, and soil with other potentially toxic metal(loid) is predominantly from natural sources. Tea plants might be the enrichment of Zn and the exclusion or tolerance of As, Cu, Ni, and Pb. The tea plant has a strong ability for absorbing Cd and preferentially storing it in its roots, stems, and mature leaves. Although the Cd and other potentially toxic metal(loid)s content of tea in Guizhou Province is generally within the range of edible safety, with the increase of tea planting years, it is essential to take corresponding measures to prevent the potential health risks of Cd and other potentially toxic metal(loid)s in tea.


Asunto(s)
Camellia sinensis , Contaminantes del Suelo , Suelo , Camellia sinensis/química , Contaminantes del Suelo/análisis , China , Suelo/química , Metales Pesados/análisis , Metales Pesados/toxicidad , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Té/química , Monitoreo del Ambiente , Metales/análisis
2.
Environ Sci Pollut Res Int ; 29(27): 40711-40723, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35083669

RESUMEN

Epidemiological studies found that exposure to air pollution increases cardiovascular hospitalizations. However, studies on rural-urban differences in associations between hospitalizations for cardiovascular diseases and air pollution are limited. The generalized linear model (GLM) was applied to investigate the associations between cardiovascular hospitalizations and air pollution (SO2, NO2, PM2.5, PM10, CO, and O3) in Guangxi, southwest China, in 2015 (January 1-December 31). The relative risk of pollutants (SO2, NO2) on cardiovascular hospital admissions was significantly different between urban and rural areas. The effect of SO2 on cardiovascular hospitalizations was higher in urban areas than in rural areas at lag0 to lag3 and cumulative lag01 to lag03. In urban areas, there were positive associations between NO2 and cardiovascular hospitalizations at lag0, lag1 and cumulative lag01, lag02. In contrast, the effect of NO2 on cardiovascular hospitalizations was not significant in rural areas. Urban residents were more sensitive than rural residents to SO2 and NO2. Subgroup analyses showed statistically significant differences between rural and urban areas in the association between SO2 and NO2 and cardiovascular hospitalizations for males. For age groups, people aged ≥ 65 years appeared to be more vulnerable to SO2 and NO2 in urban areas. The effects of PM2.5 PM10, CO, and O3 on cardiovascular hospitalizations were consistently negative for all groups. Our findings indicated that there were rural-urban differences in associations between cardiovascular hospitalizations and air pollutants. In rural areas, the risk of cardiovascular hospitalizations was mainly influenced by SO2. Therefore, we expect to pay attention to protecting people from air pollution, particularly for those aged ≥ 65 years in urban areas.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , China/epidemiología , Hospitalización , Hospitales , Humanos , Masculino , Dióxido de Nitrógeno , Material Particulado/análisis
3.
Environ Pollut ; 216: 340-349, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27294785

RESUMEN

Ordos Basin is located in an arid and semi-arid region of northwestern China, which is the most important energy source bases in China. Salawusu Formation (Q3 s) is one of the most important aquifer systems of Ordos Basin, which is adjacent to Jurassic coalfield areas. A large-scale exploitation of Jurassic coal resources over ten years results in series of influences to the coal minerals, such as exposed to the oxidation process and dissolution into the groundwater due to the precipitation infiltration. Therefore, how these processes impact groundwater quality is of great concerns. In this paper, the descriptive statistical method, Piper trilinear diagram, ratios of major ions and canonical correspondence analysis are employed to investigate the hydrochemical evolution, determine the possible sources of pollution processes, and assess the controls on groundwater compositions using the monitored data in 2004 and 2014 (before and after large-scale coal mining). Results showed that long-term exploration of coal resources do not result in serious groundwater pollution. The hydrochemical types changed from HCO3(-)-CO3(2-) facies to SO4(2-)-Cl facies during 10 years. Groundwater hardness, nitrate and sulfate pollution were identified in 2014, which was most likely caused by agricultural activities.


Asunto(s)
Agua Subterránea/química , Contaminantes Químicos del Agua/análisis , Agricultura , China , Minas de Carbón , Monitoreo del Ambiente/métodos , Nitratos/análisis , Nitratos/química , Sulfatos/análisis , Sulfatos/química , Contaminantes Químicos del Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA