Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(39): 26655-26665, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39305260

RESUMEN

Despite the interest in improving the sensitivity of optical sensors using plasmonic nanoparticles (NPs) (rods, wires, and stars), the full structural characterization of complex shape nanostructures is challenging. Here, we derive from a single scanning transmission electron microscope diffraction map (4D-STEM) a detailed determination of both the 3D shape and atomic arrangement of an individual 6-branched AuAg nanostar (NS) with high-aspect-ratio legs. The NS core displays an icosahedral structure, and legs are decahedral rods attached along the 5-fold axes at the core apexes. The NS legs show an anomalous anisotropic spatial distribution (all close to a plane) due to an interplay between the icosahedral symmetry and the unzipping of the surfactant layer on the core. The results significantly improve our understanding of the star growth mechanism. This low dose diffraction mapping is promising for the atomic structure study of individual multidomain, multibranched, or multiphase NPs, even when constituted of beam-sensitive materials.

2.
Chemosphere ; 364: 142995, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39097114

RESUMEN

This paper describes an alternative method for the in situ synthesis of gold nanoparticles (AuNPs) with a particle size of less than 3 nm, using nanoreactors formed by reverse micelles of 1,4-bis-(2-ethylhexyl) sulfosuccinate sodium (AOT) and nanoparticle stabilization with l-cysteine, which favor the preparation of nanoparticles with size and shape control, which are homogeneously dispersed (1% by weight) on the support of titanium dioxide nanowires (TNWs). To study the activity and selectivity of the prepared catalyst (AuNPs@TNWs), an aqueous solution of 40 mM glycerol was irradiated with a green laser (λ = 530 nm, power = 100 mW) in the presence of the catalyst and O2 as an oxidant at 22 °C for 6 h, obtaining a glycerol conversion of 86% with a selectivity towards hydroxypyruvic acid (HA) of more than 90%. From the control and reactions, we concluded that the Ti-OH groups promote the glycerol adsorption on the nanowires surface and the surface plasmon of the gold nanoparticles favors the selectivity of the reaction towards the hydroxypyruvic acid.


Asunto(s)
Glicerol , Oro , Nanopartículas del Metal , Nanocables , Oxidación-Reducción , Titanio , Titanio/química , Oro/química , Nanopartículas del Metal/química , Nanocables/química , Glicerol/química , Catálisis
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124832, 2024 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-39029201

RESUMEN

The vibrational assignment of the Raman and surface-enhanced Raman scattering (SERS) spectra of the herbicide tebuthiuron (TBH) was accomplished, which allowed unprecedented propositions for adsorption geometries on the surface of silver nanoparticles (AgNP). Ascribed SERS features allowed suggesting that the adsorption occurred through nitrogen atoms of thiadiazole group, since intense band shift assigned to ring mode was marking of the coordination with the metallic surface. AgNP were treated with different surface modifiers that leaded to substantial changes in TBH adsorption geometries. Spectral changes, as the enhancement of out-of-plane ring modes, were indicative of the presence of tilted thiadiazole geometries in relation to the silver surface. Density Functional Theory (DFT) calculations from TBH molecules, in isolation and in interaction with ten-atom cluster of silver leaded to obtain theoretical spectra that gave support to interpret experimental Raman and SERS spectra.

4.
J Microsc ; 296(1): 3-9, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38874394

RESUMEN

Nanoporous gold electrodes are of great interest in electroanalytical chemistry, because of their unusual activity and large surface area. The electrochemical activity can be further improved by coating with molecular catalysts such as the tetraruthenated cobalt-tetrapyridylporphyrazines investigated in this work. The plasmonic enhancement of the scattered light at the nanoholes and borders modifies the electrode's optical characteristics, improving the transmission through the surface-enhanced Raman scattering (SERS) effect. When monitored by hyperspectral dark-field and confocal Raman microscopy, this effect allows probing of the porphyrazine species at the plasmonic nanholes, improving the understanding of the chemically modified gold electrodes.

5.
Materials (Basel) ; 17(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38730746

RESUMEN

Water pollution is a worldwide environmental and health problem that requires the development of sustainable, efficient, and accessible technologies. Nanotechnology is a very attractive alternative in environmental remediation processes due to the multiple properties that are conferred on a material when it is at the nanometric scale. This present review focuses on the understanding of the structure-physicochemical properties-performance relationships of silver nanoparticles, with the objective of guiding the selection of physicochemical properties that promote greater performance and are key factors in their use as antibacterial agents, surface modifiers, colorimetric sensors, signal amplifiers, and plasmonic photocatalysts. Silver nanoparticles with a size of less than 10 nm, morphology with a high percentage of reactive facets {111}, and positive surface charge improve the interaction of the nanoparticles with bacterial cells and induce a greater antibacterial effect. Adsorbent materials functionalized with an optimal concentration of silver nanoparticles increase their contact area and enhance adsorbent capacity. The use of stabilizing agents in silver nanoparticles promotes selective adsorption of contaminants by modifying the surface charge and type of active sites in an adsorbent material, in addition to inducing selective complexation and providing stability in their use as colorimetric sensors. Silver nanoparticles with complex morphologies allow the formation of hot spots or chemical or electromagnetic bonds between substrate and analyte, promoting a greater amplification factor. Controlled doping with nanoparticles in photocatalytic materials produces improvements in their electronic structural properties, promotes changes in charge transfer and bandgap, and improves and expands their photocatalytic properties. Silver nanoparticles have potential use as a tool in water remediation, where by selecting appropriate physicochemical properties for each application, their performance and efficiency are improved.

6.
Nano Lett ; 24(21): 6362-6368, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38752764

RESUMEN

Plasmonic nanoantennas have proven to be efficient transducers of electromagnetic to mechanical energy and vice versa. The sudden thermal expansion of these structures after an ultrafast optical pulsed excitation leads to the emission of hypersonic acoustic waves to the supporting substrate, which can be detected by another antenna that acts as a high-sensitivity mechanical probe due to the strong modulation of its optical response. Here, we propose and experimentally demonstrate a nanoscale acoustic lens comprised of 11 gold nanodisks whose collective oscillation at gigahertz frequencies gives rise to an interference pattern that results in a diffraction-limited surface acoustic beam of about 340 nm width, with an amplitude contrast of 60%. Via spatially decoupled pump-probe experiments, we were able to map the radiated acoustic energy in the proximity of the focal area, obtaining a very good agreement with the continuum elastic theory.

7.
Photodiagnosis Photodyn Ther ; 46: 104066, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38552814

RESUMEN

Balanoposthitis can affect men in immunocompromised situations, such as HIV infection and diabetes. The main associated microorganism is Candida albicans, which can cause local lesions, such as the development of skin cracks associated with itching. As an alternative to conventional treatment, there is a growing interest in the photodynamic inactivation (PDI). It has been shown that the association of photosensitizers with metallic nanoparticles may improve the effectiveness of PDI via plasmonic effect. We have recently shown that the association of methylene blue (MB), a very known photosensitizer, with silver prismatic nanoplatelets (AgNPrs) improved PDI of a resistant strain of Staphylococcus aureus. To further investigate the experimental conditions involved in PDI improvement, in the present study, we studied the effect of MB concentration associated with AgNPrs exploring spectral analysis, zeta potential measurements, and biological assays, testing the conjugated system against C. albicans isolated from a resistant strain of balanoposthitis. The AgNPrs were synthesized through silver anisotropic seed growth induced by the anionic stabilizing agent poly(sodium 4-styrenesulfonate) and showed a plasmon band fully overlapping the MB absorption band. MB and AgNPrs were conjugated through electrostatic association and three different MB concentrations were tested in the nanosystems. Inactivation using red LED light (660 nm) showed a dose dependency in respect to the MB concentration in the conjugates. Using the highest MB concentration (100 µmol⋅L-1) with AgNPr, it was possible to completely inactivate the microorganisms upon a 2 min irradiation exposure. Analyzing optical changes in the conjugates we suggest that these results indicate that AgNPrs are enhancers of MB photodynamic action probably by a combined mechanism of plasmonic effect and reduction of MB dimerization. Therefore, MBAgNPrs can be considered a suitable choice to be applied in PDI of resistant microorganisms.


Asunto(s)
Candida albicans , Azul de Metileno , Fotoquimioterapia , Fármacos Fotosensibilizantes , Plata , Candida albicans/efectos de los fármacos , Azul de Metileno/farmacología , Fármacos Fotosensibilizantes/farmacología , Fotoquimioterapia/métodos , Plata/farmacología , Nanopartículas del Metal/uso terapéutico , Nanopartículas del Metal/química , Balanitis/tratamiento farmacológico , Balanitis/microbiología , Humanos
8.
Phys Med Biol ; 68(22)2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37852274

RESUMEN

Metallic nanoparticles, such as gold (Au, Z = 79) and silver (Ag, Z = 47) nanoparticles (AuNPs and AgNPs, respectively), possess strong surface plasmonic resonance (SPR) and high atomic number, which makes them ideal candidates for enhancing dosimeter sensitivity. In this study, we have inserted different mass percentages (from 0 to 0.015 wt%) of AuNPs into a gelatinous Fricke-xylenol-orange (FXO-f) gel matrix and irradiated it with doses ranging from 2 to 32 Gy, using a source of x-ray of low energy with an effective energy of 42 keV. Optical absorption increased significantly; sensitivity gains of up to 50% were achieved for the FXO-f gel matrix containing 0.011 wt% AuNPs. To elucidate the mechanism underlying this increased sensitivity, we also evaluated FXO-f gel matrixes containing AgNPs. AgNPs insertion into the FXO-f gel matrix did not enhance sensitivity, which suggested that the AgNPs plasmonic absorption band and the FXO-f gel matrix absorption band at 441 nm overlapped, to increase absorption even after the gel matrix was irradiated. To visualize the dose distribution, we recorded optical tomography and acquired 3D reconstruction maps. In addition, we analyzed the dose enhancement factor (DEF) by using magnetic resonance images. AuNPs insertion into the FXO-f gel matrix resulted in a DEF gain of 1.37, associated with the photoelectric effect originating from the increased number of free radicals.


Asunto(s)
Oro , Nanopartículas del Metal , Radiometría/métodos , Imagen por Resonancia Magnética
9.
Chemosphere ; 338: 139490, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37451641

RESUMEN

Chemical oxidation technologies have been notably used for the mineralization of organic pollutants from aqueous effluents, been especially relevant for the degradation of pesticides. In this context, both tebuconazole (TEB) and 2,4-dichlorophenoxyacetic acid (2,4-D) pesticides were photodegraded by a combined catalyst of TiO2 and silver nanoparticles irradiated by UV-A light (λmax = 368 nm), and the experiments were tracked by surface-enhanced Raman scattering (SERS) spectroscopy. For 2,4-D, the degradation of about 70% was observed after almost 200 min, while for TEB, a decrease of 80% of the initial concentration was observed after approximately 100 min. The SERS monitoring allowed the proposal of some by-products, such as oxidized aliphatic chain and triazole from TEB besides glycolic, glyoxylic and dihydroxyacetic acids from 2,4-D. Their toxicities were predicted through ECOSAR software, verifying that most of them were not harmful to populations of fish, Daphnia and green algae. Thus, the performed oxidative process was efficient in the photodecomposition of TEB and 2,4-D pesticides, inclusive in terms of the decreasing of the toxicity of contaminated effluents.


Asunto(s)
Herbicidas , Nanopartículas del Metal , Plaguicidas , Animales , Nanopartículas del Metal/química , Plata/química , Titanio/química , Triazoles , Plaguicidas/química , Ácido 2,4-Diclorofenoxiacético
10.
Biophys Chem ; 300: 107077, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37515949

RESUMEN

Gold nanoparticles are valuable photothermal agents owing to their efficient photothermal conversion, photobleaching resistance, and potential surface functionalization. Herein, we combined bioinspired membranes with in vitro assays to elicit the molecular mechanisms of gold shell-isolated nanoparticles (AuSHINs) on ductal mammary carcinoma cells (BT-474). Langmuir and Langmuir-Schaefer (LS) films were handled to build biomembranes from BT-474 lipid extract. AuSHINs incorporation led to surface pressure-area (π-A) isotherms expansion, increasing membrane flexibility. Fourier-transform infrared spectroscopy (FTIR) of LS multilayers revealed electrostatic AuSHINs interaction with head portions of BT-474 lipid extract, causing lipid chain disorganization. Limited AuSHINs insertion into monolayer contributed to hydroperoxidation of the unsaturated lipids upon irradiation, consistently with the surface area increments of ca. 2.0%. In fact, membrane disruption of irradiated BT-474 cells containing AuSHINs was confirmed by confocal microscopy and LDH leakage, with greater damage at 2.2 × 1013 AuSHINs/mL. Furthermore, the decrease in nuclei dimensions indicates cell death through photoinduced damage.


Asunto(s)
Carcinoma , Nanopartículas del Metal , Nanopartículas , Humanos , Oro/química , Nanopartículas/química , Línea Celular Tumoral , Lípidos
11.
Materials (Basel) ; 16(10)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37241290

RESUMEN

The use of conjugated polymers (CPs) and metallic nanoparticles is an interesting way to form nanocomposites with improved optical properties. For instance, a nanocomposite with high sensitivity can be produced. However, the hydrophobicity of CPs may hamper applications due to their low bioavailability and low operability in aqueous media. This problem can be overcome by forming thin solid films from an aqueous dispersion containing small CP nanoparticles. So, in this work we developed the formation of thin films of poly(9,9-dioctylfluorene-co-3,4-ethylenedioxythiophene) (PDOF-co-PEDOT) from its natural and nano form (NCP) from aqueous solution. These copolymers were then blended in films with triangular and spherical silver nanoparticles (AgNP) for future applicability as a SERS sensor of pesticides. TEM characterization showed that the AgNP were adsorbed on the NCP surface, forming a nanostructure with an average diameter of 90 nm (value according to that obtained by DLS) and with a negative potential zeta. These nanostructures were transferred to a solid substrate, forming thin and homogeneous films with different morphology of PDOF-co-PEDOT films, as observed by atomic force microscopy (AFM). XPS data demonstrated the presence of the AgNP in the thin films, as well as evidence that films with NCP are more resistant to the photo-oxidation process. Raman spectra showed characteristic peaks of the copolymer in the films prepared with NCP. It should also be noted the enhancement effect of Raman bands observed on films containing AgNP, a strong indication of the SERS effect induced by the metallic nanoparticles. Furthermore, the different geometry of the AgNP influences the way in which the adsorption between the NCP and the metal surface occurs, with a perpendicular adsorption between the NCP chains and the surface of the triangular AgNP.

12.
Sensors (Basel) ; 23(7)2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-37050513

RESUMEN

We hereby present a novel "grafting-to"-like approach for the covalent attachment of plasmonic nanoparticles (PNPs) onto whispering gallery mode (WGM) silica microresonators. Mechanically stable optoplasmonic microresonators were employed for sensing single-particle and single-molecule interactions in real time, allowing for the differentiation between binding and non-binding events. An approximated value of the activation energy for the silanization reaction occurring during the "grafting-to" approach was obtained using the Arrhenius equation; the results agree with available values from both bulk experiments and ab initio calculations. The "grafting-to" method combined with the functionalization of the plasmonic nanoparticle with appropriate receptors, such as single-stranded DNA, provides a robust platform for probing specific single-molecule interactions under biologically relevant conditions.

13.
Nano Lett ; 23(7): 2703-2709, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36952678

RESUMEN

Obtaining arrays of single nanoparticles with three-dimensional complex shapes is still an open challenge. Current nanolithography methods do not allow for the preparation of nanoparticles with complex features like nanostars. In this work, we investigate the optical printing of gold nanostars of different sizes as a function of laser wavelength and power. We found that tuning the laser to the main resonances of the nanostars in the near-infrared makes it possible to avoid nanoparticles reshaping due to plasmonic heating, enabling their deposition at the single particle level and in ordered arrays.

14.
Chemosphere ; 320: 138081, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36758819

RESUMEN

This work reports a sensitive SERS substrate based on graphene oxide (GO) and quantum-sized ZrO2 nanoparticles (GO/ZrO2) for label-free determination of the organophosphate pesticide methyl parathion (MP). The enhanced light-matter interactions and the consequent SERS effect in these substrates resulted from the effective charge transfer (CT) mechanism attributed to synergistic contributions of three main factors: i) the strong molecular adherence of the MP molecules and the ZrO2 surface which allows the first layer-effect, ii) the relatively abundant surface defects in low dimensional ZrO2 semiconductor NPs, which act as intermediate electronic states that reduce the large bandgap barrier, and iii) the hindered charge recombination derived from the transference of the photoinduced holes to the GO layer. This mechanism allowed an enhancement factor of 8.78 × 104 for GO/ZrO2-based substrates, which is more than 5-fold higher than the enhancement observed for platforms without GO. A detection limit of 0.12 µM was achieved with an outstanding repeatability (variation ≤4.5%) and a linear range up to 10 µM, which is sensitive enough to determine the maximal MP concentration permissible in drinking water according to international regulations. Furthermore, recovery rates between 97.4 and 102.1% were determined in irrigation water runoffs, strawberry and black tea extracts, demonstrating the reliability of the hybrid GO/ZrO2 substrate for the organophosphate pesticides quantification in samples related to agri-food sectors and environmental monitoring.


Asunto(s)
Grafito , Insecticidas , Nanopartículas del Metal , Metil Paratión , Reproducibilidad de los Resultados , Nanopartículas del Metal/química , Grafito/química
15.
Biosensors (Basel) ; 13(1)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36671925

RESUMEN

Aquaculture is an expanding economic sector that nourishes the world's growing population due to its nutritional significance over the years as a source of high-quality proteins. However, it has faced severe challenges due to significant cases of environmental pollution, pathogen outbreaks, and the lack of traceability that guarantees the quality assurance of its products. Such context has prompted many researchers to work on the development of novel, affordable, and reliable technologies, many based on nanophotonic sensing methodologies. These emerging technologies, such as surface plasmon resonance (SPR), localised SPR (LSPR), and fibre-optic SPR (FO-SPR) systems, overcome many of the drawbacks of conventional analytical tools in terms of portability, reagent and solvent use, and the simplicity of sample pre-treatments, which would benefit a more sustainable and profitable aquaculture. To highlight the current progress made in these technologies that would allow them to be transferred for implementation in the field, along with the lag with respect to the most cutting-edge plasmonic sensing, this review provides a variety of information on recent advances in these emerging methodologies that can be used to comprehensively monitor the various operations involving the different commercial stages of farmed aquaculture. For example, to detect environmental hazards, track fish health through biochemical indicators, and monitor disease and biosecurity of fish meat products. Furthermore, it highlights the critical issues associated with these technologies, how to integrate them into farming facilities, and the challenges and prospects of developing plasmonic-based sensors for aquaculture.


Asunto(s)
Técnicas Biosensibles , Animales , Técnicas Biosensibles/métodos , Resonancia por Plasmón de Superficie/métodos , Acuicultura , Control de Calidad , Tecnología de Fibra Óptica
16.
ACS Appl Mater Interfaces ; 14(49): 54527-54538, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36454041

RESUMEN

Low-cost, instrument-free colorimetric tests were developed to detect SARS-CoV-2 using plasmonic biosensors with Au nanoparticles functionalized with polyclonal antibodies (f-AuNPs). Intense color changes were noted with the naked eye owing to plasmon coupling when f-AuNPs form clusters on the virus, with high sensitivity and a detection limit of 0.28 PFU mL-1 (PFU stands for plaque-forming units) in human saliva. Plasmon coupling was corroborated with computer simulations using the finite-difference time-domain (FDTD) method. The strategies based on preparing plasmonic biosensors with f-AuNPs are robust to permit SARS-CoV-2 detection via dynamic light scattering and UV-vis spectroscopy without interference from other viruses, such as influenza and dengue viruses. The diagnosis was made with a smartphone app after processing the images collected from the smartphone camera, measuring the concentration of SARS-CoV-2. Both image processing and machine learning algorithms were found to provide COVID-19 diagnosis with 100% accuracy for saliva samples. In subsidiary experiments, we observed that the biosensor could be used to detect the virus in river waters without pretreatment. With fast responses and requiring small sample amounts (only 20 µL), these colorimetric tests can be deployed in any location within the point-of-care diagnosis paradigm for epidemiological control.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Nanopartículas del Metal , Humanos , Colorimetría/métodos , Oro/química , SARS-CoV-2 , Nanopartículas del Metal/química , Resonancia por Plasmón de Superficie/métodos , Teléfono Inteligente , Prueba de COVID-19 , COVID-19/diagnóstico , Técnicas Biosensibles/métodos
17.
ChemistryOpen ; 11(12): e202200177, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36457181

RESUMEN

Organic reactions carried out in water under mild conditions are state-of-the-art in terms of environmentally benign chemical processes. In this direction, plasmonic catalysis can aid in accomplishing such tasks. In the present work, cyclodextrin-mediated AuPd bimetallic nanoparticles (NPs) were applied in room-temperature aqueous Suzuki-Miyaura reactions aiming at preparing biaryl products based on fluorene, isatin, benzimidazole and resorcinol, with yields of 77 % up to 95 %. AuPd NPs were revealed to be a physical mixture of Au and Pd particles circa 20 and 2 nm, respectively, through X-ray diffraction, dynamic light scattering, UV-Vis spectroscopy and transmission electron microscopy analyses.


Asunto(s)
Nanopartículas , Agua , Animales , Temperatura , Peces , Catálisis
18.
J Phys Condens Matter ; 35(6)2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36379066

RESUMEN

The present work analyses the transmittance and reflectance spectra of molybdenum trioxide film doped by silver nanoparticles as a function of angle of incidence and wavelength. As will be seen in this work, at values of angle of incidence below 40 degrees and with volume filling fraction below 1% also, some differences between the two effective medium theories are presented. First, the volume filling fraction is limited for low values (<1%) and second the scattering amplitude cannot be ignored for these cases. The novelty of this work is that the use of the effective medium model (refractive index) shows limitations in the description of the optical properties when it was applied to thin solid films.

19.
Sensors (Basel) ; 22(19)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36236435

RESUMEN

Optical wireless transmission has recently become a major cutting-edge alternative for on-chip/inter-chip communications with higher transmission speeds and improved power efficiency. Plasmonic nanoantennas, the building blocks of this new nanoscale communication paradigm, require precise design to have directional radiation and improved communication ranges. Particular interest has been paid to plasmonic Yagi-Uda, i.e., the optical analog of the conventional Radio Frequency (RF) Yagi-Uda design, which may allow directional radiation of plasmonic fields. However, in contrast to the RF model, an overall design strategy for the directional and optimized front-to-back ratio of the radiated far-field patterns is lacking. In this work, a guide for the optimized design of Yagi-Uda plasmonic nanoantennas is shown. In particular, five different design conditions are used to study the effects of sizes and spacing between the constituent parts (made of Au). Importantly, it is numerically demonstrated (using the scattered fields) that closely spaced nanoantenna elements are not appropriated for directional light-to-plasmon conversion/radiation. In contrast, if the elements of the nanoantenna are widely spaced, the structure behaves like a one-dimensional array of nanodipoles, producing a funnel-like radiation pattern (not suitable for on-chip wireless optical transmission). Therefore, based on the results here, it can be concluded that the constituent metallic rib lengths must be optimized to exhibit the resonance at the working wavelength, whilst their separations should follow the relation λeff/π, where λeff indicates the effective wavelength scaling for plasmonic nanostructures.


Asunto(s)
Nanoestructuras , Resonancia por Plasmón de Superficie , Nanoestructuras/química , Resonancia por Plasmón de Superficie/métodos
20.
Polymers (Basel) ; 14(8)2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-35458342

RESUMEN

The localized surface plasmon resonance (LSPR) due to light-particle interaction and its dependence on the surrounding medium have been widely manipulated for sensing applications. The sensing efficiency is governed by the refractive index-based sensitivity (ηRIS) and the full width half maximum (FWHM) of the LSPR spectra. Thereby, a sensor with high precision must possess both requisites: an effective ηRIS and a narrow FWHM of plasmon spectrum. Moreover, complex nanostructures are used for molecular sensing applications due to their good ηRIS values but without considering the wide-band nature of the LSPR spectrum, which decreases the detection limit of the plasmonic sensor. In this article, a novel, facile and label-free solution-based LSPR immunosensor was elaborated based upon LSPR features such as extinction spectrum and localized field enhancement. We used a 3D full-wave field analysis to evaluate the optical properties and to optimize the appropriate size of spherical-shaped gold nanoparticles (Au NPs). We found a change in Au NPs' radius from 5 nm to 50 nm, and an increase in spectral resonance peak depicted as a red-shift from 520 nm to 552 nm. Using this fact, important parameters that can be attributed to the LSPR sensor performance, namely the molecular sensitivity, FWHM, ηRIS, and figure of merit (FoM), were evaluated. Moreover, computational simulations were used to assess the optimized size (radius = 30 nm) of Au NPs with high FoM (2.3) and sharp FWHM (44 nm). On the evaluation of the platform as a label-free molecular sensor, Campbell's model was performed, indicating an effective peak shift in the adsorption of the dielectric layer around the Au NP surface. For practical realization, we present an LSPR sensor platform for the identification of dengue NS1 antigens. The results present the system's ability to identify dengue NS1 antigen concentrations with the limit of quantification measured to be 0.07 µg/mL (1.50 nM), evidence that the optimization approach used for the solution-based LSPR sensor provides a new paradigm for engineering immunosensor platforms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA