Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biotechnol ; 380: 51-63, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38151110

RESUMEN

Vibriosis is caused by Vibrio anguillarum in various species of aquaculture. A novel, secure, and stable vaccine is needed to eradicate vibriosis. Here, for reverse vaccinology and plant-based expression, the outer membrane protein K (OmpK) of V. anguillarum was chosen due to its conserved nature in all Vibrio species. OmpK, an ideal vaccine candidate against vibriosis, demonstrated immunogenic, non-allergic, and non-toxic behavior by using various bioinformatics tools. Docking showed the interaction of the OmpK model with TLR-5. In comparison to costly platforms, plants can be used as alternative and economic bio-factories to produce vaccine antigens. We expressed OmpK antigen in Nicotiana tabacum using Agrobacterium-mediated transformation. The expression vector was constructed using Gateway® cloning. Transgene integration was verified by polymerase chain reaction (PCR), and the copy number via qRT-PCR, which showed two copies of transgenes. Western blotting detected monomeric form of OmpK protein. The total soluble protein (TSP) fraction of OmpK was equivalent to 0.38% as detected by ELISA. Mice and fish were immunized with plant-derived OmpK antigen, which showed a significantly high level of anti-OmpK antibodies. The present study is the first report of OmpK antigen expression in higher plants for the potential use as vaccine in aquaculture against vibriosis, which could provide protection against multiple Vibrio species due to the conserved nature OmpK antigen.


Asunto(s)
Enfermedades de los Peces , Vibriosis , Vibrio , Animales , Ratones , Nicotiana/genética , Vacunas Bacterianas/genética , Vibrio/genética , Vibriosis/prevención & control , Vibriosis/veterinaria , Enfermedades de los Peces/prevención & control
3.
Front Plant Sci ; 14: 1109270, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36733717

RESUMEN

The ability of plants to assemble particulate structures such as virus-like particles and protein storage organelles allows the direct bioencapsulation of recombinant proteins during the manufacturing process, which holds promise for the development of new drug delivery vehicles. Storage organelles found in plants such as protein bodies (PBs) have been successfully used as tools for accumulation and encapsulation of recombinant proteins. The fusion of sequences derived from 27-kDa-γ-zein, a major storage protein of maize, with a protein of interest leads to the incorporation of the chimeric protein into the stable and protected environment inside newly induced PBs. While this procedure has proven successful for several, but not all recombinant proteins, the aim of this study was to refine the technology by using a combination of PB-forming proteins, thereby generating multi-layered protein assemblies in N. benthamiana. We used fluorescent proteins to demonstrate that up to three proteinaceous components can be incorporated into different layers. In addition to 27-kDa-γ-zein, which is essential for PB initiation, 16-kDa-γ-zein was identified as a key element to promote the incorporation of a third zein-component into the core of the PBs. We show that a vaccine antigen could be incorporated into the matrix of multi-layered PBs, and the protein microparticles were characterized by confocal and electron microscopy as well as flow cytometry. In future, this approach will enable the generation of designer PBs that serve as drug carriers and integrate multiple components that can be functionalized in different ways.

4.
Pharmaceutics ; 15(2)2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36840033

RESUMEN

Neurodegenerative diseases (NDDs) are characterized by the progressive degeneration and/or loss of neurons belonging to the central nervous system, and represent one of the major global health issues. Therefore, a number of immunotherapeutic approaches targeting the non-functional or toxic proteins that induce neurodegeneration in NDDs have been designed in the last decades. In this context, due to unprecedented advances in genetic engineering techniques and molecular farming technology, pioneering plant-based immunogenic antigen expression systems have been developed aiming to offer reliable alternatives to deal with important NDDs, including Alzheimer's disease, Parkinson's disease, and multiple sclerosis. Diverse reports have evidenced that plant-made vaccines trigger significant immune responses in model animals, supported by the production of antibodies against the aberrant proteins expressed in the aforementioned NDDs. Moreover, these immunogenic tools have various advantages that make them a viable alternative for preventing and treating NDDs, such as high scalability, no risk of contamination with human pathogens, cold chain free production, and lower production costs. Hence, this article presents an overview of the current progress on plant-manufactured vaccines for NDDs and discusses its future prospects.

5.
Vaccines (Basel) ; 10(11)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36366313

RESUMEN

The current century has witnessed infections of pandemic proportions caused by Coronaviruses (CoV) including severe acute respiratory syndrome-related CoV (SARS-CoV), Middle East respiratory syndrome-related CoV (MERS-CoV) and the recently identified SARS-CoV2. Significantly, the SARS-CoV2 outbreak, declared a pandemic in early 2020, has wreaked devastation and imposed intense pressure on medical establishments world-wide in a short time period by spreading at a rapid pace, resulting in high morbidity and mortality. Therefore, there is a compelling need to combat and contain the CoV infections. The current review addresses the unique features of the molecular virology of major Coronaviruses that may be tractable towards antiviral targeting and design of novel preventative and therapeutic intervention strategies. Plant-derived vaccines, in particular oral vaccines, afford safer, effectual and low-cost avenues to develop antivirals and fast response vaccines, requiring minimal infrastructure and trained personnel for vaccine administration in developing countries. This review article discusses recent developments in the generation of plant-based vaccines, therapeutic/drug molecules, monoclonal antibodies and phytochemicals to preclude and combat infections caused by SARS-CoV, MERS-CoV and SARS-CoV-2 viruses. Efficacious plant-derived antivirals could contribute significantly to combating emerging and re-emerging pathogenic CoV infections and help stem the tide of any future pandemics.

6.
Vavilovskii Zhurnal Genet Selektsii ; 26(3): 327-335, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35795227

RESUMEN

An outbreak of a new variant of the coronavirus infection, known as COVID-19, occurred at the end of 2019 in China, in the city of Wuhan. It was caused by the SARS-CoV-2 virus. This variant of the virus is characterized by a high degree of variability and, as the current situation with its spread across different regions of the globe shows, it can lead to a progressive spread of infection among the human population and become the cause of a pandemic. The world scientific community is making tremendous efforts to develop means of protection,prevention and treatment of this disease based on modern advances in molecular biology, immunology and vaccinology. This review provides information on the current state of research in the field of vaccine development against COVID-19 with an emphasis on the role of plants in solving this complex problem. Although plants have long been used by mankind as sources of various medicinal substances, in a pandemic, plant expression systems become attractive as biofactories or bioreactors for the production of artificially created protein molecules that include protective antigens against viral infection. The design and creation of such artificial molecules underlies the development of recombinant subunit vaccines aimed at a rapid response against the spread of infections with a high degree of variability. The review presents the state of research covering a period of just over two years, i. e. since the emergence of the new outbreak of coronavirus infection. The authors tried to emphasize the importance of rapid response of research groups from various scientific fields towards the use of existing developments to create means of protection against various pathogens. With two plant expression systems - stable and transient - as examples, the development of work on the creation of recombinant subunit vaccines against COVID-19 in various laboratories and commercial companies is shown. The authors emphasize that plant expression systems have promise for the development of not only protective means under conditions of rapid response (subunit vaccines), but also therapeutic agents in the form of monoclonal antibodies against COVID-19 synthesized in plant cells.

7.
Vaccines (Basel) ; 10(3)2022 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-35335110

RESUMEN

Viral diseases, including avian influenza (AI) and Newcastle disease (ND), are an important cause of morbidity and mortality in poultry, resulting in significant economic losses. Despite the availability of commercial vaccines for the major viral diseases of poultry, these diseases continue to pose a significant risk to global food security. There are multiple factors for this: vaccine costs may be prohibitive, cold chain storage for attenuated live-virus vaccines may not be achievable, and commercial vaccines may protect poorly against local emerging strains. The development of transient gene expression systems in plants provides a versatile and robust tool to generate a high yield of recombinant proteins with superior speed while managing to achieve cost-efficient production. Plant-derived vaccines offer good stability and safety these include both subunit and virus-like particle (VLP) vaccines. VLPs offer potential benefits compared to currently available traditional vaccines, including significant reductions in virus shedding and the ability to differentiate between infected and vaccinated birds (DIVA). This review discusses the current state of plant-based vaccines for prevention of the AI and ND in poultry, challenges in their development, and potential for expanding their use in low- and middle-income countries.

8.
Vaccines (Basel) ; 10(2)2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35214597

RESUMEN

Coronavirus (CoV) diseases, including Middle East Respiratory Syndrome (MERS) and Severe Acute Respiratory Syndrome (SARS) have gained in importance worldwide, especially with the current COVID-19 pandemic caused by SARS-CoV-2. Due to the huge global demand, various types of vaccines have been developed, such as more traditional attenuated or inactivated viruses, subunit and VLP-based vaccines, as well as novel DNA and RNA vaccines. Nonetheless, emerging new COVID-19 variants are necessitating continuous research on vaccines, including these produced in plants, either via stable expression in transgenic or transplastomic plants or transient expression using viral vectors or agroinfection. Plant systems provide low cost, high scalability, safety and capacity to produce multimeric or glycosylated proteins. To date, from among CoVs antigens, spike and capsid proteins have been produced in plants, mostly using transient expression systems, at the additional advantage of rapid production. Immunogenicity of plant-produced CoVs proteins was positively evaluated after injection of purified antigens. However, this review indicates that plant-produced CoVs proteins or their carrier-fused immunodominant epitopes can be potentially applied also as mucosal vaccines, either after purification to be administered to particular membranes (nasal, bronchus mucosa) associated with the respiratory system, or as oral vaccines obtained from partly processed plant tissue.

9.
Biotechnol Appl Biochem ; 69(2): 596-611, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33650709

RESUMEN

Human papillomavirus type-16 (HPV-16) is the major HPV type involved in causing cervical cancer among women. The disease burden is high in developing and underdeveloped countries. Previously, the constitutive expression of HPV-16 L1 protein led to male sterility in transplastomic tobacco plants. Here, the HPV-16 L1 gene was expressed in chloroplasts of Nicotiana tabacum under the control of an ethanol-inducible promoter, trans-activated by nucleus-derived signal peptide. Plants containing nuclear component were transformed with transformation vector pEXP-T7-L1 by biolistic gun. The transformation and homoplasmic status of transformed plants was verified by polymerase chain reaction and Southern blotting, respectively. Protein was induced by spraying 5% ethanol for 7 consecutive days. The correct folding of L1 protein was confirmed by antigen-capture ELISA using a conformation-specific antibody. The L1 protein accumulated up to 3 µg/g of fresh plant material. The L1 protein was further purified using affinity chromatography. All transplastomic plants developed normal flowers and produced viable seeds upon self-pollination. Pollens also showed completely normal structure under light microscope and scanning electron microscopy. These data confirm the use of the inducible expression as plant-safe approach for expressing transgenes in plants, especially those genes that cause detrimental effects on plant growth and morphology.


Asunto(s)
Nicotiana , Proteínas Oncogénicas Virales , Proteínas de la Cápside/genética , Etanol/metabolismo , Femenino , Flores/metabolismo , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/metabolismo , Humanos , Masculino , Proteínas Oncogénicas Virales/genética , Proteínas Oncogénicas Virales/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Polen , Nicotiana/genética , Nicotiana/metabolismo
10.
Plants (Basel) ; 10(12)2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34961028

RESUMEN

The use of plants as biofactories for the production of medical products and vaccines has a long history, but the recent COVID-19 pandemic has caused this set of technologies, for their potential to contribute to the development of innovative solutions for tackling pandemic spread worldwide, to rise in prominence. The purpose of this paper is to analyze the global innovation scenario of plant-based vaccine production. METHODS: Patent search using a specific set of technical classification codes and keywords was performed using the Questel-Orbit database, with a final output of 180 patent families, corresponding to 1397 single patents. RESULTS: Plant-based vaccines production is an innovation sector with positive development especially in the last five-year period (30% growth). Fifty percent of the patents were registered in the United States, standing out as the most attractive patent system worldwide. The inventive activity was led by private firms owning the 49% of the patent families, and the key-players group includes the companies that successfully developed plant-based COVID-19 vaccine candidates, indicating a strong connection between the expertise in innovation production and the capacity to adapt inventions to the current pandemic vaccine demand. Virus-like particles technology has increased in importance over the past few years. CONCLUSION: Patent data confirm their relevant role as indicators of innovation and technological evolution. Plant-based vaccines are expected to acquire an increasing role over the next few years as the current pandemic acts as an innovation catalyst.

11.
Plant Cell Rep ; 39(9): 1109-1114, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32561979

RESUMEN

The exponential spread of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emphasizes the immediate need for effective antiviral drugs and vaccines that could control and prevent the spread of this pandemic. Several new and repurposed drugs are being tested for their effectiveness in the treatment regime, and the development of vaccines is underway. The availability of genome sequence information of the virus and the identification of potential targets to neutralize and eradicate the infection have enabled the search for novel as well as existing molecules to perform the desired function. However, the application of plants in the development of potential biomolecules, such as antibiotics and vaccines, is limited. Traditional medicines involving plant-based formulations have proven successful in boosting immunity and providing tolerance to virus infections. Still, in-depth studies are not available to explore the bioactive compounds of plant origin and their mechanism of action. Given this, the current opinion article conveys our thoughts and perspectives on the promising usage of plant-based biomolecules in circumventing SARS-CoV-2, and how these molecules can work synergistically with other potential drugs for treating SARS-CoV-2.


Asunto(s)
Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/virología , Fitoquímicos/farmacología , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/virología , Antivirales/uso terapéutico , COVID-19 , Infecciones por Coronavirus/inmunología , Combinación de Medicamentos , Sinergismo Farmacológico , Interacciones de Hierba-Droga , Humanos , Inmunidad , Pandemias , Fitoquímicos/uso terapéutico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Neumonía Viral/inmunología , SARS-CoV-2
12.
J Biotechnol ; 305: 1-10, 2019 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-31454508

RESUMEN

Mycobacterium tuberculosis causes tuberculosis in humans. The major disease burden of tuberculosis lies in developing countries. Lack of an effective vaccine for adults is one of the major hurdles for controlling this deadly disease. In the present study, 6 kDa early secretory antigenic target (ESAT-6) of M. tuberculosis was inducibly expressed in chloroplasts of Nicotiana tabacum. The expression of ESAT-6 in chloroplasts was controlled by T7 promoter that was activated by nuclear-generated signal peptide. Tobacco plants, containing nuclear component, were transformed via biolistic bombardment with pEXP-T7-ESAT-6 obtained by Gateway® cloning. Transformation and homoplasmic status of transplastomic plants was confirmed by polymerase chain reaction and Southern blotting. Plants were induced for protein expression by spraying with 5% ethanol for 1 day, 3 days, 7 days and 10 days. ESAT-6 protein was detected by immunoblot analysis and maximum protein was obtained for 10 days induced plants that was estimated to accumulate up to 1.2% of total soluble fraction of protein. Transplastomic plants showed completely normal morphology. Transplastomic and untransformed plants became slightly chlorotic upon prolonged exposure to ethanol until 10 days. Taken together, this data could help in the development of an antigen-based subunit vaccine against tuberculosis.


Asunto(s)
Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Cloroplastos/metabolismo , Mycobacterium tuberculosis/metabolismo , Nicotiana/crecimiento & desarrollo , Antígenos Bacterianos/genética , Antígenos Bacterianos/inmunología , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Bacteriófago T7/genética , Biolística , Cloroplastos/genética , Mycobacterium tuberculosis/inmunología , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Regiones Promotoras Genéticas , Ingeniería de Proteínas , Nicotiana/genética , Nicotiana/metabolismo , Transformación Genética , Vacunas contra la Tuberculosis/metabolismo
13.
Trends Biotechnol ; 36(10): 1054-1067, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29980327

RESUMEN

The use of innovative platforms to produce biopharmaceuticals cheaply and deliver them through noninvasive routes could expand their social benefits. Coverage should increase as a consequence of lower cost and higher patient compliance due to painless administration. For more than two decades of research, oral therapies that rely on genetically engineered plants for the production of biopharmaceuticals have been explored to treat or prevent high-impact diseases. Recent reports on the successful oral delivery of plant-made biopharmaceuticals raise new hopes for the field. Several candidates have shown protection in animal models, and efforts to establish their production on an industrial scale are ongoing. These advances and perspectives for the field are analyzed.


Asunto(s)
Productos Biológicos/administración & dosificación , Sistemas de Liberación de Medicamentos , Células Vegetales/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Administración Oral , Humanos
14.
Curr Mol Biol Rep ; 3(4): 306-316, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-32226727

RESUMEN

PURPOSE OF REVIEW: The requirement for large quantities of therapeutic proteins has fueled a great interest in the production of recombinant proteins in plant bioreactors. The vaccines and bio-therapeutic protein production in plants hold the promise of significantly lowering the cost of manufacturing life-saving drugs. This review will reflect the current status and challenges that the molecular farming platform faces becoming a strategic solution for the development of low-cost bio-therapeutics for developing countries. RECENT FINDINGS: Different plant parts have been successfully identified as suitable expression systems for the commercial production of therapeutic proteins for some human and animal diseases ranging from common cold to AIDS. The processed therapeutics from such sources are devoid of any toxic components. The large-scale cultivation of these transgenic plants would be possible anywhere in the world including developing countries, which lack sophisticated drug manufacturing units. A couple of such commercially generated products have already hit the market with success. Newer methods using suitable plant viruses and recombinant gene expression systems have already been devised for producing therapeutic proteins and peptides. SUMMARY: Plants are promising bio-factories for therapeutic protein production because of their several advantages over the other expression systems especially the advanced mechanisms for protein synthesis and post-translational modification which are very much similar to animal cells. Plant biotechnologists are much attracted to the bio-farming because of its flexibility, scalability, low manufacturing cost, as well as the lack of risk of toxic or pathogenic contamination. A number of projects on bio-farming are designed and are at various developmental stages but have not yet become available to the pharmaceutical industry. Therefore, we need further advancement in the optimization of lab protocols for up-scaling the production of such therapeutics at commercial level with a promise to offer their best clinical use.

15.
Springerplus ; 5: 65, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26839758

RESUMEN

To treat current infectious diseases, different therapies are used that include drugs or vaccines or both. Currently, the world is facing an increasing problem of drug resistance from many pathogenic microorganisms. In majority of cases, when vaccines are used, formulations consist of live attenuated microorganisms. This poses an additional risk of infection in immunocompromised patients and people suffering from malnutrition in developing countries. Therefore, there is need to improve drug therapy as well as to develop next generation vaccines, in particular against infectious diseases with highest mortality rates. For patients in developing countries, costs related to treatments are one of the major hurdles to reduce the disease burden. In many cases, use of prophylactic vaccines can help to control the incidence of infectious diseases. In the present review, we describe some infectious diseases with high impact on health of people in low and middle income countries. We discuss the prospects of plants as alternative platform for the development of next-generation subunit vaccines that can be a cost-effective source for mass immunization of people in developing countries.

16.
Front Plant Sci ; 6: 1005, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26635832

RESUMEN

Infectious diseases pose an increasing risk to health, especially in developing countries. Vaccines are available to either cure or prevent many of these diseases. However, there are certain limitations related to these vaccines, mainly the costs, which make these vaccines mostly unaffordable for people in resource poor countries. These costs are mainly related to production and purification of the products manufactured from fermenter-based systems. Plastid biotechnology has become an attractive platform to produce biopharmaceuticals in large amounts and cost-effectively. This is mainly due to high copy number of plastids DNA in mature chloroplasts, a characteristic particularly important for vaccine production in large amounts. An additional advantage lies in the maternal inheritance of plastids in most plant species, which addresses the regulatory concerns related to transgenic plants. These and many other aspects of plastids will be discussed in the present review, especially those that particularly make these green biofactories an attractive platform for vaccine production. A summary of recent vaccine antigens against different human diseases expressed in plastids will also be presented.

17.
Immunol Lett ; 161(2): 204-6, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24462961

RESUMEN

The ICI 2013 Mucosal Vaccine Workshop presentations covered a wide range of topics, these mainly fell into three categories: (i) Understanding the interactions of host and microbes, specifically commensal pathogens and improving the antigen uptake via the (microfold cells) M cells to induce effective IgA antibody immunity at the gut mucosa; (ii) effective plant-based vaccines and (iii) development of prophylactic and therapeutic mucosal-based vaccine strategies for virus infections such as human immunodeficiency virus (HIV), influenza and human papillomavirus (HPV) associated head and neck cancers. How to improve the efficacy of oral vaccines, novel intranasal mucosal adjuvants and a unique intra-cheek delivery method were also discussed. Presenters emphasized the differences associated with systemic and mucosal vaccination, specifically, how mucosal vaccines unlike systemic delivery can induce effective immunity at the first line of defence. Collectively, the workshop provided insights into recent developments in the mucosal vaccine research field, highlighting the complexities associated with designing safe and effective mucosal vaccines.


Asunto(s)
Inmunidad Mucosa , Membrana Mucosa/inmunología , Adyuvantes Inmunológicos , Animales , Antígenos/inmunología , Tracto Gastrointestinal/inmunología , Neoplasias de Cabeza y Cuello/inmunología , Neoplasias de Cabeza y Cuello/terapia , Humanos , Vacunas/administración & dosificación , Vacunas/inmunología , Virosis/inmunología , Virosis/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA