RESUMEN
Elucidation of biofilm structure formation in the plant growth-promoting rhizobacterium Azospirillum brasilense is necessary to gain a better understanding of the growth of cells within the extracellular matrix and its role in the colonization of plants of agronomic importance. We used immunofluorescence microscopy and confocal laser scanning microscopy to study spatio-temporal biofilm formation on an abiotic surface. Observations facilitated by fluorescence microscopy revealed the presence of polar flagellin, exopolysaccharides, outer major membrane protein (OmaA) and extracellular DNA in the Azospirillum biofilm matrix. In static culture conditions, the polar flagellum disaggregated after 3 days of biofilm growth, but exopolysaccharides were increasing. These findings suggest that the first step in biofilm formation may be attachment, in which the bacterium first makes contact with a surface through its polar flagellum. After attaching to the surface, the long flagella and OmaA intertwine the cells to form a network. These bacterial aggregates initiate biofilm development. The underlying mechanisms dictating how the biofilm matrix components of A. brasilense direct the overall morphology of the biofilm are not well known. The methods developed here might be useful in further studies that analyze the differential spatial regulation of genes encoding matrix components that drive biofilm construction.
Asunto(s)
Azospirillum brasilense/fisiología , Biopelículas/crecimiento & desarrollo , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Azospirillum brasilense/crecimiento & desarrollo , Proteínas de la Membrana Bacteriana Externa/metabolismo , ADN Bacteriano/metabolismo , Flagelina/metabolismo , Cinética , Microscopía Confocal , Microscopía Fluorescente , Polisacáridos Bacterianos/metabolismoRESUMEN
Bacteria Azospirillum brasilense may swim and swarm owing to the rotation of a constitutive polar flagellum (Fla) and inducible lateral flagella (Laf). They also construct sessile biofilms on various interfaces. As compared to the wild-type strain Sp245, the previously characterized Fla- Laf- flhB1 mutant Sp245.1063 accumulated less biomass in mature biofilms, which also were susceptible to the forces of hydrodynamic shear. In this study, we compared biofilms formed by strain Sp245 and its previously constructed derivatives on the interfaces between a minimal (malate-salt medium, or MSM) or rich (LB) liquid growth medium and a hydrophilic (glass) or hydrophobic (polystyrene) solid surface under static or dynamic conditions. In all experimental settings, the alterations in Sp245.1063's mature biofilm traits were partially (in MSM) or completely (in LB) rescued in the complemented mutant Sp245.1063 (pRK415-150177), which received the pRK415-borne coding sequence for the putative FlhB1 protein of the flagellar type III secretion system. Although Laf were not found in the biofilms of azospirilla, Fla was present on the biofilm cells of the complemented mutant Sp245.1063 (pRK415-150177) and other studied strains, which had normal flagellation on liquid and solid nutritional media. Accordingly, mature biofilms of these strains contained more biomass and were significantly more resistant to shaking at 140 rpm, as compared to the biofilms of the flagella-free mutant bacteria. These data proved that the polar flagellum of A. brasilense Sp245 plays a significant positive role in biofilm biomass increase and in biofilm stabilization.
Asunto(s)
Azospirillum brasilense/crecimiento & desarrollo , Biopelículas/crecimiento & desarrollo , Flagelos/genética , Azospirillum brasilense/genética , Azospirillum brasilense/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Medios de Cultivo/química , Flagelos/metabolismo , Hidrodinámica , MutaciónRESUMEN
The bacterium Azospirillum brasilense can swim and swarm owing to the rotation of a constitutive polar flagellum (Fla) and inducible lateral flagella, respectively. They also form biofilms on various interfaces. Experimental data on flagellar assembly and social behaviours in these bacteria are scarce. Here, for the first time, the chromosomal coding sequence mmsB1 for a homologue of 3-hydroxyisobutyrate dehydrogenase (protein accession Nos. ADT80774 and E7CWE2) was shown to play a role in the assembly of motile Fla and in biofilm biomass accumulation. In the previously obtained mutant SK039 of A. brasilense Sp245, an Omegon-Km insertion in mmsB1 was concurrent with changes in cell-surface properties and with suppression of Fla assembly (partial) and Fla-dependent motility (complete). Here, the immotile leaky Fla- mutant SK039 was complemented with the expression vector pRK415-borne mmsB1 gene of Sp245. In the complemented mutant, the elevated relative cell hydrophobicity and changed relative membrane fluidity of SK039 returned to the wild-type levels; also, biofilm biomass accumulation increased and even reached Sp245's levels under nutritionally rich conditions. In strain SK039 (pRK415-mmsB1), the percentage of cells with Fla became significantly higher than that in mutant SK039, and the Fla-driven swimming velocity was equal to that in strain Sp245.