Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 256
Filtrar
1.
Int J Mol Sci ; 25(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38891805

RESUMEN

Plasmodium knowlesi is the only Plasmodium that causes zoonotic disease among the Plasmodium that cause infection in humans. It is fatal due to its short asexual growth cycle within 24 h. Lactate dehydrogenase (LDH), an enzyme that catalyzes the final step of glycolysis, is a biomarker for diagnosing infection by Plasmodium spp. parasite. Therefore, this study aimed to efficiently produce the soluble form of P. knowlesi LDH (PkLDH) using a bacterial expression system for studying malaria caused by P. knowlesi. Recombinant pET-21a(+)-PkLDH plasmid was constructed by inserting the PkLDH gene into a pET-21a(+) expression vector. Subsequently, the recombinant plasmid was inserted into the protein-expressing Escherichia coli Rosetta(DE3) strain, and the optimal conditions for overexpression of the PkLDH protein were established using this strain. We obtained a yield of 52.0 mg/L PkLDH from the Rosetta(DE3) strain and confirmed an activity of 483.9 U/mg through experiments. This methodology for high-efficiency PkLDH production can be utilized for the development of diagnostic methods and drug candidates for distinguishing malaria caused by P. knowlesi.


Asunto(s)
Clonación Molecular , L-Lactato Deshidrogenasa , Malaria , Plasmodium knowlesi , Plasmodium knowlesi/genética , Plasmodium knowlesi/enzimología , L-Lactato Deshidrogenasa/genética , L-Lactato Deshidrogenasa/metabolismo , Clonación Molecular/métodos , Malaria/parasitología , Malaria/diagnóstico , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Animales , Humanos , Expresión Génica , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
2.
J Proteomics ; 302: 105197, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38759952

RESUMEN

The emerging malaria parasite Plasmodium knowlesi threatens the goal of worldwide malaria elimination due to its zoonotic spread in Southeast Asia. After brief ex-vivo culture we used 2D LC/MS/MS to examine the early and late ring stages of infected Macaca mulatta red blood cells harboring P. knowlesi. The M. mulatta clathrin heavy chain and T-cell and macrophage inhibitor ERMAP were overexpressed in the early ring stage; glutaredoxin 3 was overexpressed in the late ring stage; GO term differential enrichments included response to oxidative stress and the cortical cytoskeleton in the early ring stage. P. knowlesi clathrin heavy chain and 60S acidic ribosomal protein P2 were overexpressed in the late ring stage; GO term differential enrichments included vacuoles in the early ring stage, ribosomes and translation in the late ring stage, and Golgi- and COPI-coated vesicles, proteasomes, nucleosomes, vacuoles, ion-, peptide-, protein-, nucleocytoplasmic- and RNA-transport, antioxidant activity and glycolysis in both stages. SIGNIFICANCE: Due to its zoonotic spread, cases of the emerging human pathogen Plasmodium knowlesi in southeast Asia, and particularly in Malaysia, threaten regional and worldwide goals for malaria elimination. Infection by this parasite can be fatal to humans, and can be associated with significant morbidity. Due to zoonotic transmission from large macaque reservoirs that are untreatable by drugs, and outdoor biting mosquito vectors that negate use of preventive measures such as bed nets, its containment remains a challenge. Its biology remains incompletely understood. Thus we examine the expressed proteome of the early and late ex-vivo cultured ring stages, the first intraerythrocyte developmental stages after infection of host rhesus macaque erythrocytes. We used GO term enrichment strategies and differential protein expression to compare early and late ring stages. The early ring stage is characterized by the enrichment of P. knowlesi vacuoles, and overexpression of the M. mulatta clathrin heavy chain, important for clathrin-coated pits and vesicles, and clathrin-mediated endocytosis. The M. mulatta protein ERMAP was also overexpressed in the early ring stage, suggesting a potential role in early ring stage inhibition of T-cells and macrophages responding to P. knowlesi infection of reticulocytes. This could allow expansion of the host P. knowlesi cellular niche, allowing parasite adaptation to invasion of a wider age range of RBCs than the preferred young RBCs or reticulocytes, resulting in proliferation and increased pathogenesis in infected humans. Other GO terms differentially enriched in the early ring stage include the M. mulatta cortical cytoskeleton and response to oxidative stress. The late ring stage is characterized by overexpression of the P. knowlesi clathrin heavy chain. Combined with late ring stage GO term enrichment of Golgi-associated and coated vesicles, and enrichment of COPI-coated vesicles in both stages, this suggests the importance to P. knowlesi biology of clathrin-mediated endocytosis. P. knowlesi ribosomes and translation were also differentially enriched in the late ring stage. With expression of a variety of heat shock proteins, these results suggest production of folded parasite proteins is increasing by the late ring stage. M. mulatta endocytosis was differentially enriched in the late ring stage, as were clathrin-coated vesicles and endocytic vesicles. This suggests that M. mulatta clathrin-based endocytosis, perhaps in infected reticulocytes rather than mature RBC, may be an important process in the late ring stage. Additional ring stage biology from enriched GO terms includes M. mulatta proteasomes, protein folding and the chaperonin-containing T complex, actin and cortical actin cytoskeletons. P knowlesi biology also includes proteasomes, as well as nucleosomes, antioxidant activity, a variety of transport processes, glycolysis, vacuoles and protein folding. Mature RBCs have lost internal organelles, suggesting infection here may involve immature reticulocytes still retaining organelles. P. knowlesi parasite proteasomes and translational machinery may be ring stage drug targets for known selective inhibitors of these processes in other Plasmodium species. To our knowledge this is the first examination of more than one timepoint within the ring stage. Our results expand knowledge of both host and parasite proteins, pathways and organelles underlying P. knowlesi ring stage biology.


Asunto(s)
Eritrocitos , Macaca mulatta , Plasmodium knowlesi , Proteoma , Plasmodium knowlesi/metabolismo , Animales , Eritrocitos/parasitología , Eritrocitos/metabolismo , Proteoma/metabolismo , Proteínas Protozoarias/metabolismo , Malaria/parasitología , Malaria/metabolismo , Malaria/transmisión , Humanos , Interacciones Huésped-Parásitos
3.
Elife ; 122024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38753426

RESUMEN

Zoonotic disease dynamics in wildlife hosts are rarely quantified at macroecological scales due to the lack of systematic surveys. Non-human primates (NHPs) host Plasmodium knowlesi, a zoonotic malaria of public health concern and the main barrier to malaria elimination in Southeast Asia. Understanding of regional P. knowlesi infection dynamics in wildlife is limited. Here, we systematically assemble reports of NHP P. knowlesi and investigate geographic determinants of prevalence in reservoir species. Meta-analysis of 6322 NHPs from 148 sites reveals that prevalence is heterogeneous across Southeast Asia, with low overall prevalence and high estimates for Malaysian Borneo. We find that regions exhibiting higher prevalence in NHPs overlap with human infection hotspots. In wildlife and humans, parasite transmission is linked to land conversion and fragmentation. By assembling remote sensing data and fitting statistical models to prevalence at multiple spatial scales, we identify novel relationships between P. knowlesi in NHPs and forest fragmentation. This suggests that higher prevalence may be contingent on habitat complexity, which would begin to explain observed geographic variation in parasite burden. These findings address critical gaps in understanding regional P. knowlesi epidemiology and indicate that prevalence in simian reservoirs may be a key spatial driver of human spillover risk.


Zoonotic diseases are infectious diseases that are transmitted from animals to humans. For example, the malaria-causing parasite Plasmodium knowlesi can be transmitted from monkeys to humans through mosquitos that have previously fed on infected monkeys. In Malaysia, progress towards eliminating malaria is being undermined by the rise of human incidences of 'monkey malaria', which has been declared a public health threat by The World Health Organisation. In humans, cases of monkey malaria are higher in areas of recent deforestation. Changes in habitat may affect how monkeys, insects and humans interact, making it easier for diseases like malaria to pass between them. Deforestation could also change the behaviour of wildlife, which could lead to an increase in infection rates. For example, reduced living space increases contact between monkeys, or it may prevent behaviours that help animals to avoid parasites. Johnson et al. wanted to investigate how the prevalence of malaria in monkeys varies across Southeast Asia to see whether an increase of Plasmodium knowlesi in primates is linked to changes in the landscape. They merged the results of 23 existing studies, including data from 148 sites and 6322 monkeys to see how environmental factors like deforestation influenced the amount of disease in different places. Many previous studies have assumed that disease prevalence is high across all macaques, monkey species that are considered pests, and in all places. But Johnson et al. found that disease rates vary widely across different regions. Overall disease rates in monkeys are lower than expected (only 12%), but in regions with less forest or more 'fragmented' forest areas, malaria rates are higher. Areas with a high disease rate in monkeys tend to further coincide with infection hotspots for humans. This suggests that deforestation may be driving malaria infection in monkeys, which could be part of the reason for increased human infection rates. Johnsons et al.'s study has provided an important step towards better understanding the link between deforestation and the levels of monkey malaria in humans living nearby. Their study provides important insights into how we might find ways of managing the landscape better to reduce health risks from wildlife infection.


Asunto(s)
Malaria , Plasmodium knowlesi , Primates , Zoonosis , Animales , Humanos , Asia Sudoriental/epidemiología , Ecosistema , Malaria/epidemiología , Malaria/transmisión , Malaria/parasitología , Prevalencia , Enfermedades de los Primates/epidemiología , Enfermedades de los Primates/parasitología , Enfermedades de los Primates/transmisión , Primates/parasitología , Zoonosis/epidemiología , Zoonosis/parasitología , Zoonosis/transmisión
5.
Front Cell Infect Microbiol ; 14: 1354880, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38465236

RESUMEN

Plasmodium vivax, the most widespread human malaria parasite, and P. knowlesi, an emerging Plasmodium that infects humans, are the phylogenetically closest malarial species that infect humans, which may induce cross-species reactivity across most co-endemic areas in Southeast Asia. The thrombospondin-related anonymous protein (TRAP) family is indispensable for motility and host cell invasion in the growth and development of Plasmodium parasites. The merozoite-specific TRAP (MTRAP), expressed in blood-stage merozoites, is supposed to be essential for human erythrocyte invasion. We aimed to characterize MTRAPs in blood-stage P. vivax and P. knowlesi parasites and ascertain their cross-species immunoreactivity. Recombinant P. vivax and P. knowlesi MTRAPs of full-length ectodomains were expressed in a mammalian expression system. The MTRAP-specific immunoglobulin G, obtained from immune animals, was used in an immunofluorescence assay for subcellular localization and invasion inhibitory activity in blood-stage parasites was determined. The cross-species humoral immune responses were analyzed in the sera of patients with P. vivax or P. knowlesi infections. The MTRAPs of P. vivax (PvMTRAP) and P. knowlesi (PkMTRAP) were localized on the rhoptry body of merozoites in blood-stage parasites. Both anti-PvMTRAP and anti-PkMTRAP antibodies inhibited erythrocyte invasion of blood-stage P. knowlesi parasites. The humoral immune response to PvMTRAP showed high immunogenicity, longevity, and cross-species immunoreactivity with P. knowlesi. MTRAPs are promising candidates for development of vaccines and therapeutics against vivax and knowlesi malaria.


Asunto(s)
Malaria Vivax , Malaria , Parásitos , Plasmodium , Animales , Humanos , Plasmodium vivax/genética , Parásitos/metabolismo , Merozoítos , Trombospondinas/metabolismo , Plasmodium/metabolismo , Malaria/parasitología , Malaria Vivax/parasitología , Proteínas Protozoarias/metabolismo , Mamíferos/metabolismo
6.
Ecohealth ; 21(1): 21-37, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38411846

RESUMEN

Anthropogenic changes to forest cover have been linked to an increase in zoonotic diseases. In many areas, natural forests are being replaced with monoculture plantations, such as oil palm, which reduce biodiversity and create a mosaic of landscapes with increased forest edge habitat and an altered micro-climate. These altered conditions may be facilitating the spread of the zoonotic malaria parasite Plasmodium knowlesi in Sabah, on the island of Borneo, through changes to mosquito vector habitat. We conducted a study on mosquito abundance and diversity in four different land uses comprising restored native forest, degraded native forest, an oil palm estate and a eucalyptus plantation, these land uses varying in their vegetation types and structure. The main mosquito vector, Anopheles balabacensis, has adapted its habitat preference from closed canopy rainforest to more open logged forest and plantations. The eucalyptus plantations (Eucalyptus pellita) assessed in this study contained significantly higher abundance of many mosquito species compared with the other land uses, whereas the restored dipterocarp forest had a low abundance of all mosquitos, in particular, An. balabacensis. No P. knowlesi was detected by PCR assay in any of the vectors collected during the study; however, P. inui, P. fieldi and P. vivax were detected in An. balabacensis. These findings indicate that restoring degraded natural forests with native species to closed canopy conditions reduces abundance of this zoonotic malarial mosquito vector and therefore should be incorporated into future restoration research and potentially contribute to the control strategies against simian malaria.


Asunto(s)
Anopheles , Bosques , Malaria , Mosquitos Vectores , Animales , Anopheles/parasitología , Malasia , Mosquitos Vectores/parasitología , Malaria/transmisión , Ecosistema , Plasmodium knowlesi , Eucalyptus , Humanos , Zoonosis/transmisión , Conservación de los Recursos Naturales
7.
MethodsX ; 12: 102563, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38328504

RESUMEN

Mosquito-borne diseases pose a significant threat in many Southeast Asian countries, particularly through the sylvatic cycle, which has a wildlife reservoir in forests and rural areas. Studying the composition and diversity of vectors and pathogen transmission is especially challenging in forests and rural areas due to their remoteness, limited accessibility, lack of power, and underdeveloped infrastructure. This study is based on the WHO mosquito sampling protocol, modifies technical details to support mosquito collection in difficult-to-access and resource-limited areas. Specifically, we describe the procedure for using rechargeable lithium batteries and solar panels to power the mosquito traps, demonstrate a workflow for processing and storing the mosquitoes in a -20 °C freezer, data management tools including microclimate data, and quality assurance processes to ensure the validity and reliability of the results. A pre- and post-test was utilized to measure participant knowledge levels. Additional research is needed to validate this protocol for monitoring vector-borne diseases in hard-to-reach areas within other countries and settings.

8.
Malar J ; 23(1): 37, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291392

RESUMEN

BACKGROUND: A major challenge to malaria elimination is identifying and targeting populations that are harbouring residual infections and contributing to persistent transmission. In many near-elimination settings in Southeast Asia, it is known that forest-goers are at higher risk for malaria infection, but detailed information on their behaviours and exposures is not available. METHODS: In Aceh Province, Indonesia, a near-elimination setting where a growing proportion of malaria is due to Plasmodium knowlesi, a case-control study was conducted to identify risk factors for symptomatic malaria, characteristics of forest-goers, and key intervention points. From April 2017 to September 2018, cases and controls were recruited and enrolled in a 1:3 ratio. Cases had confirmed malaria infection by rapid diagnostic test or microscopy detected at a health facility (HF). Gender-matched controls were recruited from passive case detection among individuals with suspected malaria who tested negative at a health facility (HF controls), and community-matched controls were recruited among those testing negative during active case detection. Multivariable logistic regression (unconditional for HF controls and conditional for community controls) was used to identify risk factors for symptomatic malaria infection. RESULTS: There were 45 cases, of which 27 were P. knowlesi, 17 were Plasmodium vivax, and one was not determined. For controls, 509 and 599 participants were recruited from health facilities and the community, respectively. Forest exposures were associated with high odds of malaria; in particular, working and sleeping in the forest (HF controls: adjusted odds ratio (aOR) 21.66, 95% CI 5.09-92.26; community controls: aOR 16.78, 95% CI 2.19-128.7) and having a second residence in the forest (aOR 6.29, 95% CI 2.29-17.31 and 13.53, 95% CI 2.10-87.12). Male forest-goers were a diverse population employed in a variety of occupations including logging, farming, and mining, sleeping in settings, such as huts, tents, and barracks, and working in a wide range of group sizes. Reported use of protective measures, such as nets, hammock nets, mosquito coils, and repellents was low among forest-goers and interventions at forest residences were absent. CONCLUSIONS: Second residences in the forest and gaps in use of protective measures point to key malaria interventions to improve coverage in forest-going populations at risk for P. knowlesi and P. vivax in Aceh, Indonesia. Intensified strategies tailored to specific sub-populations will be essential to achieve elimination.


Asunto(s)
Malaria Vivax , Malaria , Masculino , Humanos , Indonesia/epidemiología , Estudios de Casos y Controles , Malaria/prevención & control , Malaria Vivax/epidemiología , Malaria Vivax/prevención & control , Bosques
9.
BMC Public Health ; 24(1): 317, 2024 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-38287308

RESUMEN

BACKGROUND: Zoonotic malaria is a growing public health threat in the WHO Southeast Asia (SEA) and Western Pacific (WP) regions. Despite vector-control measures, the distribution of Macaque fascicularis and M. nemestrina, and Anopheles mosquitoes carrying non-human simian malaria parasites poses challenges to malaria elimination. The systematic review assesses the literature on knowledge and malaria-preventive practices in zoonotic malaria-affected areas across the WHO SEA and WP, aiming to identify challenges for malaria control. METHODS: Peer-reviewed articles published in English, Malay and Indonesian between January 2010 and December 2022 were searched in OVID Medline, Scopus, Web of Science, and Google Scholar. Studies of any design-excluding reviews, conference proceedings, and reports from all WHO SEA and WP countries vulnerable to zoonotic malaria-were included. Backwards-reference screening and thematic analysis were conducted. RESULTS: Among 4,174 initially searched articles, 22 peer-reviewed articles met the inclusion criteria. An additional seven articles were identified through backwards-reference screening, resulting in a total of 29 articles for this review. Half of these studies were conducted in Cambodia, Myanmar, Malaysia, and Thailand, mainly in forests and remote communities. The review highlighted inconsistencies in the operationalization of knowledge, and five major themes were identified related to knowledge: causation and transmission, symptoms, treatment, severity and complications, and malaria prevention. While participants generally had some understanding of malaria causation/transmission, minority and indigenous ethnic groups demonstrated limited knowledge and held misconceptions, such as attributing malaria to drinking dirty water. Preventive practices included traditional and non-traditional or modern methods-with a preference for traditional approaches to avoid mosquito bites. Challenges to malaria control included feasibility, cost, and access to healthcare services. CONCLUSION: This review provides insights into knowledge, local understandings, and preventive practices related to malaria in the WHO SEA and WP regions. The findings highlight the need for future research to explore the knowledge of at-risk communities regarding zoonotic malaria, their perceive threat of the disease and factors exposing them to zoonotic malaria. New strategies must be developed for zoonotic malaria programs tailored to local contexts, emphasizing the significance of community participation, health education, and socio-behavioural change initiatives. It is important to consider the interconnectedness of human health, environmental and non-human primates conservation. Socio-cultural nuances should also be carefully considered in the design and implementation of these programs to ensure their effect tailored to local contexts.


Asunto(s)
Antimaláricos , Malaria , Animales , Humanos , Antimaláricos/uso terapéutico , Mosquitos Vectores , Asia Sudoriental , Cambodia
10.
R Soc Open Sci ; 11(1): 230641, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38204787

RESUMEN

Disease surveillance aims to collect data at different times or locations, to assist public health authorities to respond appropriately. Surveillance of the simian malaria parasite, Plasmodium knowlesi, is sparse in some endemic areas and the spatial extent of transmission is uncertain. Zoonotic transmission of Plasmodium knowlesi has been demonstrated throughout Southeast Asia and represents a major hurdle to regional malaria elimination efforts. Given an arbitrary spatial prediction of relative disease risk, we develop a flexible framework for surveillance site selection, drawing on principles from multi-criteria decision-making. To demonstrate the utility of our framework, we apply it to the case study of Plasmodium knowlesi malaria surveillance site selection in western Indonesia. We demonstrate how statistical predictions of relative disease risk can be quantitatively incorporated into public health decision-making, with specific application to active human surveillance of zoonotic malaria. This approach can be used in other contexts to extend the utility of modelling outputs.

11.
Malar J ; 22(1): 379, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38093306

RESUMEN

BACKGROUND: Plasmodium knowlesi is an established experimental model for basic and pre-clinical malaria vaccine research. Historically, rhesus macaques have been the most common host for malaria vaccine studies with P. knowlesi parasites. However, rhesus are not natural hosts for P. knowlesi, and there is interest in identifying alternative hosts for vaccine research. The study team previously reported that pig-tailed macaques (PTM), a natural host for P. knowlesi, could be challenged with cryopreserved P. knowlesi sporozoites (PkSPZ), with time to blood stage infection equivalent to in rhesus. Here, additional exploratory studies were performed to evaluate PTM as potential hosts for malaria vaccine studies. The aim was to further characterize the parasitological and veterinary health outcomes after PkSPZ challenge in this macaque species. METHODS: Malaria-naïve PTM were intravenously challenged with 2.5 × 103 PkSPZ and monitored for blood stage infection by Plasmodium 18S rRNA RT-PCR and thin blood smears. Disease signs were evaluated by daily observations, complete blood counts, serum chemistry tests, and veterinary examinations. After anti-malarial drug treatment, a subset of animals was re-challenged and monitored as above. Whole blood gene expression analysis was performed on selected animals to assess host response to infection. RESULTS: In naïve animals, the kinetics of P. knowlesi blood stage replication was reproducible, with parasite burden rising linearly during an initial acute phase of infection from 6 to 11 days post-challenge, before plateauing and transitioning into a chronic low-grade infection. After re-challenge, infections were again reproducible, but with lower blood stage parasite densities. Clinical signs of disease were absent or mild and anti-malarial treatment was not needed until the pre-defined study day. Whole blood gene expression analysis identified immunological changes associated with acute and chronic phases of infection, and further differences between initial challenge versus re-challenge. CONCLUSIONS: The ability to challenge PTM with PkSPZ and achieve reliable blood stage infections indicate this model has significant potential for malaria vaccine studies. Blood stage P. knowlesi infection in PTM is characterized by low parasite burdens and a benign disease course, in contrast with the virulent P. knowlesi disease course commonly reported in rhesus macaques. These findings identify new opportunities for malaria vaccine research using this natural host-parasite combination.


Asunto(s)
Antimaláricos , Vacunas contra la Malaria , Malaria , Plasmodium knowlesi , Animales , Plasmodium knowlesi/genética , Macaca nemestrina , Macaca mulatta , Malaria/prevención & control , Malaria/veterinaria , Malaria/parasitología
12.
Malar J ; 22(1): 369, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38049801

RESUMEN

BACKGROUND: Plasmodium vivax has been more resistant to various control measures than Plasmodium falciparum malaria because of its greater transmissibility and ability to produce latent parasite forms. Therefore, developing P. vivax vaccines and therapeutic monoclonal antibodies (humAbs) remains a high priority. The Duffy antigen receptor for chemokines (DARC) expressed on erythrocytes is central to P. vivax invasion of reticulocytes. P. vivax expresses a Duffy binding protein (PvDBP) on merozoites, a DARC ligand, and the DARC: PvDBP interaction is critical for P. vivax blood stage malaria. Therefore, PvDBP is a leading vaccine candidate for P. vivax and a target for therapeutic human monoclonal antibodies (humAbs). METHODS: Here, the functional activity of humAbs derived from naturally exposed and vaccinated individuals are compared for the first time using easily cultured Plasmodium knowlesi (P. knowlesi) that had been genetically modified to replace its endogenous PkDBP orthologue with PvDBP to create a transgenic parasite, PkPvDBPOR. This transgenic parasite requires DARC to invade human erythrocytes but is not reticulocyte restricted. This model was used to evaluate the invasion inhibition potential of 12 humAbs (9 naturally acquired; 3 vaccine-induced) targeting PvDBP individually and in combinations using growth inhibition assays (GIAs). RESULTS: The PvDBP-specific humAbs demonstrated 70-100% inhibition of PkPvDBPOR invasion with the IC50 values ranging from 51 to 338 µg/mL for the 9 naturally acquired (NA) humAbs and 33 to 99 µg/ml for the 3 vaccine-induced (VI) humAbs. To evaluate antagonistic, additive, or synergistic effects, six pairwise combinations were performed using select humAbs. Of these combinations tested, one NA/NA (099100/094083) combination demonstrated relatively strong additive inhibition between 10 and 100 µg/mL; all combinations of NA and VI humAbs showed additive inhibition at concentrations below 25 µg/mL and antagonism at higher concentrations. None of the humAb combinations showed synergy. Invasion inhibition efficacy by some mAbs shown with PkPvDBPOR was closely replicated using P. vivax clinical isolates. CONCLUSION: The PkPvDBPOR transgenic model is a robust surrogate of P. vivax to assess invasion and growth inhibition of human monoclonal Abs recognizing PvDBP individually and in combination. There was no synergistic interaction for growth inhibition with the humAbs tested here that target different epitopes or subdomains of PvDBP, suggesting little benefit in clinical trials using combinations of these humAbs.


Asunto(s)
Vacunas contra la Malaria , Malaria Vivax , Plasmodium knowlesi , Animales , Humanos , Plasmodium vivax , Anticuerpos Antiprotozoarios , Antígenos de Protozoos , Proteínas Protozoarias/metabolismo , Malaria Vivax/parasitología , Eritrocitos/parasitología , Animales Modificados Genéticamente , Sistema del Grupo Sanguíneo Duffy/metabolismo
13.
Front Cell Infect Microbiol ; 13: 1314533, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38111629

RESUMEN

The zoonotic malaria parasite Plasmodium knowlesi is an important public health concern in Southeast Asia. Invasion of host erythrocytes is essential for parasite growth, and thus, understanding the repertoire of parasite proteins that enable this process is vital for identifying vaccine candidates and how some species are able to cause zoonotic infection. Merozoite surface protein 1 (MSP1) is found in all malaria parasite species and is perhaps the most well-studied as a potential vaccine candidate. While MSP1 is encoded by a single gene in P. falciparum, all other human infective species (P. vivax, P. knowlesi, P. ovale, and P. malariae) additionally encode a divergent paralogue known as MSP1P, and little is known about its role or potential functional redundancy with MSP1. We, therefore, studied the function of P. knowlesi merozoite surface protein 1 paralog (PkMSP1P), using both recombinant protein and CRISPR-Cas9 genome editing. The recombinant 19-kDa C-terminus of PkMSP1P (PkMSP1P-19) was shown to bind specifically to human reticulocytes. However, immunoblotting data suggested that PkMSP1P-19-induced antibodies can recognize PkMSP1-19 and vice versa, confounding our ability to separate the properties of these two proteins. Targeted disruption of the pkmsp1p gene profoundly impacts parasite growth, demonstrating for the first time that PkMSP1P is important in in vitro growth of P. knowlesi and likely plays a distinct role from PkMSP1. Importantly, the MSP1P KO also enabled functional characterization of the PkMSP1P-19 antibodies, revealing clear immune cross-reactivity between the two paralogues, highlighting the vital importance of genetic studies in contextualizing recombinant protein studies.


Asunto(s)
Malaria Falciparum , Malaria Vivax , Malaria , Plasmodium knowlesi , Vacunas , Humanos , Proteína 1 de Superficie de Merozoito/genética , Plasmodium knowlesi/genética , Plasmodium knowlesi/metabolismo , Malaria/parasitología , Eritrocitos/parasitología , Anticuerpos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
14.
Trop Med Infect Dis ; 8(10)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37888606

RESUMEN

Plasmodium knowlesi (Pk) causes zoonotic malaria and is known as the "fifth human malaria parasite". Pk malaria is an emerging threat because infections are increasing and can be fatal. While most infections are in Southeast Asia (SEA), especially Malaysia, travelers frequently visit this region and can present with Pk malaria around the world. So, clinicians need to know (1) patients who present with fever after recent travel to SEA might be infected with Pk and (2) Pk is often misdiagnosed as P. malariae (which typically causes less severe malaria). Here we review the history, pathophysiology, clinical features, diagnosis, and treatment of Pk malaria. Severe disease is most common in adults. Signs and symptoms can include fever, abdominal pain, jaundice, acute kidney injury, acute respiratory distress syndrome, hyponatremia, hyperparasitemia, and thrombocytopenia. Dengue is one of the diseases to be considered in the differential. Regarding pathophysiologic mechanisms, when Pk parasites invade mature red blood cells (RBCs, i.e., normocytes) and reticulocytes, changes in the red blood cell (RBC) surface can result in life-threatening cytoadherence, sequestration, and reduced RBC deformability. Since molecular mechanisms involving the erythrocytic stage are responsible for onset of severe disease and lethal outcomes, it is biologically plausible that manual exchange transfusion (ET) or automated RBC exchange (RBCX) could be highly beneficial by replacing "sticky" parasitized RBCs with uninfected, deformable, healthy donor RBCs. Here we suggest use of special Pk-resistant donor RBCs to optimize adjunctive manual ET/RBCX for malaria. "Therapeutically-rational exchange transfusion" (T-REX) is proposed in which Pk-resistant RBCs are transfused (instead of disease-promoting RBCs). Because expression of the Duffy antigen on the surface of human RBCs is essential for parasite invasion, T-REX of Duffy-negative RBCs-also known as Fy(a-b-) RBCs-could replace the majority of the patient's circulating normocytes with Pk invasion-resistant RBCs (in a single procedure lasting about 2 h). When sequestered or non-sequestered iRBCs rupture-in a 24 h Pk asexual life cycle-the released merozoites cannot invade Fy(a-b-) RBCs. When Fy(a-b-) RBC units are scarce (e.g., in Malaysia), clinicians can consider the risks and benefits of transfusing plausibly Pk-resistant RBCs, such as glucose-6-phosphate dehydrogenase deficient (G6PDd) RBCs and Southeast Asian ovalocytes (SAO). Patients typically require a very short recovery time (<1 h) after the procedure. Fy(a-b-) RBCs should have a normal lifespan, while SAO and G6PDd RBCs may have mildly reduced half-lives. Because SAO and G6PDd RBCs come from screened blood donors who are healthy and not anemic, these RBCs have a low-risk for hemolysis and do not need to be removed after the patient recovers from malaria. T-REX could be especially useful if (1) antimalarial medications are not readily available, (2) patients are likely to progress to severe disease, or (3) drug-resistant strains emerge. In conclusion, T-REX is a proposed optimization of manual ET/RBCX that has not yet been utilized but can be considered by physicians to treat Pk malaria patients.

15.
Trop Parasitol ; 13(2): 73-83, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37860614

RESUMEN

Nonhuman primate (NHP) malaria poses a major threat to the malaria control programs. The last two decades have witnessed a paradigm shift in our understanding of the malaria caused by species other than the traditionally known human Plasmodium species - Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, and Plasmodium ovale. The emergence of the malaria parasite of long-tailed macaque monkeys, Plasmodium knowlesi, as the fifth malaria species of humans has made the scientific community consider the risk of other zoonotic malaria, such as Plasmodium cynomolgi, Plasmodium simium, Plasmodium inui, and others, to humans. The development of knowledge about P. knowlesi as a pathogen which was earlier only known to experimentally cause malaria in humans and rarely cause natural infection, toward its acknowledgment as a significant cause of human malaria and a threat of malaria control programs has been made possible by the use of advanced molecular techniques such as polymerase chain reaction and gene sequencing. This review explores the various aspects of NHP malaria, and the association of various factors with their emergence and potential to cause human malaria which are important to understand to be able to control these emerging infections.

17.
Acta Trop ; 248: 107016, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37683820

RESUMEN

BACKGROUND: The 2022 malaria WHO reported around 4000 P. knowlesi infections in the South-East Asia region. In the same period, 72 positive cases were reported by the Department of Disease Control in Thailand, suggesting a persistent infection. Little is known about dihydrofolate reductase (pkdhfr) and dihydropteroate synthase (pkdhps), putative antimalarial resistance markers for P. knowlesi. The relevant amplification and sequencing protocol are presently unavailable. In this study, we developed a protocol for amplifying and evaluating pkdhps mutations. The haplotype pattern of pkdhfr-pkdhps in Thai isolates was analyzed, and the effects of these pkdhps mutations were predicted by using a computer program. METHODS: Pkdhps were amplified and sequenced from 28 P. knowlesi samples collected in 2008 and 2020 from nine provinces across Thailand. Combining pkdhfr sequencing data from previous work with pkdhps data to analyze polymorphisms of pkdhfr and pkdhps haplotype. Protein modeling and molecular docking were constructed using two inhibitors, sulfadoxine and sulfamethoxazole, and further details were obtained through analyses of protein-ligand interactions by using the Genetic Optimisation for Ligand Docking program. A phylogenetic tree cluster analysis was reconstructed to compare the P. knowlesi Malaysia isolates. RESULTS: Five nonsynonymous mutations in the pkdhps were detected outside the equivalence of the binding pocket sites to sulfadoxine and sulfamethoxazole, which are at N391S, E421G, I425R, A449S, and N517S. Based on the modeling and molecular docking analyses, the N391S and N517S mutations located close to the enzyme-binding pocket demonstrated a different docking score and protein-ligand interaction in loop 2 of the enzyme. These findings indicated that it was less likely to induce drug resistance. Of the four haplotypes of pkdhfr-pkdhps, the most common one is the R34L pkdhfr mutation and the pkdhps quadruple mutation (GRSS) at E421G, I425R, A449S, and N517S, which were observed in P. knowlesi in southern Thailand (53.57%). Based on the results of neighbor-joining analysis for pkdhfr and pkdhps, the samples isolated from eastern Thailand displayed a close relationship with Cambodia isolates, while southern Thailand isolates showed a long branch separated from the Malaysian isolates. CONCLUSIONS: A new PCR protocol amplification and evaluation of dihydropteroate synthase mutations in Knowlesi (pkdhps) has been developed. The most prevalent pkdhfr-pkdhps haplotypes (53.57%) in southern Thailand are R34L pkdhfr mutation and pkdhps quadruple mutation. Further investigation requires additional phenotypic data from clinical isolates, transgenic lines expressing mutant alleles, or recombinant proteins.


Asunto(s)
Antimaláricos , Plasmodium knowlesi , Sulfadoxina/farmacología , Pirimetamina/farmacología , Tetrahidrofolato Deshidrogenasa/genética , Dihidropteroato Sintasa/genética , Plasmodium knowlesi/genética , Tailandia , Simulación del Acoplamiento Molecular , Ligandos , Filogenia , Antimaláricos/farmacología , Resistencia a Medicamentos/genética , Sulfametoxazol/farmacología , Plasmodium falciparum/genética
18.
ChemMedChem ; 18(21): e202300267, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37697903

RESUMEN

Malaria continues to be a major public health challenge worldwide and, as part of the global effort toward malaria eradication, plasmodium carbonic anhydrases (CAs) have recently been proposed as potential targets for malaria treatment. In this study, a series of eight hybrid compounds combining the Artesunate core with a sulfonamide moiety were synthesized and evaluated for their inhibition potency against the widely expressed human (h) CAs I, II and the isoform from P. falciparum (PfCA). All derivatives demonstrated high inhibition potency against PfCA, achieving a KI value in the sub-nanomolar range (0.35 nM). Two Compounds showed a selectivity index of 4.1 and 3.1, respectively, against this protozoan isoform compared to hCA II. Three Derivatives showed no cytotoxic effects on human gingival fibroblasts at 50 µM with a high killing rate against both P. falciparum and P. knowlesi strains with IC50 in the sub-nanomolar range, providing a wide therapeutic window. Our findings suggest that these compounds may serve as promising leads for developing new antimalarial drugs and warrant further investigation, including activity against antimalarial-resistant strains, mode of action studies, and in vivo efficacy assessment in preclinical mouse models of malaria.


Asunto(s)
Antimaláricos , Anhidrasas Carbónicas , Malaria Falciparum , Malaria , Animales , Humanos , Ratones , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Artesunato/farmacología , Artesunato/uso terapéutico , Plasmodium falciparum , Inhibidores de Anhidrasa Carbónica/farmacología , Malaria Falciparum/tratamiento farmacológico , Malaria/tratamiento farmacológico , Isoformas de Proteínas
19.
Acta Trop ; 248: 107030, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37742788

RESUMEN

Despite the natural occurrences of human infections by Plasmodium knowlesi, P. cynomolgi, P. inui, and P. fieldi in Thailand, investigating the prevalence and genetic diversity of the zoonotic simian malaria parasites in macaque populations has been limited to certain areas. To address this gap, a total of 560 long-tailed macaques (Macaca fascicularis) and 20 southern pig-tailed macaques (M. nemestrina) were captured from 15 locations across 10 provinces throughout Thailand between 2018 and 2021 for investigation of malaria, as were 15 human samples residing in two simian-malaria endemic provinces, namely Songkhla and Satun, who exhibited malaria-like symptoms. Using PCR techniques targeting the mitochondrial cytb and cox1 genes coupled with DNA sequencing, 40 long-tailed macaques inhabiting five locations had mono-infections with one of the three simian malaria species. Most of the positive cases of macaque were infected with P. inui (32/40), while infections with P. cynomolgi (6/40) and P. knowlesi (2/40) were less common and confined to specific macaque populations. Interestingly, all 15 human cases were mono-infected with P. knowlesi, with one of them residing in an area with two P. knowlesi-infected macaques. Nucleotide sequence analysis showed a high level of genetic diversity in P. inui, while P. cynomolgi and P. knowlesi displayed limited genetic diversity. Phylogenetic and haplotype network analyses revealed that P. inui in this study was closely related to simian and Anopheles isolates from Peninsular Malaysia, while P. cynomolgi clustered with simian and human isolates from Asian countries. P. knowlesi, which was found in both macaques and humans in this study, was closely related to isolates from macaques, humans, and An. hackeri in Peninsular Malaysia, suggesting a sylvatic transmission cycle extending across these endemic regions. This study highlights the current hotspots for zoonotic simian malaria and sheds light on the genetic characteristics of recent isolates in both macaques and human residents in Thailand.


Asunto(s)
Malaria , Parásitos , Plasmodium knowlesi , Animales , Humanos , Macaca fascicularis/parasitología , Tailandia/epidemiología , Filogenia , Malaria/epidemiología , Malaria/veterinaria , Malaria/parasitología , Plasmodium knowlesi/genética , Malasia/epidemiología
20.
Emerg Infect Dis ; 29(10): 2177-2179, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37735805

RESUMEN

A 55-year-old man sought treatment for an uncomplicated febrile illness after returning to Canada from the Philippines. A suspected diagnosis of Plasmodium knowlesi infection was confirmed by PCR, and treatment with atovaquone/proguanil brought successful recovery. We review the evolving epidemiology of P. knowlesi malaria in the Philippines, specifically within Palawan Island.


Asunto(s)
Malaria , Plasmodium knowlesi , Masculino , Humanos , Persona de Mediana Edad , Filipinas/epidemiología , Plasmodium knowlesi/genética , Malaria/diagnóstico , Malaria/tratamiento farmacológico , Malaria/epidemiología , Canadá/epidemiología , Reacción en Cadena de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA