Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.606
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124947, 2025 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-39163769

RESUMEN

Plasmonic nanoparticles (NPs) hold considerable potential as photocatalysts owing to their robust light-matter interactions across diverse electromagnetic wavelengths, which significantly influence the photophysical characteristics of the adjacent molecular entities. Despite the widespread use of noble-metal NPs in surface-enhanced Raman scattering (SERS) applications, little is known about the kinetics of nanoparticle aggregation and how it affects their configurations. This study investigates the plasmon-driven photochemical conversion of 4-nitrobenzenethiol (NBT) to 4,4'-dimercaptoazobenzene (DMAB) on Au and Ag nanorods (NRs) through SERS. Significantly, photoconversion phenomena were observed on Ag NRs but not on Au NRs upon laser excitation at 633 nm. Finite-difference time-domain simulations revealed the presence of stronger electromagnetic fields on Ag NRs than on Au NRs. The aspect ratios and gaps between individual NPs in dimer configurations were determined to elucidate their effects on electromagnetic fields. The Ag NR dimer with an end-to-end configuration, an aspect ratio of 3.3, and a 1-nm gap exhibited the highest enhancement factor of 1.05 × 1012. Our results demonstrate that the primary contribution from diverse configurations in NR aggregates is the end-to-end configuration. The proposed NP design with adjustable parameters is expected to advance research in plasmonics, sensing, and wireless communications. These findings also contribute to the understanding of plasmon-driven photochemical processes in metallic nanostructures.

2.
Anal Biochem ; : 115672, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39293645

RESUMEN

The integration of fiber optics and plasmonic sensors is promising to improve the practical usability over conventional bulky sensors and systems. To achieve high sensitivity, it typically requires fabrication of well-defined plasmonic nanostructures on optical fibers, which greatly increases the cost and complexity of the sensors. Here, we present a fiber-optic sensor system by using chemical absorption of gold nanoparticles and a replaceable configuration. By functioning gold nanoparticles with aptamers or antibodies, we demonstrate the applications in chemical sensing using two different modes. Measuring shift in resonance wavelength enables the Pb2+ detection with a high linearity and a limit of detection of 0.097nM, and measuring absorption peak amplitude enables the detection of E. coli in urinary tract infection with a dynamic range between 103 to 108 CFU/mL. The high sensitivity, simple fabrication and disposability of this sensing approach could pave the way for point-of-care testing with fiber-optic plasmonic sensors.

3.
Small ; : e2403502, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39291897

RESUMEN

Current challenges in environmental science, medicine, food chemistry as well as the emerging use of artificial intelligence for solving problems in these fields require distributed, local sensing. Such ubiquitous sensing requires components with 1) high sensitivity, 2) power efficiency, 3) miniaturizability, and 4) the ability to directly interface with electronic circuitry, i.e., electronic readout of sensing signals. Over the recent years, several nanoparticle-based approaches have found their way into this field and have demonstrated high performance. However, challenges remain, such as the toxicity of many of today's narrow bandgap semiconductors for NIR detection and the high energy consumption as well as low selectivity of state-of-the-art commercialized gas sensors. With their unique light-matter interaction and ink-based fabrication schemes, plasmonic nanostructures provide potential technological solutions to these challenges, leading also to better environmental performance. In this perspective recent approaches of using plasmonic nanoparticles are discussed for the fabrication of NIR photodetectors and light-activated, energy-efficient gas sensing devices. In addition, new strategies implying computational approaches are pointed out for miniaturizable spectrometers, exploiting the wide spectral tunability of plasmonic nanocomposites, and for selective gas sensors, utilizing dynamic light activation. The benefits of colloidal approaches for device fabrication are discussed with regard to technological advantages and environmental aspects, which are barely considered so far.

4.
Nano Lett ; 24(37): 11706-11713, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39230335

RESUMEN

Bichiral plasmonic nanoparticles exhibited intriguing geometry-dependent circular dichroism (CD) reversal; however, the crucial factor that dominates the plasmonic CD is still unclear. Combined with CD spectroscopy and theoretical multipole analysis, we demonstrate that plasmonic CD originates from the excitation of electric quadrupolar plasmons. Moreover, a comparative study of two distinct quadrupolar modes reveals the correlation between the sign of the CD and the local geometric handedness at the plasmonic hotspots, thereby establishing a structure-property relationship in bichiral nanoparticles. The reverse CD is attributed to the opposite directions of the wavelength shift of the two plasmon modes upon changing the particle geometry. By finely tuning the size of bichiral nanoparticles, we can further reveal that the dependence of plasmonic CD on the electric quadrupolar plasmons. Our work sheds light on the physical origin of plasmonic CD and provides important guidelines for the design of chiral plasmonic nanoparticles toward chirality-dependent applications.

5.
Nano Lett ; 24(37): 11581-11589, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39234957

RESUMEN

Super-resolution fluorescence imaging has offered unprecedented insights and revolutionized our understanding of biology. In particular, localized plasmonic structured illumination microscopy (LPSIM) achieves video-rate super-resolution imaging with ∼50 nm spatial resolution by leveraging subdiffraction-limited nearfield patterns generated by plasmonic nanoantenna arrays. However, the conventional trial-and-error design process for LPSIM arrays is time-consuming and computationally intensive, limiting the exploration of optimal designs. Here, we propose a hybrid inverse design framework combining deep learning and genetic algorithms to refine LPSIM arrays. A population of designs is evaluated using a trained convolutional neural network, and a multiobjective optimization method optimizes them through iteration and evolution. Simulations demonstrate that the optimized LPSIM substrate surpasses traditional substrates, exhibiting higher reconstruction accuracy, robustness against noise, and increased tolerance for fewer measurements. This framework not only proves the efficacy of inverse design for tailoring LPSIM substrates but also opens avenues for exploring new plasmonic nanostructures in imaging applications.

6.
Nano Lett ; 24(37): 11607-11614, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39248258

RESUMEN

Fourier transform infrared (FTIR) spectroscopy is widely used for molecular analysis. However, for the materials situated in an aqueous environment, a precondition for live biological objects such as cells, transmission-based FTIR is prevented by strong water absorption of mid-infrared (MIR) light. Reflection-based cellular assays using internal reflection elements (IREs) such as high-index prisms or flat plasmonic metasurfaces mitigate these issues but suffer from a shallow probing volume localized near the plasma membrane. Inspired by the recent introduction of high-aspect-ratio nanostructures as a novel platform for manipulating cellular behavior, we demonstrate that the integration of plasmonic metasurfaces with tall dielectric nanostructures dramatically enhances the sensing capabilities of FTIR spectroscopy. We also demonstrate the ability of a metal-on-dielectric metasurface to transduce intracellular processes, such as protein translocation to high-curvature membrane regions during cell adhesion, into interpretable spectral signatures of the reflected light.


Asunto(s)
Nanoestructuras , Nanoestructuras/química , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Humanos , Propiedades de Superficie , Adhesión Celular , Metales/química , Membrana Celular/química
7.
Adv Mater ; : e2409565, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39279612

RESUMEN

More than half of pharmaceutical drugs in use are chiral, necessitating accurate techniques for their characterization. Enantiomers, molecules with mirrored symmetry, often exhibit similar physical traits but possess distinct chemical and biological implications. This study harnesses the strong light-matter interaction induced by "superchiral" light to perform Surface-Enhanced Infrared Absorption (SEIRA) induced vibrational circular dichroism measurements in the mid-infrared spectral region. Utilizing a nanopatterned pixelated array of achiral plasmonic nanostructures, the system allows unique identification of enantiomers and biomolecules. Tunability of plasmon resonance facilitates spectral variation of the optical chirality over a wide infrared range, enabling development of a unique chiral "barcoding" scheme to distinguish chiral molecules based on their infrared fingerprint. This simple, yet robust sensor presents a low-cost solution for chiral mapping of drugs and biomolecules.

8.
Sci Rep ; 14(1): 21217, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261514

RESUMEN

This paper presents a tunable, single-mode narrowband optical filter designed for terahertz applications utilizing graphene nanoribbons. To attain optimal conditions, the filter was devised in three steps. It is composed of two input and output waveguides and a T-shaped resonator with nanoscale dimensions. The transmission spectrum analysis employs the three-dimensional finite difference time domain and coupled mode theory methods. Tunability is achieved through the adjustment of the nanoribbon size and the chemical potential of graphene. The filter demonstrates remarkable performance metrics, including a maximum transmission spectrum efficiency of 99%, a full width at half maximum (FWHM) of 0.115 THz, a quality factor (Q-factor) of 100, and a free spectral range (FSR) of 45 THz. The presented structure holds significant promise for integrated optical components and compact optical devices, showcasing its applicability in the terahertz frequency range. Furthermore, the inherent sensitivity of this structure to changes in the refractive index of the substrate positions it as a potential sensor.

9.
Small ; : e2404755, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225377

RESUMEN

Proper formulation of systems containing plasmonic and photochromic units, such as gold nanoparticles and azobenzene derivatives, yields materials and interfaces with synergic functionalities. Moreover, gold nanoparticles are known to accelerate the Z-E isomerization of azobenzene molecules in the dark. However, very little is known about the light-driven, plasmon-assisted Z-E isomerization of azobenzene compounds. Additionally, most of the azobenzene-gold hybrids are prepared with nanoparticles of small, isotropic shapes and azobenzene ligands covalently linked to the surface of nanostructures. Herein, a formulation of an innovative system combining azobenzene derivative, gold nanorods, and cellulose nanofibers is proposed. The system's structural integrity relies on electrostatic interactions among components instead of covalent linkage. Cellulose, a robust scaffold, maintains the material's functionality in water and enables monitoring of the material's plasmonic-photochromic properties upon irradiation and at elevated temperatures without gold nanorods aggregation. Experimental evidence supported by statistical analysis suggests that the optical properties of plasmonic nanometal enable indirect control over the Z-E isomerization of the photochromic component with near-infrared irradiation by triggering the thermoplasmonic effect. The proposed hybrid material's dual plasmonic-photochromic functionality, versatility, and ease of processing render a convenient starting point for further advanced azobenzene-related research and 3D printing of macroscopic light-responsive structures.

10.
J Colloid Interface Sci ; 678(Pt A): 818-826, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39217697

RESUMEN

Manipulating the chirality at nanoscale has drawn great attention among scientists, considering its pivotal role in various applications of current interest, including nano-optics, biomedicine, and photocatalysis. In this work, we delve into this arena by fabricating chiral Swiss roll nanoarray (SRNA) continuous films employing colloidal lithography. The technique permits the dimension of Swiss roll metamaterials to reduce to nanoscale, thus achieving chiroptical response (circular dichroism (CD)) in the visible region. The interplay between the CD signals and plasmon resonance modes is revealed through theoretical simulations, enabling a deep understanding of chiral plasmonic metamaterials. The polarization-sensitive photocatalytic activity of chiral SRNAs is investigated, noting a marked increase in the reaction rate when the chirality of SRNAs matches with the handedness of circularly polarized light (CPL). Notably, the SRNA continuous films based on substrate possess integration and reusability without complex recycling process, enhancing their practicality in applications like sensing and plasmonic nanochemistry, particularly toward polarization-dependent photocatalysis.

11.
Sci Rep ; 14(1): 18288, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39112559

RESUMEN

In this brief report, we present laser induced breakdown spectroscopy (LIBS) evidence of deuterium (D) production in a 3:1 urethane dimethacrylate (UDMA) and triethylene glycol dimethacrylate (TEGDMA) polymer doped with resonant gold nanorods, induced by intense, 40 fs laser pulses. The in situ recorded LIBS spectra revealed that the D/(2D + H) increased to 4-8% in the polymer samples in selected events. The extent of transmutation was found to linearly increase with the laser pulse energy (intensity) between 2 and 25 mJ (up to 3 × 1017W/cm2). The observed effect is attributed only to the field enhancing effects due to excited localized surface plasmons on the gold nanoparticles.

12.
Biosens Bioelectron ; 264: 116664, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39159588

RESUMEN

Implantable devices for brain-machine interfaces and managing neurological disorders have experienced rapid growth in recent years. Although functional implants offer significant benefits, issues related to transient trauma and long-term biocompatibility and safety are of significant concern. Acute inflammatory reaction in the brain tissue caused by microimplants is known to be an issue but remains poorly studied. This study presents the use of titanium oxynitride (TiNO) nanofilm with defined surface plasmon resonance (SPR) properties for point-of-care characterizing of acute inflammatory responses during robot-controlled micro-neuro-implantation. By leveraging surface-enriched oxynitride, TiNO nanofilms can be biomolecular-functionalized through silanization. This label-free TiNO-SPR biosensor exhibits a high sensitivity toward the inflammatory cytokine interleukin-6 with a detection limit down to 6.3 fg ml-1 and a short assay time of 25 min. Additionally, intraoperative monitoring of acute inflammatory responses during microelectrode implantation in the mice brain has been accomplished using the TiNO-SPR biosensors. Through intraoperative cerebrospinal fluid sampling and point-of-care plasmonic biosensing, the rhythm of acute inflammatory responses induced by the robot-controlled brain microelectrodes implantation has been successfully depicted, offering insights into intraoperative safety assessment of invasive brain-machine interfaces.


Asunto(s)
Resonancia por Plasmón de Superficie , Titanio , Animales , Titanio/química , Ratones , Técnicas Biosensibles , Encefalitis/etiología , Microelectrodos , Interleucina-6/análisis , Interleucina-6/líquido cefalorraquídeo , Encéfalo , Interfaces Cerebro-Computador , Diseño de Equipo , Electrodos Implantados/efectos adversos , Humanos
13.
Nano Lett ; 24(32): 9882-9888, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39093596

RESUMEN

Optical spectroscopy techniques are central for the characterization of two-dimensional (2D) quantum materials. However, the reduced volume of atomically thin samples often results in a cross section that is far too low for conventional optical methods to produce measurable signals. In this work, we developed a scheme based on the stencil lithography technique to fabricate transferable optical enhancement nanostructures for Raman and photoluminescence spectroscopy. Equipped with this new nanofabrication technique, we designed and fabricated plasmonic nanostructures to tailor the interaction of few-layer materials with light. We demonstrate orders-of-magnitude increase in the Raman intensity of ultrathin flakes of 2D semiconductors and magnets as well as selective Purcell enhancement of quenched excitons in WSe2/MoS2 heterostructures. We provide evidence that the method is particularly effective for air-sensitive materials, as the transfer can be performed in situ. The fabrication technique can be generalized to enable a high degree of flexibility for functional photonic devices.

14.
Angew Chem Int Ed Engl ; : e202409528, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39159334

RESUMEN

Vibrational strong coupling can modify chemical reaction pathways in unconventional ways. Thus far, Fabry-Perot cavities formed by pairs of facing mirrors have been mostly utilized to achieve vibrational strong coupling. In this study, we demonstrate the application of non-local metasurfaces that can sustain surface lattice resonances, enabling chemical reactions under vibrational strong coupling. We show that the solvolysis kinetics of para-nitrophenyl acetate can be accelerated by a factor of 2.7 by strong coupling to the carbonyl bond of the solvent and the solute with a surface lattice resonance. Our work introduces a new platform to investigate polaritonic chemical reactions. In contrast to Fabry-Perot cavities, metasurfaces define open optical cavities with single surfaces, which removes alignment hurdles, facilitating polaritonic chemistry across large areas.

15.
ACS Appl Mater Interfaces ; 16(32): 42942-42946, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39087324

RESUMEN

Conventional magnetophotonic nanostructures typically function within narrow wavelength and incident angle ranges, where resonance is observed and magneto-optical (MO) effects are amplified. Expanding these operational ranges may allow for improved applications, including in (bio)sensing devices. In this study, we describe a hybrid magnetoplasmonic waveguide grating (HMPWG) in which the coupling of plasmonic resonances and waveguide modes leads to enhanced MO effects and sensitivity, according to full-wave electromagnetic simulations. High transverse magneto-optical Kerr effect (TMOKE) signals were observed for the full range of wavelengths and angles investigated, i.e., for θinc ≥ 1° and 500 nm ≤ λ ≤ 850 nm. As a proof-of-concept we verified that using the HMPWG nanostructure with an aqueous solution as superstrate one may obtain a sensitivity in variation of the refractive index unit (RIU) of S = 166°/RIU and S = 230 nm/RIU in angle and wavelength interrogation modes, respectively. Upon comparing with conventional magnetoplasmonic gratings, which only enable excitation of plasmonic resonances, we demonstrate that HMPWG nanostructures can be further optimized to reach not only high sensitivity but also high resolution in sensing and biosensing.

16.
Neurophotonics ; 11(Suppl 1): S11513, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39119220

RESUMEN

Within the realm of optical neural interfaces, the exploration of plasmonic resonances to interact with neural cells has captured increasing attention among the neuroscience community. The interplay of light with conduction electrons in nanometer-sized metallic nanostructures can induce plasmonic resonances, showcasing a versatile capability to both sense and trigger cellular events. We describe the perspective of generating propagating or localized surface plasmon polaritons on the tip of an optical neural implant, widening the possibility for neuroscience labs to explore the potential of plasmonic neural interfaces.

17.
J Pept Sci ; : e3650, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39180317

RESUMEN

Supramolecular hydrogels, particularly low-molecular-weight peptide hydrogels, are promising drug delivery systems due to their ability to change the solubility, targeting, metabolism and toxicity of drugs. Magneto-plasmonic liposomes, in addition to being remotely controllable with the application of an external magnetic field, also increase the efficiency of encapsulated drug release through thermal stimulation, for example, with magnetic and optical hyperthermia. Thus, the combination of those two materials-giving magneto-plasmonic lipogels-brings together several functionalities, among which are hyperthermia and spatiotemporally controlled drug delivery. In this work, a novel dehydrodipeptide hydrogelator was synthesised, and the respective hydrogel was functionalized with magneto-plasmonic liposomes. After individually characterising the components with regard to their rheological, spectroscopic and magnetic properties, the magneto-plasmonic lipogel was equally characterised and evaluated concerning its ability to deliver drugs in a controlled fashion. To this end, the response of the 5(6)-carboxyfluorescein-loaded magneto-plasmonic lipogel to near-infrared light was assessed. The results showed that the system is a proper carrier of hydrophilic drugs and allows to envisage photo-responsive drug delivery. These facts, together with the magnetic guidance and hyperthermia capabilities of the developed composite gel, may pave the way to a new era in the treatment of cancer and other diseases.

18.
Adv Healthc Mater ; : e2402044, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39205550

RESUMEN

The emergence of antibiotic resistance has become a global health crisis, and everyone must arm themselves with wisdom to effectively combat the "silent tsunami" of infections that are no longer treatable with antibiotics. However, the overuse or inappropriate use of unnecessary antibiotics is still routine for administering them due to the unavailability of rapid, precise, and point-of-care assays. Here, a rapid antimicrobial-resistance point-of-care identification device (RAPIDx) is reported for the accurate and simultaneous identification of bacterial species (genotype) and target enzyme activity (phenotype). First, a contamination-free active target enzyme is extracted via the photothermal lysis of preconcentrated bacteria cells on a nanoplasmonic functional layer on-chip. Second, the rapid, precise identification of pathogens is achieved by the photonic rolling circle amplification of DNA on a chip. Third, the simultaneous identification of bacterial species (genotype) and target enzyme activity (phenotype) is demonstrated within a sample-to-answer 45 min operation via the RAPIDx. It is believed that the RAPIDx will be a valuable method for solving the bottleneck of employing on-chip nanotechnology for antibiotic-resistant bioassay and other infectious diseases.

19.
ACS Sens ; 9(8): 4236-4247, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39038809

RESUMEN

In the intricate landscape of the tumor microenvironment, both cancer and stromal cells undergo rapid metabolic adaptations to support their growth. Given the relevant role of the metabolic secretome in fueling tumor progression, its unique metabolic characteristics have gained prominence as potential biomarkers and therapeutic targets. As a result, rapid and accurate tools have been developed to track metabolic changes in the tumor microenvironment with high sensitivity and resolution. Surface-enhanced Raman scattering (SERS) is a highly sensitive analytical technique and has been proven efficient toward the detection of metabolites in biological media. However, profiling secreted metabolites in complex cellular environments such as those in tumor-stroma 3D in vitro models remains challenging. To address this limitation, we employed a SERS-based strategy to investigate the metabolic secretome of pancreatic tumor models within 3D cultures. We aimed to monitor the immunosuppressive potential of stratified pancreatic cancer-stroma spheroids as compared to 3D cultures of either pancreatic cancer cells or cancer-associated fibroblasts, focusing on the metabolic conversion of tryptophan into kynurenine by the IDO-1 enzyme. We additionally sought to elucidate the dynamics of tryptophan consumption in correlation with the size, temporal evolution, and composition of the spheroids, as well as assessing the effects of different drugs targeting the IDO-1 machinery. As a result, we confirm that SERS can be a valuable tool toward the optimization of cancer spheroids, in connection with their tryptophan metabolizing capacity, potentially allowing high-throughput spheroid analysis.


Asunto(s)
Neoplasias Pancreáticas , Espectrometría Raman , Triptófano , Triptófano/metabolismo , Espectrometría Raman/métodos , Humanos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Línea Celular Tumoral , Esferoides Celulares/metabolismo , Microambiente Tumoral
20.
ACS Appl Mater Interfaces ; 16(31): 41271-41280, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39041362

RESUMEN

Nanophotonic biosensors offer exceptional sensitivity in the presence of strong background signals by enhancing and confining light in subwavelength volumes. In the field of nanophotonic biosensors, antenna-in-box (AiB) designs consisting of a nanoantenna within a nanoaperture have demonstrated remarkable single-molecule fluorescence detection sensitivities under physiologically relevant conditions. However, their full potential has not yet been exploited as current designs prohibit insightful correlative multicolor single-molecule studies and are limited in terms of throughput. Here, we overcome these constraints by introducing aluminum-based hexagonal close-packed AiB (HCP-AiB) arrays. Our approach enables the parallel readout of over 1000 HCP-AiBs with multicolor single-molecule sensitivity up to micromolar concentrations using an alternating three-color excitation scheme and epi-fluorescence detection. Notably, the high-density HCP-AiB arrays not only enable high-throughput studies at micromolar concentrations but also offer high single-molecule detection probabilities in the nanomolar range. We demonstrate that robust and alignment-free correlative multicolor studies are possible using optical fiducial markers even when imaging in the low millisecond range. These advancements pave the way for the use of HCP-AiB arrays as biosensor architectures for high-throughput multicolor studies on single-molecule dynamics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA