Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 362: 142613, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38880258

RESUMEN

The suggested nonthermal plasma has been employed for organic pollutants remediation and bacterial inactivation with catalyst (CuFe2O4) via reactive oxygen and nitrogen species, along with catalytic density functional theory processing. The plasma generated species O2- (g.), OH• (g.), H2O2 (aq.), and NOx (aq.) are used for the remediation of organic pollutants, such as reactive black5 and bromocresol green with catalytic oxidative and reductive transformation, like as from Fe2+ (aq.) to Fe3+ (aq.) and from Cu2+ (aq.) to Cu1+ (aq.), respectively. In the presence of plasma with CuFe2O4, the pollutants remediation enhanced more, which is 95 ± 0.78%, rather than only plasma. After removal of pollutants, the plasma processing catalyzed by CuFe2O4 was highly inactivated the E. coli. bacterial growth, which inhibition rate is 100 ± 0.87% and 100 ± 0.69% for reactive black5 and bromocresol green, rather than only plasma, such as 86.41 ± 0.91% and 73.91 ± 0.56%, respectively. The CuFe2O4 generated super oxides (O2- (aq.)) and hydroxides (H+(aq.), OH⦁(aq.), and OOH⦁(aq.)) are rapidly react with bacteria to damage the bacterial cell membrane via catalytic redox process. However, the plasma generated species were react with catalyst to produce the e- charge densities under the redox transformation of spin orientation (±) 0.58 e-, which is 0.007, 0.009, and 0.005 electrons per cubic Angstrom, for CuFe2O4, H2O2(aq.), and NOx(aq.). The plasma generated species concentrations were quantified in the deionized water, which are H2O2(aq.) (145 ± 0.91 µM) and NOx(aq.) (112 ± 0.56 µM), respectively. After eradication of pollutants, the water pH was observed, which is near to the neutral at 6.57 ± 0.27 under the catalytic binary redox process. Moreover, the catalytic stability examined via reusability test, which were four cycles for reactive black5 and three cycles for bromocresol green. Furthermore, the CuFe2O4 nanoparticles conducted several characterizations to analyze the various properties, such as crystal, surface, functional, and elemental.


Asunto(s)
Cobre , Oxidación-Reducción , Gases em Plasma , Catálisis , Cobre/química , Gases em Plasma/química , Teoría Funcional de la Densidad , Restauración y Remediación Ambiental/métodos , Peróxido de Hidrógeno/química , Escherichia coli , Especies Reactivas de Oxígeno/metabolismo , Compuestos Ferrosos , Naftalenosulfonatos
2.
Chemosphere ; 353: 141524, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38403122

RESUMEN

The public and society have increasingly recognized numerous grave environmental issues, including water pollution, attributed to the rapid expansion of industrialization and agriculture. Renewable energy-driven catalytic advanced oxidation processes (AOPs) represent a green, sustainable, and environmentally friendly approach to meet the demands of environmental remediation. In this context, 2D transition metal dichalcogenides (TMDCs) piezoelectric materials, with their non-centrosymmetric crystal structure, exhibit unique features. They create dipole polarization, inducing a built-in electric field that generates polarized holes and electrons and triggers redox reactions, thereby facilitating the generation of reactive oxygen species for wastewater pollutant remediation. A broad spectrum of 2D TMDCs piezoelectric materials have been explored in self-integrated Fenton-like processes and persulfate activation processes. These materials offer a more simplistic and practical method than traditional approaches. Consequently, this review highlights recent advancements in 2D TMDCs piezoelectric catalysts and their roles in wastewater pollutant remediation through piezocatalytic-driven AOPs, such as Fenton-like processes and sulfate radicals-based oxidation processes.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Aguas Residuales , Contaminantes Químicos del Agua/química , Metales , Oxidación-Reducción
3.
Int J Phytoremediation ; 26(6): 873-881, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37897245

RESUMEN

The efficacy of the lesser duckweed, Lemna aequinoctialis (Welw.), to remediate varying concentrations of cadmium, chromium, lead, and vanadium from an organo-metallic contaminated media was tested in artificial surface wetland mesocosm experiment. A 100 g of fresh-weight duckweed was introduced into each of the mesocosm, except for the control setup and monitored for 120 days while the metals removal rate was quantified using an atomic absorption spectrometer. A time-dependent and partial sorption of metals was observed with the highest removal rate recorded for cadmium (71.96%), followed by lead (69.23%), vanadium (55.22%), and chromium (41.64%). The uptake and bioaccumulation of metals were reflected in the increased plant biomass (p < 0.05, F = 97.12) and relative growth rate (p < 0.05, F = 1214.35) in duckweed. A coefficient (r2) of 0.951, 0.919, 0.970, and 0.967 was recorded for cadmium, chromium, lead, and vanadium respectively, indicating that the remediation of metals followed the first-order kinetic rate model. This study highlights the efficacy of the lesser duckweed to preferentially remediate metals in an organo-metallic complex medium for potential wastewater treatment in the petrochemical industry.


Appling ecological or nature-based solutions for the treatment of complex wastewater from the petrochemical industry in Africa remains a challenge due to the paucity of evidence-based science to support the implementation that is acceptable to regulators and the industry. Although laboratory and field-based demonstration of phytoremediation studies has shown the potential of macrophytes for the treatment of organic and inorganic pollutants, studies on the application of duckweed for complex organo-metallic wastewater treatment for heavy metals are few. This study demonstrates the efficacy of the lesser duckweed, Lemna aequinoctialis in the sorption of cadmium, chromium, lead, and vanadium from an organo-metallic complex with potential application in the petrochemical industry.


Asunto(s)
Araceae , Metales Pesados , Cadmio , Cromo , Vanadio , Humedales , Biodegradación Ambiental , Plomo , Metales Pesados/análisis
4.
Chemosphere ; 311(Pt 1): 136979, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36309062

RESUMEN

Currently, researchers have focused on electrokinetic (EK) bioremediation due to its potential to remove a wide-range of pollutants. Further, to improve their performance, synthetic surfactants are employed as effective additives because of their excellent solubility and mobility. Synthetic surfactants have an excessive position in industries since they are well-established, cheap, and easily available. Nevertheless, these surfactants have adverse environmental effects and could be detrimental to aquatic and terrestrial life. Owing to social and environmental awareness, there is a rising demand for bio-based surfactants in the global market, from environmental sustainability to public health, because of their excellent surface and interfacial activity, higher and stable emulsifying property, biodegradability, non- or low toxicity, better selectivity and specificity at extreme environmental conditions. Unfortunately, challenges to biosurfactants, like expensive raw materials, low yields, and purification processes, hinder their applicability to large-scale. To date, extensive research has already been conducted for production scale-up using multidisciplinary approaches. However, it is still essential to research and develop high-yielding bacteria for bioproduction through traditional and biotechnological advances to reduce production costs. Herein, this review evaluates the recent progress made on microbial-surfactants for bioproduction scale-up and provides detailed information on traditional and advanced genetic engineering approaches for cost-effective bioproduction. Furthermore, this study emphasized the role of electrokinetic (EK) bioremediation and discussed the application of BioS-mediated EK for various pollutants remediation.


Asunto(s)
Contaminantes Ambientales , Restauración y Remediación Ambiental , Contaminantes del Suelo , Tensoactivos , Contaminantes del Suelo/análisis , Biodegradación Ambiental , Bacterias
5.
Artículo en Inglés | MEDLINE | ID: mdl-36554606

RESUMEN

Water hyacinth (Eichhornia crassipes) (WH) is a widespread aquatic plant. As a top invasive macrophyte, WH causes enormous economic and ecological losses. To control it, various physical, chemical and biological methods have been developed. However, multiple drawbacks of these methods limited their application. While being a noxious macrophyte, WH has great potential in many areas, such as phytoremediation, manufacture of value-added products, and so on. Resource utilization of WH has enormous benefits and therefore, is a sustainable strategy for its control. In accordance with the increasing urgency of maintaining environmental sustainability, this review concisely introduced up to date WH utilization specifically in pollution remediation and curbing the global warming crisis and discussed the underlying mechanisms.


Asunto(s)
Eichhornia , Restauración y Remediación Ambiental , Contaminantes Químicos del Agua , Biodegradación Ambiental
6.
J Hazard Mater ; 413: 125279, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-33607585

RESUMEN

The removal of uranium species from aqueous phases using non-hazardous chemicals is still an open challenge, and remediation by adsorption is a prosperous strategy. Among the most crucial concerns regarding the design of an efficient material as adsorbent are, except the cost and the green character, the feasibility to be stable and effective under acidic pH, and to selectively adsorb the desired metal ion (e.g. uranium). Herein, we present a phosphonate functionalized ordered mesoporous silica (OMS-P), prepared by a one-step co-condensation synthesis. The physicochemical features of the material were determined by HR-TEM, XPS, EDX, N2 sorption, and solid NMR, while the surface zeta potential was also measured. The removal efficiency was evaluated at two different temperatures (20 and 50 °C) in acidic environment to avoid interferences like solid phase formation or carbonate complexation and the adsorption isotherms, including data fitting with Langmuir and Freundlich models and thermodynamic parameters are presented and discussed. The high and homogeneous dispersion of the phosphonate groups within the entire silica's structure led to the greatest reported up-todays capacity (345 mg/g) at pH = 4, which was achieved in less than 10 min. Additionally, OMS-P showed that the co-presence of other polyvalent cation like Eu(III) did not affect the efficiency of adsorption, which occurs via inner-sphere complex formation. The comparison to the non-functionalized silica (OMS) revealed that the key feature towards an efficient, stable, and selective removal of the U(VI) species is the specific surface chemistry rather than the textural and structural features. Based on all the results and spectroscopic validations of surface adsorbed U(VI), the main interactions responsible for the elevated uranium removal were proposed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA