Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Physiol Biochem ; 206: 108254, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38056037

RESUMEN

Gibberellins (GAs) play a crucial role in regulating secondary growth in angiosperms, but their effects on the secondary growth of gymnosperms are rarely reported. In this study, we administered exogenous GA3 to two-year-old P. massoniana seedlings, and examined its effects on anatomical structure, physiological and biochemical changes, and gene expression in stems. The results showed that exogenous GA3 could enhance xylem development in P. massoniana by promoting cell division. The content of endogenous hormone (including auxins, brassinosteroids, and gibberellins) were changed and the genes related to phytohormone biosynthesis and signaling pathway, such as GID1, DELLA, TIR1, ARF, SAUR, CPD, BR6ox1, and CYCD3, were differentially expressed under GA3 treatment. Furthermore, GA3 and BR (brassinosteroid) might act synergistically in promoting secondary growth in P. massoniana. Additionally, lignin content was significantly increased after GA3 treatment accompanied by the express of lignin biosynthesis related genes. PmCAD (TRINITY_DN142116_c0_g1), a crucial gene involved in the lignin biosynthesis, was cloned and overexpressed in Nicotiana benthamiana, significantly promoting the xylem development and enhancing stem lignification. It was regarded as a key candidate gene for improving stem growth of P. massoniana. The findings of this study have demonstrated the impact of GA3 treatment on secondary growth of stems in P. massoniana, providing a foundation for understanding the molecular regulatory mechanism of stem secondary growth in Pinaceae seedlings and offering theoretical guidance for cultivating new germplasm with enhanced growth and yield.


Asunto(s)
Giberelinas , Pinus , Giberelinas/farmacología , Giberelinas/metabolismo , Plantones/metabolismo , Lignina/metabolismo , Pinus/genética , Pinus/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Brasinoesteroides/farmacología , Brasinoesteroides/metabolismo , Regulación de la Expresión Génica de las Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA