Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros











Intervalo de año de publicación
1.
Sci Rep ; 14(1): 15740, 2024 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977862

RESUMEN

Genome replication is frequently impeded by highly stable DNA secondary structures, including G-quadruplex (G4) DNA, that can hinder the progression of the replication fork. Human WRNIP1 (Werner helicase Interacting Protein 1) associates with various components of the replication machinery and plays a crucial role in genome maintenance processes. However, its detailed function is still not fully understood. Here we show that human WRNIP1 interacts with G4 structures and provide evidence for its contribution to G4 processing. The absence of WRNIP1 results in elevated levels of G4 structures, DNA damage and chromosome aberrations following treatment with PhenDC3, a G4-stabilizing ligand. Additionally, we establish a functional and physical relationship between WRNIP1 and the PIF1 helicase in G4 processing. In summary, our results suggest that WRNIP1 aids genome replication and maintenance by regulating G4 processing and this activity relies on Pif1 DNA helicase.


Asunto(s)
ADN Helicasas , Replicación del ADN , G-Cuádruplex , Humanos , ADN Helicasas/metabolismo , Daño del ADN , Aberraciones Cromosómicas , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética
2.
EMBO J ; 43(18): 3818-3845, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39039287

RESUMEN

The CMG helicase is the stable core of the eukaryotic replisome and is ubiquitylated and disassembled during DNA replication termination. Fungi and animals use different enzymes to ubiquitylate the Mcm7 subunit of CMG, suggesting that CMG ubiquitylation arose repeatedly during eukaryotic evolution. Until now, it was unclear whether cells also have ubiquitin-independent pathways for helicase disassembly and whether CMG disassembly is essential for cell viability. Using reconstituted assays with budding yeast CMG, we generated the mcm7-10R allele that compromises ubiquitylation by SCFDia2. mcm7-10R delays helicase disassembly in vivo, driving genome instability in the next cell cycle. These data indicate that defective CMG ubiquitylation explains the major phenotypes of cells lacking Dia2. Notably, the viability of mcm7-10R and dia2∆ is dependent upon the related Rrm3 and Pif1 DNA helicases that have orthologues in all eukaryotes. We show that Rrm3 acts during S-phase to disassemble old CMG complexes from the previous cell cycle. These findings indicate that CMG disassembly is essential in yeast cells and suggest that Pif1-family helicases might have mediated CMG disassembly in ancestral eukaryotes.


Asunto(s)
ADN Helicasas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , ADN Helicasas/metabolismo , ADN Helicasas/genética , Ubiquitinación , Componente 7 del Complejo de Mantenimiento de Minicromosoma/metabolismo , Componente 7 del Complejo de Mantenimiento de Minicromosoma/genética , Replicación del ADN , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Proteínas de Mantenimiento de Minicromosoma/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas F-Box
3.
Curr Biol ; 34(14): 3152-3164.e6, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38971148

RESUMEN

Seed germination represents a determinant for plants to enter ecosystems and is thus regarded as a key ecological and agronomic trait. It is tightly regulated by a variety of environmental cues to ensure that seeds germinate under favorable conditions. Here, we characterize BBX32, a B-box zinc-finger protein, as an imbibition-stimulated positive regulator of seed germination. Belonging to subgroup V of the BBX family, BBX32 exhibits distinct characteristics compared with its close counterparts within the same subgroup. BBX32 is transiently induced at both the transcriptional and post-transcriptional levels in the embryo upon water absorption. Genetic evidence indicates that BBX32 acts upstream of the master transcription factor PHYTOCHROME-INTERACTING FACTOR 1 (PIF1) to facilitate light-induced seed germination. BBX32 directly interacts with PIF1, suppressing its protein-interacting and DNA-binding capabilities, thereby relieving PIF1's repression on seed germination. Furthermore, the imbibition-stimulated BBX32 functions in parallel with the light-induced transcription regulator HFR1 to collectively attenuate the transcriptional activities of PIF1. The BBX32-PIF1 de-repression module serves as a molecular connection that enables plants to integrate signals of water availability and light exposure, effectively coordinating the initiation of seed germination.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Germinación , Plantones , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Plantones/crecimiento & desarrollo , Plantones/genética , Plantones/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Dedos de Zinc
4.
EMBO Rep ; 25(4): 1734-1751, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38480846

RESUMEN

Pif1 family helicases are multifunctional proteins conserved in eukaryotes, from yeast to humans. They are important for the genome maintenance in both nuclei and mitochondria, where they have been implicated in Okazaki fragment processing, replication fork progression and termination, telomerase regulation and DNA repair. While the Pif1 helicase activity is readily detectable on naked nucleic acids in vitro, the in vivo functions rely on recruitment to DNA. We identify the single-stranded DNA binding protein complex RPA as the major recruiter of Pif1 in budding yeast, in addition to the previously reported Pif1-PCNA interaction. The two modes of the Pif1 recruitment act independently during telomerase inhibition, as the mutations in the Pif1 motifs disrupting either of the recruitment pathways act additively. In contrast, both recruitment mechanisms are essential for the replication-related roles of Pif1 at conventional forks and during the repair by break-induced replication. We propose a molecular model where RPA and PCNA provide a double anchoring of Pif1 at replication forks, which is essential for the Pif1 functions related to the fork movement.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Telomerasa , Humanos , Replicación del ADN/genética , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Telomerasa/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , ADN/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
5.
Cell Rep ; 43(3): 113851, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38427559

RESUMEN

Human centromeres are located within α-satellite arrays and evolve rapidly, which can lead to individual variation in array length. Proposed mechanisms for such alterations in length are unequal crossover between sister chromatids, gene conversion, and break-induced replication. However, the underlying molecular mechanisms responsible for the massive, complex, and homogeneous organization of centromeric arrays have not been experimentally validated. Here, we use droplet digital PCR assays to demonstrate that centromeric arrays can expand and contract within ∼20 somatic cell divisions of an alternative lengthening of telomere (ALT)-positive cell line. We find that the frequency of array variation among single-cell-derived subclones ranges from a minimum of ∼7% to a maximum of ∼100%. Further clonal evolution revealed that centromere expansion is favored over contraction. We find that the homologous recombination protein RAD52 and the helicase PIF1 are required for extensive array change, suggesting that centromere sequence evolution can occur via break-induced replication.


Asunto(s)
Centrómero , ADN Satélite , Humanos , Línea Celular , ADN Helicasas/genética
6.
Int J Chron Obstruct Pulmon Dis ; 18: 1319-1332, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37396201

RESUMEN

Purpose: Pulmonary artery hypertension (PAH) is a common complication of chronic obstructive pulmonary disease and obstructive sleep apnea/hypopnea syndrome worldwide. Pulmonary vascular alterations associated with PAH have multifactorial causes, in which endothelial cells play an important role. Autophagy is closely related to endothelial cell injury and the development of PAH. PIF1 is a multifunctional helicase crucial for cell survival. The present study investigated the effect of PIF1 on autophagy and apoptosis in human pulmonary artery endothelial cells (HPAECs) under chronic hypoxia stress. Methods: Chronic hypoxia Gene expression profiling chip-assays identified the PIF1 gene as differentially expressed, which was verified by RT-qPCR analysis. Electron microscopy, immunofluorescence, and Western blotting were used to analyze autophagy and the expression of LC3 and P62. Apoptosis was analyzed using flow cytometry. Results: Our study found that chronic hypoxia induces autophagy in HPAECs, and apoptosis was exacerbated by inhibiting autophagy. Levels of the DNA helicase PIF1 were increased in HPAECs after chronic hypoxia. PIF1 knockdown inhibited autophagy and promoted the apoptosis of HPAECs under chronic hypoxia stress. Conclusion: Based on these findings, we conclude that PIF1 inhibits the apoptosis of HPAECs by accelerating the autophagy pathway. Therefore, PIF1 plays a crucial role in HPAEC dysfunction in chronic hypoxia-induced PAH and may be a potential target for the treatment of PAH.


Asunto(s)
Hipertensión Arterial Pulmonar , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Apoptosis , Autofagia , Hipoxia de la Célula , Proliferación Celular , ADN Helicasas/genética , ADN Helicasas/metabolismo , Células Endoteliales/metabolismo , Hipoxia/complicaciones , Hipoxia/genética , Hipoxia/metabolismo , Arteria Pulmonar , Enfermedad Pulmonar Obstructiva Crónica/metabolismo
7.
J Biol Chem ; 299(6): 104817, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37178921

RESUMEN

Pif1 is a broadly conserved helicase that is essential for genome integrity and participates in numerous aspects of DNA metabolism, including telomere length regulation, Okazaki fragment maturation, replication fork progression through difficult-to-replicate sites, replication fork convergence, and break-induced replication. However, details of its translocation properties and the importance of amino acids residues implicated in DNA binding remain unclear. Here, we use total internal reflection fluorescence microscopy with single-molecule DNA curtain assays to directly observe the movement of fluorescently tagged Saccharomyces cerevisiae Pif1 on single-stranded DNA (ssDNA) substrates. We find that Pif1 binds tightly to ssDNA and translocates very rapidly (∼350 nucleotides per second) in the 5'→3' direction over relatively long distances (∼29,500 nucleotides). Surprisingly, we show the ssDNA-binding protein replication protein A inhibits Pif1 activity in both bulk biochemical and single-molecule measurements. However, we demonstrate Pif1 can strip replication protein A from ssDNA, allowing subsequent molecules of Pif1 to translocate unimpeded. We also assess the functional attributes of several Pif1 mutations predicted to impair contact with the ssDNA substrate. Taken together, our findings highlight the functional importance of these amino acid residues in coordinating the movement of Pif1 along ssDNA.


Asunto(s)
ADN de Cadena Simple , Proteínas de Saccharomyces cerevisiae , ADN/metabolismo , Replicación del ADN , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Nucleótidos/metabolismo , Proteína de Replicación A/genética , Proteína de Replicación A/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
J Appl Toxicol ; 43(10): 1522-1532, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37183367

RESUMEN

Chemoresistance is still a vital obstacle in various tumors chemotherapy. This study aimed to explore the role of Petite Integration Factor 1 (PIF1) in the sensitivity of gemcitabine response to pancreatic cancer cells. Gene Expression Profiling Interactive Analysis (GEPIA) database was employed for evaluating the level of PIF1 in pancreatic cancer tissues and normal tissues. The mRNA level of PIF1 was detected via reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis. The relative protein expression of PIF1, cleaved caspase-3, and phosphorylated histone H2Ax (γH2Ax) was assessed through western blot. Cell viability and apoptosis were assessed via Cell Counting Kit-8 (CCK-8) assay and flow cytometry, respectively. Moreover, lactate dehydrogenase (LDH) release and caspase-3 activity were determined via the corresponding LDH Cytotoxicity Assay Kit and caspase-3 colorimetric assay kit. PIF1 expression was upregulated in pancreatic cancer tissues and cells. Knockdown of PIF1 exhibited the repressive impact on the viability of AsPC-1 and PANC-1 cells. PIF1 knockdown enhanced LDH release and apoptosis in both AsPC-1 and PANC-1 cells. PIF1 downregulation could augment the sensitivity of gemcitabine in pancreatic cancer cells, as evidenced by lower cell viability and higher LDH release and apoptosis rate after knocking down PIF1 in gemcitabine-treated pancreatic cancer cells relative to pancreatic cancer cells treated with gemcitabine alone. Moreover, PIF1 knockdown increased γH2Ax protein expression and DNA damage, and gemcitabine treatment-induced DNA damage in AsPC-1 and PANC-1 cells was exacerbated by PIF1 silencing. Furthermore, gemcitabine treatment-caused increase of DNA damage was alleviated by PIF1 overexpression; whereas, this effect of PIF1 upregulation was reversed by thymidine, a DNA synthesis inhibitor. In addition, the decreased gemcitabine sensitivity response to pancreatic cancer cells caused by PIF1 upregulation was also hindered by thymidine treatment. In conclusion, PIF1 silencing enhanced gemcitabine sensitivity response to pancreatic cancer cells through aggrandizing DNA damage.


Asunto(s)
Gemcitabina , Neoplasias Pancreáticas , Humanos , Apoptosis , Caspasa 3/genética , Caspasa 3/metabolismo , Línea Celular Tumoral , Desoxicitidina/farmacología , Daño del ADN , Resistencia a Antineoplásicos/genética , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas
9.
Microorganisms ; 11(2)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36838444

RESUMEN

Pif1 proteins are DNA helicases belonging to Superfamily 1, with 5' to 3' directionality. They are conserved from bacteria to human and have been shown to be particularly important in eukaryotes for replication and nuclear and mitochondrial genome stability. However, Pif1 functions in bacteria are less known. While most Pif1 from mesophilic bacteria consist of the helicase core with limited N-terminal and C-terminal extensions, some Pif1 from thermophilic bacteria exhibit a C-terminal WYL domain. We solved the crystal structures of Pif1 helicase cores from thermophilic bacteria Deferribacter desulfuricans and Sulfurihydrogenibium sp. in apo and nucleotide bound form. We show that the N-terminal part is important for ligand binding. The full-length Pif1 helicase was predicted based on the Alphafold algorithm and the nucleic acid binding on the Pif1 helicase core and the WYL domain was modelled based on known crystallographic structures. The model predicts that amino acids in the domains 1A, WYL, and linker between the Helicase core and WYL are important for nucleic acid binding. Therefore, the N-terminal and C-terminal extensions may be necessary to strengthen the binding of nucleic acid on these Pif1 helicases. This may be an adaptation to thermophilic conditions.

10.
Curr Top Dev Biol ; 151: 191-215, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36681470

RESUMEN

Successful meiosis I requires that homologous chromosomes be correctly linked before they are segregated. In most organisms this physical linkage is achieved through the generation of crossovers between the homologs. Meiotic recombination co-opts and modifies the canonical homologous recombination pathway to successfully generate crossovers One of the central components of this pathway are a number of conserved DNA helicases. Helicases couple nucleic acid binding to nucleotide hydrolysis and use this activity to modify DNA or protein-DNA substrates. During meiosis I it is necessary for the cell to modulate the canonical DNA repair pathways in order to facilitate the generation of interhomolog crossovers. Many of these meiotic modulations take place in pathways involving DNA helicases, or with a meiosis specific helicase. This short review explores what is currently understood about these helicases, their interaction partners, and the role of regulatory modifications during meiosis I. We focus in particular on the molecular structure and mechanisms of these helicases.


Asunto(s)
Reparación del ADN , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , Recombinación Homóloga , Meiosis
11.
Methods Enzymol ; 672: 339-368, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35934483

RESUMEN

Break-Induced Replication (BIR) is a homologous recombination (HR) pathway that differentiates itself from all other HR pathways by involving extensive DNA synthesis of up to hundreds of kilobases. This DNA synthesis occurs in G2/M arrested cells by a mechanism distinct from regular DNA replication. BIR initiates by strand invasion of a single end of a DNA double-strand break (DSB) followed by extensive D-loop migration. The main replicative helicase Mcm2-7 is dispensable for BIR, however, Pif1 helicase and its PCNA interaction domain are required. Pif1 helicase was shown to be important for extensive repair-specific DNA synthesis at DSB in budding and fission yeasts, flies, and human cells, implicating conservation of the mechanism. Additionally, Mph1 helicase negatively regulates BIR by unwinding migrating D-loops, and Srs2 promotes BIR by eliminating the toxic joint molecules. Here, we describe the methods that address the following questions in studying BIR: (i) how to distinguish enzymes needed specifically for BIR from enzymes needed for other HR mechanisms that require short patch DNA synthesis, (ii) what are the phenotypes expected for mutants deficient in extensive synthesis during BIR, (iii) how to follow extensive DNA synthesis during BIR? Methods are described using yeast model organism and wild-type cells are compared side-by-side with Pif1 deficient cells.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Roturas del ADN de Doble Cadena , ADN Helicasas/genética , ADN Helicasas/metabolismo , Reparación del ADN , Replicación del ADN , Humanos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Methods Enzymol ; 673: 169-190, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35965006

RESUMEN

DNA helicases are involved in nearly all facets of genome integrity, and in humans, mutations in helicase-encoding genes are often linked to diseases of genomic instability. Two highly studied and evolutionarily conserved helicase families are the PIF1 and RecQ helicases. Enzymes in these families have known roles in DNA replication, recombination, and repair, as well as telomere maintenance, DNA recombination, and transcription. Although genetics, structural biology, and a variety of other techniques have been used to study these helicases, ensemble analyses of their basic biochemical activities such as DNA binding, ATP hydrolysis, and DNA unwinding have made significant contributions to our understanding of their physiological roles. Here, we present general methods to generate recombinant proteins from both helicase families, as well as standard biochemical assays to investigate their activities on DNA.


Asunto(s)
Replicación del ADN , RecQ Helicasas , ADN , ADN Helicasas/genética , ADN Helicasas/metabolismo , Reparación del ADN , Inestabilidad Genómica , Humanos , RecQ Helicasas/genética , RecQ Helicasas/metabolismo
13.
Methods Enzymol ; 673: 191-225, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35965008

RESUMEN

R-loop proteins present a stable and robust blockade to the progression of a DNA replication fork during S-phase. The consequences of this block can include mutagenesis and other irreversible chromosomal catastrophes, causing genomic instability and disease. As such, further investigation into the molecular mechanisms underlying R-loop protein resolution is warranted. The critical role of non-replicative accessory helicases in R-loop protein resolution has increasingly come into light in recent years. Such helicases include the Pif1-family, monomeric helicases that have been studied in many different contexts and that have been ascribed to a multitude of separable protective functions in the cell. In this chapter, we present protocols to study R-loop protein resolution by Pif1 helicase at stalled replication forks using purified proteins, both at the biochemical and single-molecule level. Our system uses recombinant proteins expressed in Saccharomyces cerevisiae but could apply to practically any organism of interest due to the high interspecies homology of the proteins involved in DNA replication. The methods we outline are extensible to many systems and should be applicable to studying R-loop clearance by any Superfamily (SF) 1B helicase. These techniques will further enable mechanistic research on these critical but understudied components of the genomic maintenance program.


Asunto(s)
Estructuras R-Loop , Proteínas de Saccharomyces cerevisiae , ADN Helicasas/química , Replicación del ADN , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Microb Cell ; 9(6): 126-132, 2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35795254

RESUMEN

The G-quadruplex consensus motif G≥3NxG≥3NxG≥3NxG≥3 is found at telomeres of many species, ranging from yeast to plants to humans, but the biological significance of this fact remains largely unknown. In this study, we examine the in vivo relevance of telomeric G-quadruplexes in the budding yeast Saccharomyces cerevisiae by expressing a mutant telomerase RNA subunit (tlc1-tm) that introduces mutant [(TG)0-4TGG]xATTTGG telomeric repeats instead of wild-type (TG)0-6TGGGTGTG(G)0-1 repeats to the distal ends of telomeres. The tlc1-tm telomere sequences lack the GGG motif present in every wild-type repeat and, therefore, are expected to be impaired in the formation of G-quadruplexes. Circular dichroism analysis of oligonucleotides consisting of tlc1-tm telomeric sequence is consistent with this hypothesis. We have previously shown that tlc1-tm cells grow similarly to wild-type cells, suggesting that the ability to form telomeric G-quadruplexes is not essential for telomere capping in S. cerevisiae cells.

15.
Methods Mol Biol ; 2528: 305-316, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35704200

RESUMEN

R-loops, three-stranded RNA-DNA hybrids that arise mostly during transcription, could cause genomic instability via distinct routes. Detection of genomic RNA-DNA hybrids via immunofluorescence and RNA-DNA hybrid immunoprecipitation techniques have facilitated the discovery of many cellular factors that maintain R-loop homeostasis. One of multiple R-loop avoidance mechanisms is mediated by several nucleic acid motor proteins that utilize the energy from ATP hydrolysis to dissociate the R-loop structure. The biochemical activity of such motor proteins can be interrogated using synthetic R-loop substrates. Here, we describe methods to generate R-loop and RNA-DNA substrates for studying the activity of R-loop processing motor proteins such as human DHX9 and S. cerevisiae Pif1. Such studies provide valuable information regarding the directionality, nucleic acid strand preference, and processivity of these enzymes. Moreover, these substrates and companion biochemical assays provide the requisite tool for understanding the action of physiologically relevant regulators of these motor proteins.


Asunto(s)
Estructuras R-Loop , Proteínas de Saccharomyces cerevisiae , ADN/química , ADN Helicasas/metabolismo , Humanos , Inmunoprecipitación , ARN/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
Methods ; 204: 234-240, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35483549

RESUMEN

DNA helicases function in many types of nucleic acid transactions, and as such, they are vital for genome integrity. Although they are often considered individually, work from many groups demonstrates that these enzymes often genetically and biochemically interact in vivo. Here, we highlight methods to interrogate such interactions among the PIF1 (Pif1 and Rrm3) and RecQ (Hrq1 and Sgs1) family helicases in Saccharomyces cerevisiae. The interactions among these enzymes were investigated in vivo using deletion and inactivation alleles with a gross-chromosomal rearrangement (GCR) assay. Further, wild-type and inactive recombinant proteins were used to determine the effects of the helicases on telomerase activity in vitro. We found that synergistic increases in GCR rates often occur in double vs. single mutants, suggesting that the helicases function in distinct genome integrity pathways. Further, the recombinant helicases can function together in vitro to modulate telomerase activity. Overall, the data suggest that the interactions among the members of these DNA helicase families are multipartite and argue for a comprehensive systems biology approach to fully elucidate the physiological interplay between these enzymes.


Asunto(s)
ADN Helicasas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Telomerasa , ADN Helicasas/genética , ADN Helicasas/metabolismo , RecQ Helicasas/genética , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Telomerasa/metabolismo
17.
Int J Mol Sci ; 23(7)2022 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35409096

RESUMEN

Pif1 helicases are a multifunctional family of DNA helicases that are important for many aspects of genomic stability in the nucleus and mitochondria. Pif1 helicases are conserved from bacteria to humans. Pif1 helicases play multiple roles at the replication fork, including promoting replication through many barriers such as G-quadruplex DNA, the rDNA replication fork barrier, tRNA genes, and R-loops. Pif1 helicases also regulate telomerase and promote replication termination, Okazaki fragment maturation, and break-induced replication. This review highlights many of the roles and regulations of Pif1 at the replication fork that promote cellular health and viability.


Asunto(s)
G-Cuádruplex , Proteínas de Saccharomyces cerevisiae , ADN Helicasas/metabolismo , Replicación del ADN , Humanos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
Int J Mol Sci ; 23(6)2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35328431

RESUMEN

A useful model for determining the mechanisms by which actin and actin binding proteins control cellular architecture is the Drosophila melanogaster process of spermatogenesis. During the final step of spermatogenesis, 64 syncytial spermatids individualized as stable actin cones move synchronously down the axonemes and remodel the membranes. To identify new genes involved in spermatid individualization, we screened a collection of Drosophila male-sterile mutants and found that, in the line Z3-5009, actin cones formed near to the spermatid nuclei but failed to move, resulting in failed spermatid individualization. However, we show by phalloidin actin staining, electron microscopy and immunocytochemical localization of several actin binding proteins that the early cones had normal structure. We sequenced the genome of the Z3-5009 line and identified mutations in the PFTAIRE kinase L63 interactor 1A (Pif1A) gene. Quantitative real-time PCR showed that Pif1A transcript abundance was decreased in the mutant, and a transgene expressing Pif1A fused to green fluorescent protein (GFP) was able to fully rescue spermatid individualization and male fertility. Pif1A-GFP localized to the front of actin cones before initiation of movement. We propose that Pif1A plays a pivotal role in directing actin cone movement.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Actinas/genética , Actinas/metabolismo , Animales , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Masculino , Espermátides/metabolismo , Espermatogénesis/genética , Testículo/metabolismo
19.
Front Genet ; 13: 1058040, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36685888

RESUMEN

Background: Petite Integration Factor 1 (PIF1) is a multifunctional helicase and DNA processing enzyme that plays an important role in the process of several cancer types. However, the relationship between clear cell renal cell carcinoma (ccRCC) and PIF1 remains unclear. This study aims to explore the role of PIF1 in ccRCC tumorigenesis and prognosis. Methods: Based on The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) database, we retrieved and verified the expression of PIF1 in ccRCC tissues as well as normal tissues. To assess the protein expression of PIF1 by using the Human Protein Atlas and the Clinical Proteomic Tumor Analysis Consortium (CPTAC). We also performed receiver operating characteristic (ROC) curve analysis to differentiate the effectiveness of PIF1 in ccRCC and adjacent normal tissues. To evaluate the value of PIF1 on clinical outcomes in ccRCC patients by using multivariate methods and Kaplan‒Meier survival curves. Protein‒protein interaction (PPI) networks were made with STRING. We determined the relationship between the expression of PIF1 and immune cell infiltration with single-sample gene set enrichment analysis (ssGSEA). Results: Compared with normal tissues, the expression of PIF1 was significantly elevated in ccRCC. The mRNA expression of PIF1 is correlated with high TNM stage and high pathologic stage. The receiver operating characteristic (ROC) curve analysis showed that PIF1 was related to an area under the curve (AUC) value of 0.928 to distinguish between ccRCC tissues and normal tissues. Kaplan‒Meier survival analysis showed that the overall survival (OS) of ccRCC patients with a high level of PIF1 was significantly shorter than that of those with a low level of PIF1. PIF1 may play an important role in the occurrence of tumors. Correlation analysis showed that PIF1-mediated carcinogenesis may participate in the process of tumor immune escape in ccRCC. Conclusion: PIF1 could be a reference biomarker to identify ccRCC patients with poor prognosis. PIF1 may play a distinct role in the microenvironment of ccRCC by regulating tumor infiltration of immune cells, which is a new therapeutic target to affect the growth of the tumor.

20.
Methods ; 204: 348-360, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34896247

RESUMEN

There are multiple assays available that can provide insight into the biochemical mechanism of DNA helicases. For the first 22 years since their discovery, bulk-phase assays were used. These include gel-based, spectrophotometric, and spectrofluorometric assays that revealed many facets of these enzymes. From 2001, single-molecule studies have contributed additional insight into these DNA nanomachines to reveal details on energy coupling, step size, processivity as well as unique aspects of individual enzyme behavior that were masked in the averaging inherent in ensemble studies. In this review, important aspects of the study of helicases are discussed including beginning with active, nuclease-free enzyme, followed by several bulk-phase approaches that have been developed and still find widespread use today. Finally, two single-molecule approaches are discussed, and the resulting findings are related to the results obtained in bulk-phase studies.


Asunto(s)
ADN Helicasas , ADN , ADN/química , ADN Helicasas/química , ADN Helicasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA