Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mycobiology ; 52(2): 85-91, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38690032

RESUMEN

In filamentous fungi, vegetative cell fusion occurs within and between individuals. These fusions of growing hyphae (anastomosis) from two individuals produce binucleated cells with mixed cytoplasm known as heterokaryons. The fate of heterokaryotic cells was genetically controlled with delicacy by specific loci named het (heterokaryon) or vic (vegetative incompatibility) as a part of self-/nonself-recognition system. When het loci of two individuals are incompatible, the resulting heterokaryotic cells underwent programmed cell death or showed severely impaired fungal growth. In Podospora anserina, het-s is one of at least nine alleles that control heterokaryon incompatibility and the altered protein conformation [Het-s] prion. The present study describes the [Het-s] prion in terms of (1) the historical discovery based on early genetic and physiological studies, (2) architecture built on its common and unique nature compared with other prions, and (3) functions related to meiotic drive and programmed cell death.

2.
Front Aging ; 5: 1356697, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38327611

RESUMEN

Biomembranes fulfill several essential functions. They delimitate cells and control the exchange of compounds between cells and the environment. They generate specialized cellular reaction spaces, house functional units such as the respiratory chain (RC), and are involved in content trafficking. Biomembranes are dynamic and able to adjust their properties to changing conditions and requirements. An example is the inner mitochondrial membrane (IMM), which houses the RC involved in the formation of adenosine triphosphate (ATP) and the superoxide anion as a reactive oxygen species (ROS). The IMM forms a characteristic ultrastructure that can adapt to changing physiological situations. In the fungal aging model Podospora anserina, characteristic age-related changes of the mitochondrial ultrastructure occur. More recently, the impact of membranes on aging was extended to membranes involved in autophagy, an important pathway involved in cellular quality control (QC). Moreover, the effect of oleic acid on the lifespan was linked to basic biochemical processes and the function of membranes, providing perspectives for the elucidation of the mechanistic effects of this nutritional component, which positively affects human health and aging.

3.
J Fungi (Basel) ; 10(1)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38276025

RESUMEN

The ascomycete Podospora anserina is a heterothallic filamentous fungus found mainly on herbivore dung. It is commonly used in laboratories as a model system, and its complete life cycle lasting eight days is well mastered in vitro. The main objective of our team is to understand better the global process of fruiting body development, named perithecia, induced normally in this species by fertilization. Three allelic mutants, named pfd3, pfd9, and pfd23 (for "promoting fruiting body development") obtained by UV mutagenesis, were selected in view of their abilities to promote barren perithecium development without fertilization. By complete genome sequencing of pfd3 and pfd9, and mutant complementation, we identified point mutations in the mcm1 gene as responsible for spontaneous perithecium development. MCM1 proteins are MADS box transcription factors that control diverse developmental processes in plants, metazoans, and fungi. We also identified using the same methods a mutation in the VelC gene as responsible for spontaneous perithecium development in the vacua mutant. The VelC protein belongs to the velvet family of regulators involved in the control of development and secondary metabolite production. A key role of MCM1 and VelC in coordinating the development of P. anserina perithecia with gamete formation and fertilization is highlighted.

4.
Int J Mol Sci ; 24(15)2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37569385

RESUMEN

The Podospora anserina long-term evolution experiment (PaLTEE) is the only running filamentous fungus study, which is still going on. The aim of our work is to trace the evolutionary dynamics of the accumulation of mutations in the genomes of eight haploid populations of P. anserina. The results of the genome-wide analysis of all of the lineages, performed 8 years after the start of the PaLTEE, are presented. Data analysis detected 312 single nucleotide polymorphisms (SNPs) and 39 short insertion-deletion mutations (indels) in total. There was a clear trend towards a linear increase in the number of SNPs depending on the experiment duration. Among 312 SNPs, 153 were fixed in the coding regions of P. anserina genome. Relatively few synonymous mutations were found, exactly 38; 42 were classified as nonsense mutations; 72 were assigned to missense mutations. In addition, 21 out of 39 indels identified were also localized in coding regions. Here, we also report the detection of parallel evolution at the paralog level in the P. anserina model system. Parallelism in evolution at the level of protein functions also occurs. The latter is especially true for various transcription factors, which may indicate selection leading to optimization of the wide range of cellular processes under experimental conditions.

5.
Microbiol Spectr ; : e0146122, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36786590

RESUMEN

In Podospora anserina as in many other Ascomycetes, ascospore germination is a regulated process that requires the breaking of dormancy. Despite its importance in survival and dispersal, ascospore germination in filamentous fungi has been poorly investigated, and little is known about its regulation and genetic control. We have designed a positive genetic screen that led to the isolation of mutants showing uncontrolled germination, the GUN (Germination UNcontrolled) mutants. Here, we report on the characterization of the gun1SG (Spontaneous Germination) mutant. We show that gun1SG is mutated in Pa_6_1340, the ortholog of Magnaporthe oryzae Pth2, which encodes a carnitine-acetyltransferase (CAT) involved in the shuttling of acetyl coenzyme A between peroxisomes and mitochondria and which is required for appressorium development. Bioinformatic analysis revealed that the mutated residue (I441) is highly conserved among Fungi and that the mutation has a deleterious impact on the protein function. We show that GUN1 is essential for ascospore germination and that the protein is localized both in mitochondria and in peroxisomes. Finally, epistasis studies allowed us to place GUN1 together with the PaMpk2 MAPK pathway upstream of the PaNox2/PaPls1 complex in the regulation of ascospore germination. In addition, we show that GUN1 plays a role in appressorium functioning. The pivotal role of GUN1, the ortholog of Pth2, in ascospore germination and in appressorium functioning reinforces the idea of a common genetic regulation governing both appressorium development and melanized ascospore germination. Furthermore, we characterize the second CAT encoded in P. anserina genome, Pa_3_7660/GUP1, and we show that the function of both CATs is conserved in P. anserina. IMPORTANCE The regulation of ascospore germination in filamentous fungi has been poorly investigated so far. To unravel new genes involved in this regulation pathway, we conducted a genetic screen in Podospora anserina, and we isolated 57 mutants affected in ascospore germination. Here, we describe the Germination UNcontrolled One (gun1SG) mutant, and we characterize the gene affected. GUN1 is a peroxisomal/mitochondrial carnitine-acetyltransferase required for acetyl coenzyme A shuttling between both organelles, and we show that GUN1 is a pleiotropic gene also involved in appressorium functioning similarly to its ortholog, the pathogenesis factor Pth2, in the plant pathogen Magnaporthe oryzae. Given the similarities in the regulation of appressorium development and ascospore germination, we speculate that discovering new genes controlling ascospore germination in P. anserina may lead to the discovery of new pathogenesis factors in pathogenic fungi. The characterization of GUN1, the ortholog of M. oryzae Pth2, represents a proof of concept.

6.
Yi Chuan ; 45(12): 1128-1146, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38764276

RESUMEN

The lytic polysaccharide monooxygenase (LPMO) in the auxiliary active protein family (AA family) catalyzes the oxidative depolymerization of various refractory carbohydrates including cellulose, chitin and starch. While accumulating studies investigate the enzymology of LPMO, the research on the inactivation of LPMO genes has been rarely explored. In this study, five LPMO genes PaLPMO11A (Pa_4_4790), PaLPMO11B (Pa_1_5310), PaLPMO11C (Pa_2_7840), PaLPMO11D (Pa_2_8610) and PaLPMO11E (Pa_3_9420) of the AA11 family in the filamentous fungus Podospora anserina were knocked out by homologous recombination. Single mutants ΔPaLPMO11A (ΔA), ΔPaLPMO11B (ΔB), ΔPaLPMO11C (ΔC), ΔPaLPMO11D (ΔD) and ΔPaLPMO11E (ΔE) were constructed, and then all polygenic mutants were constructed via genetic crosses. The differences in the growth rate and sexual reproduction between wild type and mutant strains were observed on different carbon source media. The alteration of oxidative stress and cellulose degradation ability were found on DAB and NBT staining and cellulase activity determination. These results implicated that LPMO11 genes play a key role in the growth, development, and lignocellulose degradation of P. anserina. The results showed that the spore germination efficiency, growth rate and reproductive capacity of mutant strains including ΔBΔCΔE, ΔAΔBΔCΔE, ΔAΔCΔDΔE and ΔAΔBΔCΔDΔE was significantly decreased on different cellulose carbon sources and the remaining strains have no difference. The reduced utilization of various carbon sources, the growth rate, the spore germination rate, the number of fruiting bodies, the normal fruiting bodies, the shortened life span and the ability to degrade cellulose were found in strains which all five genes in the PaLPMO11 family were deleted. However, the strain still had 45% cellulase activity compared to wild type. These results suggest that LPMO11 genes may be involved in the growth and development, sexual reproduction, senescence and cellulose degradation of P. anserina. This study provides information for systematically elucidating the regulatory mechanism of lignocellulose degradation in filamentous fungus P. anserina.


Asunto(s)
Proteínas Fúngicas , Oxigenasas de Función Mixta , Podospora , Podospora/genética , Podospora/enzimología , Podospora/metabolismo , Podospora/crecimiento & desarrollo , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Celulosa/metabolismo , Polisacáridos/metabolismo , Estrés Oxidativo
7.
J Cell Biochem ; 123(8): 1306-1326, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35616269

RESUMEN

Mitochondria are dynamic eukaryotic organelles involved in a variety of essential cellular processes including the generation of adenosine triphosphate (ATP) and reactive oxygen species as well as in the control of apoptosis and autophagy. Impairments of mitochondrial functions lead to aging and disease. Previous work with the ascomycete Podospora anserina demonstrated that mitochondrial morphotype as well as mitochondrial ultrastructure change during aging. The latter goes along with an age-dependent reorganization of the inner mitochondrial membrane leading to a change from lamellar cristae to vesicular structures. Particularly from studies with yeast, it is known that besides the F1 Fo -ATP-synthase and the phospholipid cardiolipin also the "mitochondrial contact site and cristae organizing system" (MICOS) complex, existing of the Mic60- and Mic10-subcomplex, is essential for proper cristae formation. In the present study, we aimed to understand the mechanistic basis of age-related changes in the mitochondrial ultrastructure. We observed that MICOS subunits are coregulated at the posttranscriptional level. This regulation partially depends on the mitochondrial iAAA-protease PaIAP. Most surprisingly, we made the counterintuitive observation that, despite the loss of lamellar cristae and of mitochondrial impairments, the ablation of MICOS subunits (except for PaMIC12) leads to a pronounced lifespan extension. Moreover, simultaneous ablation of subunits of both MICOS subcomplexes synergistically increases lifespan, providing formal genetic evidence that both subcomplexes affect lifespan by different and at least partially independent pathways. At the molecular level, we found that ablation of Mic10-subcomplex components leads to a mitohormesis-induced lifespan extension, while lifespan extension of Mic60-subcomplex mutants seems to be controlled by pathways involved in the control of phospholipid homeostasis. Overall, our data demonstrate that both MICOS subcomplexes have different functions and play distinct roles in the aging process of P. anserina.


Asunto(s)
Membranas Mitocondriales , Podospora , Adenosina Trifosfato/metabolismo , Longevidad , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Fosfolípidos/metabolismo , Podospora/genética , Podospora/metabolismo , Saccharomyces cerevisiae/genética
8.
Fungal Genet Biol ; 161: 103711, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35597448

RESUMEN

The Crippled Growth (CG) cell degeneration of the model ascomycete Podospora anserina (strain S) is controlled by a prion-like element and has been linked to the self-activation of the PaMpk1 MAP kinase cascade. Here, we report on the identification of the "86-11" locus containing twelve genes, ten of which are involved either in setting up the self-activation loop of CG or in inhibiting this loop, as demonstrated by targeted gene deletion. Interestingly, deletion of the whole locus results only in the elimination of CG and in no detectable additional physiological defect. Sequence comparison shows that these ten genes belong to four different families, each one endowed with a specific activity: two encode factors activating the loop, a third one encodes a factor crucial for inhibition of the loop and the fourth one participates in inhibiting the loop in a pathway parallel to the one controlled by the previously described PDC1 gene. Intriguingly, a very distant homologue of this "86-11" locus is present at the syntenic position in Podospora comata (strain T) that do not present Crippled Growth. Introgression of the P. comata strain T locus in P. anserina strain S and the P. anserina strain S in P. comata strain T showed that both drive CG in the P. anserina strain S genetic background, but not in the genetic background of strain P. comata T, indicating that genetic determinants outside the twelve-gene locus are responsible for lack of CG in P. comata strain T. Our data question the role of this twelve-gene locus in the physiology of P. anserina.


Asunto(s)
Familia de Multigenes , Podospora , Eliminación de Gen , Sistema de Señalización de MAP Quinasas , Podospora/genética , Podospora/crecimiento & desarrollo
9.
Int J Mol Sci ; 23(9)2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35563132

RESUMEN

Function of mitochondria largely depends on a characteristic ultrastructure with typical invaginations, namely the cristae of the inner mitochondrial membrane. The mitochondrial signature phospholipid cardiolipin (CL), the F1Fo-ATP-synthase, and the 'mitochondrial contact site and cristae organizing system' (MICOS) complex are involved in this process. Previous studies with Podospora anserina demonstrated that manipulation of MICOS leads to altered cristae structure and prolongs lifespan. While longevity of Mic10-subcomplex mutants is induced by mitohormesis, the underlying mechanism in the Mic60-subcomplex deletion mutants was unclear. Since several studies indicated a connection between MICOS and phospholipid composition, we now analyzed the impact of MICOS on mitochondrial phospholipid metabolism. Data from lipidomic analysis identified alterations in phospholipid profile and acyl composition of CL in Mic60-subcomplex mutants. These changes appear to have beneficial effects on membrane properties and promote longevity. Impairments of CL remodeling in a PaMIC60 ablated mutant lead to a complete abrogation of longevity. This effect is reversed by supplementation of the growth medium with linoleic acid, a fatty acid which allows the formation of tetra-octadecanoyl CL. In the PaMic60 deletion mutant, this CL species appears to lead to longevity. Overall, our data demonstrate a tight connection between MICOS, the regulation of mitochondrial phospholipid homeostasis, and aging of P. anserina.


Asunto(s)
Cardiolipinas , Podospora , Longevidad , Proteínas Mitocondriales/metabolismo , Fosfolípidos , Podospora/genética , Podospora/metabolismo
10.
Biochim Biophys Acta Bioenerg ; 1863(6): 148568, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35533726

RESUMEN

The filamentous ascomycete Podospora anserina is a well-established model system to study organismic aging. Its senescence syndrome has been investigated for more than fifty years and turned out to have a strong mitochondrial etiology. Several different mitochondrial pathways were demonstrated to affect aging and lifespan. Here, we present an update of the literature focusing on the cooperative interplay between different processes.


Asunto(s)
Podospora , Longevidad , Mitocondrias/metabolismo , Podospora/metabolismo
11.
Antioxidants (Basel) ; 11(2)2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35204070

RESUMEN

Various components in the cell are responsible for maintaining physiological levels of reactive oxygen species (ROS). Several different enzymes exist that can convert or degrade ROS; among them are the superoxide dismutases (SODs). If left unchecked, ROS can cause damage that leads to pathology, can contribute to aging, and may, ultimately, cause death. SODs are responsible for converting superoxide anions to hydrogen peroxide by dismutation. Here we review the role of different SODs on the development and pathogenicity of various eukaryotic microorganisms relevant to human health. These include the fungal aging model, Podospora anserina; various members of the genus Aspergillus that can potentially cause aspergillosis; the agents of diseases such as Chagas and sleeping disease, Trypanosoma cruzi and Trypanosoma brucei, respectively; and, finally, pathogenic amoebae, such as Acanthamoeba spp. In these organisms, SODs fulfill essential and often regulatory functions that come into play during processes such as the development, host infection, propagation, and control of gene expression. We explore the contribution of SODs and their related factors in these microorganisms, which have an established role in health and disease.

12.
Cells ; 11(3)2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-35159328

RESUMEN

The maintenance of cellular homeostasis over time is essential to avoid the degeneration of biological systems leading to aging and disease. Several interconnected pathways are active in this kind of quality control. One of them is autophagy, the vacuolar degradation of cellular components. The absence of the sorting nexin PaATG24 (SNX4 in other organisms) has been demonstrated to result in impairments in different types of autophagy and lead to a shortened lifespan. In addition, the growth rate and the size of vacuoles are strongly reduced. Here, we report how an oleic acid diet leads to longevity of the wild type and a PaAtg24 deletion mutant (ΔPaAtg24). The lifespan extension is linked to altered membrane trafficking, which abrogates the observed autophagy defects in ΔPaAtg24 by restoring vacuole size and the proper localization of SNARE protein PaSNC1. In addition, an oleic acid diet leads to an altered use of the mitochondrial respiratory chain: complex I and II are bypassed, leading to reduced reactive oxygen species (ROS) production. Overall, our study uncovers multiple effects of an oleic acid diet, which extends the lifespan of P. anserina and provides perspectives to explain the positive nutritional effects on human aging.


Asunto(s)
Podospora , Autofagia , Metabolismo Energético , Humanos , Longevidad , Mitocondrias/metabolismo , Ácido Oléico/metabolismo
13.
Appl Environ Microbiol ; 88(6): e0237821, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35080910

RESUMEN

The model ascomycete Podospora anserina, distinguished by its strict sexual development, is a prolific but yet unexploited reservoir of natural products. The GATA-type transcription factor NsdD has been characterized by the role in balancing asexual and sexual reproduction and governing secondary metabolism in filamentous fungi. In the present study, we functionally investigated the NsdD ortholog PaNsdD in P. anserina. Compared to the wild-type strain, vegetative growth, ageing processes, sexual reproduction, stress tolerance, and interspecific confrontations in the mutant were drastically impaired, owing to the loss of function of PaNsdD. In addition, the production of 3-acetyl-4-methylpyrrole, a new metabolite identified in P. anserina in this study, was significantly inhibited in the ΔPaNsdD mutant. We also demonstrated the interplay of PaNsdD with the sterigmatocystin biosynthetic gene pathway, especially as the deletion of PaNsdD triggered the enhanced red-pink pigment biosynthesis that occurs only in the presence of the core polyketide synthase-encoding gene PaStcA of the sterigmatocystin pathway. Taken together, these results contribute to a better understanding of the global regulation mediated by PaNsdD in P. anserina, especially with regard to its unexpected involvement in the fungal ageing process and its interplay with the sterigmatocystin pathway. IMPORTANCE Fungal transcription factors play an essential role in coordinating multiple physiological processes. However, little is known about the functional characterization of transcription factors in the filamentous fungus Podospora anserina. In this study, a GATA-type regulator PaNsdD was investigated in P. anserina. The results showed that PaNsdD was a key factor that can control the fungal ageing process, vegetative growth, pigmentation, stress response, and interspecific confrontations and positively regulate the production of 3-acetyl-4-methylpyrrole. Meanwhile, a molecular interaction was implied between PaNsdD and the sterigmatocystin pathway. Overall, loss of function of PaNsdD seems to be highly disadvantageous for P. anserina, which relies on pure sexual reproduction in a limited life span. Therefore, PaNsdD is clearly indispensable for the survival and propagation of P. anserina in its complex ecological niches.


Asunto(s)
Podospora , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hongos/metabolismo , Factores de Transcripción GATA/metabolismo , Podospora/genética , Podospora/metabolismo , Esterigmatocistina/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
14.
J Fungi (Basel) ; 9(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36675830

RESUMEN

The coprophilous ascomycete Podospora anserina is known to have a high potential to synthesize a wide array of secondary metabolites (SMs). However, to date, the characterization of SMs in this species, as in other filamentous fungal species, is far less than expected by the functional prediction through genome mining, likely due to the inactivity of most SMs biosynthesis gene clusters (BGCs) under standard conditions. In this work, our main objective was to compare the global strategies usually used to deregulate SM gene clusters in P. anserina, including the variation of culture conditions and the modification of the chromatin state either by genetic manipulation or by chemical treatment, and to show the complementarity of the approaches between them. In this way, we showed that the metabolomics-driven comparative analysis unveils the unexpected diversity of metabolic changes in P. anserina and that the integrated strategies have a mutual complementary effect on the expression of the fungal metabolome. Then, our results demonstrate that metabolite production is significantly influenced by varied cultivation states and epigenetic modifications. We believe that the strategy described in this study will facilitate the discovery of fungal metabolites of interest and will improve the ability to prioritize the production of specific fungal SMs with an optimized treatment.

15.
Cells ; 10(12)2021 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-34943827

RESUMEN

The accumulation of functionally impaired mitochondria is a key event in aging. Previous works with the fungal aging model Podospora anserina demonstrated pronounced age-dependent changes of mitochondrial morphology and ultrastructure, as well as alterations of transcript and protein levels, including individual proteins of the oxidative phosphorylation (OXPHOS). The identified protein changes do not reflect the level of the whole protein complexes as they function in-vivo. In the present study, we investigated in detail the age-dependent changes of assembled mitochondrial protein complexes, using complexome profiling. We observed pronounced age-depen-dent alterations of the OXPHOS complexes, including the loss of mitochondrial respiratory supercomplexes (mtRSCs) and a reduction in the abundance of complex I and complex IV. Additionally, we identified a switch from the standard complex IV-dependent respiration to an alternative respiration during the aging of the P. anserina wild type. Interestingly, we identified proteasome components, as well as endoplasmic reticulum (ER) proteins, for which the recruitment to mitochondria appeared to be increased in the mitochondria of older cultures. Overall, our data demonstrate pronounced age-dependent alterations of the protein complexes involved in energy transduction and suggest the induction of different non-mitochondrial salvage pathways, to counteract the age-dependent mitochondrial impairments which occur during aging.


Asunto(s)
Mitocondrias/metabolismo , Fosforilación Oxidativa , Podospora/crecimiento & desarrollo , Podospora/metabolismo , Respiración de la Célula , Transporte de Electrón
16.
Fungal Biol ; 125(11): 923-933, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34649679

RESUMEN

The development of mycological gerontology requires effective methods for assessing the biological age of fungal cells. This assessment is based on the analysis of a complex of aging and oxidative stress markers. One of the most powerful such markers is the protein carbonylation. In this study, the already known method of dry immune dot blotting is adapted for mycological studies of the content of protein carbonyl groups. After testing the method on a number of filamentous fungi species, some features of the accumulation of carbonylated proteins in mycelium were established. Among these features: (i) a weak effect of exogenous oxidative stress on the accumulation of carbonyls in a number of fungi, (ii) reversibility of the carbonyl accumulation, (iii) possibility of arbitrary regulation of carbonyl content by fungus itself and (iv) the influence of hormesis. In addition, two polar strategies for the accumulation of carbonyl modification were revealed, named Id-strategy (Indifferent) and Cn-strategy (Concern). Thus, even the analysis of one marker allows making some preliminary general assumptions and conclusions. For example, the idea that fungi can freely regulate their biological age is confirmed. This feature makes fungi very flexible in terms of responding to environmental influences and promising objects for gerontology.


Asunto(s)
Proteínas Fúngicas , Estrés Oxidativo , Proteínas Fúngicas/genética , Hongos/metabolismo , Micelio/metabolismo , Carbonilación Proteica
17.
Epigenetics Chromatin ; 14(1): 22, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33962663

RESUMEN

BACKGROUND: Selective gene silencing is key to development. It is generally accepted that H3K27me3-enriched heterochromatin maintains transcriptional repression established during early development and regulates cell fate. Conversely, H3K9me3-enriched heterochromatin prevents differentiation but constitutes protection against transposable elements. We exploited the fungus Podospora anserina, a valuable alternative to higher eukaryote models, to question the biological relevance and functional interplay of these two distinct heterochromatin conformations. RESULTS: We established genome-wide patterns of H3K27me3 and H3K9me3 modifications, and found these marks mutually exclusive within gene-rich regions but not within repeats. We generated the corresponding histone methyltransferase null mutants and showed an interdependence of H3K9me3 and H3K27me3 marks. Indeed, removal of the PaKmt6 EZH2-like enzyme resulted not only in loss of H3K27me3 but also in significant H3K9me3 reduction. Similarly, removal of PaKmt1 SU(VAR)3-9-like enzyme caused loss of H3K9me3 and substantial decrease of H3K27me3. Removal of the H3K9me binding protein PaHP1 provided further support to the notion that each type of heterochromatin requires the presence of the other. We also established that P. anserina developmental programs require H3K27me3-mediated silencing, since loss of the PaKmt6 EZH2-like enzyme caused severe defects in most aspects of the life cycle including growth, differentiation processes and sexual reproduction, whereas loss of the PaKmt1 SU(VAR)3-9-like enzyme resulted only in marginal defects, similar to loss of PaHP1. CONCLUSIONS: Our findings support a conserved function of the PRC2 complex in fungal development. However, we uncovered an intriguing evolutionary fluidity in the repressive histone deposition machinery, which challenges canonical definitions of constitutive and facultative heterochromatin.


Asunto(s)
Podospora , Metilación de ADN , Heterocromatina/genética , Metiltransferasas/genética , Podospora/genética
18.
G3 (Bethesda) ; 11(8)2021 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-33974074

RESUMEN

Melanins are pigments used by fungi to withstand various stresses and to strengthen vegetative and reproductive structures. In Sordariales fungi, their biosynthesis starts with a condensation step catalyzed by an evolutionary-conserved polyketide synthase. Here we show that complete inactivation of this enzyme in the model ascomycete Podospora anserina through targeted deletion of the PaPks1 gene results in reduced female fertility, in contrast to a previously analyzed nonsense mutation in the same gene that retains full fertility. We also show the utility of PaPks1 mutants for detecting rare genetic events in P. anserina, such as parasexuality and possible fertilization and/or apomixis of nuclei devoid of mating-type gene.


Asunto(s)
Proteínas Fúngicas/fisiología , Melaninas/fisiología , Podospora , Fertilidad/genética , Proteínas Fúngicas/genética , Melaninas/genética , Podospora/genética , Podospora/fisiología
19.
Cells ; 10(4)2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33808173

RESUMEN

Mitochondrial F1Fo-ATP-synthase dimers play a critical role in shaping and maintenance of mitochondrial ultrastructure. Previous studies have revealed that ablation of the F1Fo-ATP-synthase assembly factor PaATPE of the ascomycete Podospora anserina strongly affects cristae formation, increases hydrogen peroxide levels, impairs mitochondrial function and leads to premature cell death. In the present study, we investigated the underlying mechanistic basis. Compared to the wild type, we observed a slight increase in non-selective and a pronounced increase in mitophagy, the selective vacuolar degradation of mitochondria. This effect depends on the availability of functional cyclophilin D (PaCYPD), the regulator of the mitochondrial permeability transition pore (mPTP). Simultaneous deletion of PaAtpe and PaAtg1, encoding a key component of the autophagy machinery or of PaCypD, led to a reduction of mitophagy and a partial restoration of the wild-type specific lifespan. The same effect was observed in the PaAtpe deletion strain after inhibition of PaCYPD by its specific inhibitor, cyclosporin A. Overall, our data identify autophagy-dependent cell death (ADCD) as part of the cellular response to impaired F1Fo-ATP-synthase dimerization, and emphasize the crucial role of functional mitochondria in aging.


Asunto(s)
Muerte Celular Autofágica , Peptidil-Prolil Isomerasa F/metabolismo , Podospora/enzimología , Podospora/fisiología , Multimerización de Proteína , ATPasas de Translocación de Protón/metabolismo , Eliminación de Gen , Peróxido de Hidrógeno/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Mitofagia , Podospora/citología , ATPasas de Translocación de Protón/deficiencia , Vacuolas/metabolismo
20.
J Fungi (Basel) ; 7(4)2021 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-33807190

RESUMEN

Research on Podospora anserina unraveled a network of molecular pathways affecting biological aging. In particular, a number of pathways active in the control of mitochondria were identified on different levels. A long-known key process active during aging of P. anserina is the age-related reorganization of the mitochondrial DNA (mtDNA). Mechanisms involved in the stabilization of the mtDNA lead to lifespan extension. Another critical issue is to balance mitochondrial levels of reactive oxygen species (ROS). This is important because ROS are essential signaling molecules, but at increased levels cause molecular damage. At a higher level of the network, mechanisms are active in the repair of damaged compounds. However, if damage passes critical limits, the corresponding pathways are overwhelmed and impaired molecules as well as those present in excess are degraded by specific enzymes or via different forms of autophagy. Subsequently, degraded units need to be replaced by novel functional ones. The corresponding processes are dependent on the availability of intact genetic information. Although a number of different pathways involved in the control of cellular homeostasis were uncovered in the past, certainly many more exist. In addition, the signaling pathways involved in the control and coordination of the underlying pathways are only initially understood. In some cases, like the induction of autophagy, ROS are active. Additionally, sensing and signaling the energetic status of the organism plays a key role. The precise mechanisms involved are elusive and remain to be elucidated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA