Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 396
Filtrar
2.
J Exp Bot ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39259686

RESUMEN

Flavescence dorée (FD) is a phytoplasma disease transmitted by insects, causing severe damage to vineyards across Europe. Infected plants cannot be cured and must be removed to prevent further spread. Different grapevine cultivars show varying susceptibility to FD, and some exhibit symptom remission, known as recovery, although the mechanisms behind this are unclear. Diseased plants accumulate soluble sugars, including sucrose, which influences the concentration of trehalose-6P (T6P), a signalling molecule affecting plant growth and stress responses. It is hypothesized that sucrose-mediated signalling via T6P could trigger defence mechanisms, reducing FD pathogen load and increasing plant recovery. Testing this, two grapevine genotypes with different susceptibility to FD were compared, revealing increased sucrose level and TPS activity in the more tolerant cultivar. However, FD-infected plants showed inhibited sucrose-cleaving enzymes and no activation of TPS expression. Attempts to enhance sucrose levels through trunk infusion and girdling promoted sucrose metabolism, T6P biosynthesis, and defence gene expression, facilitating symptom recovery. Girdling particularly enhanced T6P biosynthesis and defence genes above the treatment point, reducing FD pathogen presence and promoting recovery. These findings suggest that elevated sucrose levels, possibly signalling through T6P, may limit FD pathogen spread, aiding in plant recovery.

3.
Plant Dis ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39295135

RESUMEN

Phytoplasmas are minute phytopathogenic bacteria that induce excessive vegetative growth, known as witches'-broom (WB), in many infected plant species during the later stages of infection. The WB structure is characterized by densely clustered little (small) leaves, which are frequently accompanied by chlorosis (yellowing). The mechanisms behind the formation of little leaves within WB structures (LL-WB) are poorly understood. To address this gap, the LL-WB formation was extensively studied using sweet cherry virescence (SCV) phytoplasma-infected sweet cherry plants. Based on morphological examinations, signs of premature leaf senescence were observed in LL-WB samples, including reduced leaf size, chlorosis, and alterations in shape. Subsequent physiological analyses indicated decreased sucrose and glucose levels and changes in hormone concentrations in LL-WB samples. Additionally, the transcriptomic analysis revealed impaired ribosome biogenesis and DNA replication. As an essential process in protein production, the compromised ribosome biogenesis and the inhibited DNA replication led to cell cycle arrest, thus affecting leaf morphogenesis and further plant development. Moreover, the expression of marker genes involved in premature leaf senescence was significantly altered. These results indicate a complicated interplay between the development of leaves, premature leaf senescence, and the pathogen-induced stress responses in SCV phytoplasma-infected sweet cherry trees. The results of this study provide insight into understanding the underlying molecular mechanisms driving the formation of little leaves and interactions between plants and pathogens. The findings might help control phytoplasma diseases in sweet cherry cultivation.

4.
Environ Entomol ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39235989

RESUMEN

Phytoplasmas can negatively or positively alter vector host fitness. "Candidatus Phytoplasma pyri," is the causal agent of pear decline in commercial pear (Pyrus communis L.; Rosales: Rosaceae) and peach yellow leafroll in peach [Prunus persica (L.); Rosaceae]. This plant pathogen is transmitted by several species of pear psyllids (Cacopsylla spp. Hemiptera: Psyllidae). We sought to explore the relationship between the pear decline phytoplasma and its US vector, Cacopsylla pyricola (Förster), at the molecular genetic level through transcriptomic analysis using RNA-sequencing methodology. We also focused on phytoplasma and insect effectors, which are secreted proteins that can modulate interactions within a pathosystem. In this study, we identified 30 differentially expressed genes, 14 candidate insect effector genes, and 8 Ca. Phytoplasma pyri candidate effectors. Two strains of Ca. Phytoplasma pyri were identified based on immunodominant membrane protein sequence analysis from C. pyricola collected in the Pacific Northwest agricultural region. Here, we present a first genetic look at the pear decline pathosystem and report gene candidates for further exploration of infection mechanisms and potential tools for integrated pest management.

5.
Plant Dis ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39219002

RESUMEN

Virginia creeper (Parthenocissus quinquefolia [L.] Planch.) is a deciduous flowering vine in the Vitaceae family. Native to eastern North America, it is often used ornamentally as a climbing vine or as ground cover due to its rapid growth and foliage color in the fall. In July of 2022, along exterior walls of a private property in Lanham, MD, two Virginia creeper (VC) vines were observed displaying symptoms of yellow mottling and premature reddening of leaves. To investigate the cause of these symptoms, two symptomatic leaf samples and one asymptomatic leaf samples from a third vine in the same vicinity were collected for further analysis. A Qiagen DNeasy Plant Mini Kit was used to extract total DNA from leaf tissues according to the manufacturer's instructions. A phytoplasma-specific real-time PCR (Hodgetts et al. 2009) was used to test the DNA extracts, which detected the presence of phytoplasmas in the two DNA samples derived from symptomatic vines. The near full-length of the 16S ribosomal RNA gene was then amplified by seminested PCR from these samples with primers P1/16S-SR followed by P1A/16S-SR (Deng, and Hiruki 1991; Lee et al. 2004) and Sanger sequenced using primers P1A and 16S-SR. Analysis of the obtained 16S rDNA sequences revealed no variation between the two plant samples, and one sequence was deposited in GenBank representing the phytoplasma strain named VC-MD1 (GenBank PP746981). A BLASTn search of the 16S rRNA gene sequence in the NCBI nucleotide database, showed 99.93% sequence identity with the phytoplasma strain AldY-WA1 (GenBank MZ557341) from red alder in Washington, a phytoplasma associated with VC plants in southern Florida (GenBank AF305198) (Harrison et al. 2001), and other strains detected in grapevines in Europe described as "flavescence dorée" phytoplasma (GenBank AF176319) (Davis, and Dally 2001). The virtual restriction fragment length polymorphism pattern derived from iPhyClassifier (Zhao et al. 2009), indicated that VC-MD1 is indeed a member of the 16SrV-C phytoplasma subgroup. To confirm the identification, the partial spc operon and the partial tuf gene were amplified as previously described (Lee et al. 2010; Makarova et al. 2012). Specifically, the spc operon region was amplified using a nested PCR approach with primer set L15F1A-a/MapR1 followed by L15F1A-b/MapR1A-b. Sequence data obtained from the two loci were deposited to GenBank with accession numbers PP746982 (spc) and PP746983 (tuf). BLAST searches querying the nucleotide sequences of the spc operon and tuf gene showed 95.39% and 99.05% identity, respectively, to the corresponding loci of 'Candidatus Phytoplasma rubi' strain RS (GenBank CP114006) and hemp dogbane yellows phytoplasma strain HD1 (GenBank FR686506). Phylogenetic analysis based on secY and tuf gene sequences suggest that the VC-MD1 strain is evolutionary closest to 16SrV-C phytoplasma strains detected in various hosts in the United States, including HD1 and AldY-WA1. These North American strains cluster together on a distinct branch within the elm yellows group phytoplasmas. For the State of Maryland, this detection represents the first report of a phytoplasma strain member of the16SrV-C subgroup infecting VC plants. A phytoplasma of the same subgroup was previously detected in Florida in asymptomatic VC vines (Harrison et al. 2001). The 16S rRNA gene sequences of the two VC phytoplasma strains are nearly identical, differing by just a single nucleotide. The disease transmission vectors of the VC-MD1 strain and the prevalence of the disease in the region remains undetermined.

6.
Artículo en Inglés | MEDLINE | ID: mdl-39190596

RESUMEN

Gene- and genome-based approaches were used to determine whether Vigna little leaf (ViLL) phytoplasma, which occurs in northern Australia, is a distinct 'Candidatus Phytoplasma' species. The ViLL 16S rRNA gene sequences exhibited the highest known similarity to species in the 16SrXXIX-A and 16SrIX-D subgroups, namely 'Candidatus Phytoplasma omanense' (98.03-98.10%) and 'Candidatus Phytoplasma phoenicium' (96.87-97.20%), respectively. A total of 48 single-copy orthologue genes were identified to be shared among the two draft ViLL phytoplasma genomes, 30 publicly available phytoplasma genomes, and one Acholeplasma laidlawii genome as the outgroup taxon. Phylogenomic assessments using the 48 shared single-copy orthologue genes supported that ViLL and 'Ca. Phytoplasma phoenicium' were closely related yet distinct species. The 16S rRNA gene sequence analysis and phylogenomic assessment indicate that ViLL phytoplasmas are a distinct taxon. As such, a novel species, 'Candidatus Phytoplasma vignae', is proposed. Strain BAWM-336 (genome accession number JAUZLI000000000) detected in Momordica charantia (bitter melon) serves as the reference strain of this species, with infected plant material deposited in the Victorian Plant Pathology Herbarium (VPRI) as VPRI 44369.


Asunto(s)
ADN Bacteriano , Filogenia , Phytoplasma , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Phytoplasma/genética , Phytoplasma/clasificación , Phytoplasma/aislamiento & purificación , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Australia , Genoma Bacteriano , Fabaceae/microbiología , Técnicas de Tipificación Bacteriana , Hojas de la Planta/microbiología
7.
Plant Physiol ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39189604

RESUMEN

Jujube witches' broom (JWB) is a phytoplasma disease that causes severe damage to jujube (Ziziphus jujuba) crops worldwide. Diseased jujube plants show enhanced vegetative growth after floral reversion, including leafy flower structures (phyllody) and the fourth whorl converting into a vegetative shoot. In previous research, secreted JWB protein 3 (SJP3) was identified as an inducer of phyllody. However, the molecular mechanisms of SJP3-mediated pistil reversion remain unknown. Here, the effector SJP3 was found to interact with the MADS-box protein SHORT VEGETATIVE PHASE 3 (ZjSVP3). ZjSVP3 was expressed in young leaves and during the initial flower bud differentiation of healthy jujube-bearing shoots but was constitutively expressed in JWB phytoplasma-infected flowers until the later stage of floral development. The SJP3 effector showed the same expression pattern in the diseased buds and promoted ZjSVP3 accumulation in SJP3 transgenic jujube calli. The N-terminal domains of ZjSVP3 contributed to its escape from protein degradation in the presence of SJP3. Heterologous expression of ZjSVP3 in Nicotiana benthamiana produced typical pistil abnormalities, including trichome-enriched style and stem-like structures within the leaf-like ovary, which were consistent with those in the mildly malformed lines overexpressing SJP3. Furthermore, ectopic expression of ZjSVP3 directly bound to the zinc finger protein 8 (ZjZFP8) and MADS-box gene SHATTERPROOF 1 (ZjSHP1) promoters to regulate their expression, resulting in abnormal pistil development. Overall, effector SJP3-mediated derepression of ZjSVP3 sustained its expression to interfere with pistil development, providing insight into the mechanisms of pistil reversion caused by JWB phytoplasma in specific perennial woody plant species.

8.
J Econ Entomol ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39158062

RESUMEN

As a major setback to the global coconut industry, lethal yellowing disease (LYD), caused by phytoplasmas, continues to threaten coconut palms in the Americas, the Caribbean, Africa, and Oceania. Despite its economic impacts, limited information exists on LYD vectors, which impedes the prevention and management of the disease. Using double-sided yellow sticky traps, we investigate the factors that influence the seasonal abundance and population dynamics of three sap-sucking insects of LYD, i.e., Diostrombus (Hemiptera: Derbidae) sp. and Patara sp. (Hemiptera: Derbidae), and Nedoptepa curta Dmitriev (Hemiptera: Cicadellidae), on five coconut genotypes (Sri Lanka Green Dwarf (SGD), Vanuatu Tall (VTT), SGD × VTT, Malayan Yellow Dwarf (MYD) × VTT, and West African Tall (WAT)) in the Western Region, and one (SGD) in the Central Region of Ghana from April 2019 to May 2021. The results showed that N. curta and Patara sp. were the most abundant species in the Western and Central Regions, respectively. There was a significant difference between the coconut cultivars and sap-sucking insects. The peak population development of the sap-sucking insects was recorded during the dry season on all the coconut genotypes at all sampling locations. A significant positive correlation was detected between temperature and the population of N. curta and Patara sp. In the Agona Nkwanta, VTT had the highest population of N. curta, whereas WAT had the highest population of Patara sp. and Diostrombus sp. These findings provide useful information for assessing the role of factors that could affect the Cape Saint Paul Wilt disease pathosystem.

9.
J Pest Sci (2004) ; 97(3): 1299-1314, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39188925

RESUMEN

Phytoplasmas are bacterial pathogens located in the plant's phloem that are responsible for several plant diseases and are mainly transmitted by phloem-sucking insects. Apple proliferation (AP) is an economically important disease associated with the presence of 'Candidatus Phytoplasma mali' which is transmitted by two psyllid species. While Cacopsylla picta is a vector in different regions, the vector efficiency of C. melanoneura varies between different populations. This species is considered the main AP vector in Northwestern Italy but plays a minor role in Northeastern Italy and other European regions. To investigate whether the psyllid and/or the phytoplasma subtype drive the phytoplasma acquisition in C. melanoneura, a phytoplasma acquisition experiment was set up using single mating couples of overwintered individuals from different psyllid populations and phytoplasma subtypes. All analyzed insect populations acquired phytoplasma, but with different efficiencies and concentrations. The main factors driving the acquisition were the phytoplasma subtype and its concentration in the leaves of the infected trees together with the psyllid lineage. The phytoplasma concentration in the psyllids was again influenced by the phytoplasma subtype, the psyllid lineage and the region of origin, whereas the phytoplasma concentration in the leaves and the psyllid haplotype defined with the cytochrome oxidase I gene had only a minor impact on the phytoplasma concentration. This is the first study evaluating the roles of both the psyllid haplotype and the phytoplasma subtype on the acquisition process and highlights the importance of C. melanoneura as an additional AP vector. Supplementary Information: The online version contains supplementary material available at 10.1007/s10340-023-01699-1.

10.
Plant Dis ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39172525

RESUMEN

Cyanthillium cinereum, which belongs to the family of Asteraceae, is an annual or perennial herbaceous plant with significant medicinal uses for treating colds and fever. During September to November of 2020, C. cinereum showing symptoms of witches'-broom were found in economic forests distributed in Ding'an, Hainan Province of China, with 20% incidence. The symptoms of the plant were consistent with infections by 'Candidatus Phytoplasma' species. To identify the pathogen, five symptomatic and three asymptomatic C. cinereum samples were collected. Total DNAs were extracted using 0.10 g fresh leaf tissues of symptomatic and asymptomatic C. cinereum through a CTAB DNA extraction method according to Doyle and Doyle (1990). PCR amplification were performed employing the primer pairs of R16mF2/R16mR1 (Gundersen and Lee, 1996) and secAfor1/secArev3 (Hodgetts et al., 2008) specific for the conserved gene fragments of 16S rRNA and secA from phytoplasma. The PCR products were purified and sequenced through Biotechnology (Shanghai) Co., Ltd. (Guangzhou, China), and the obtained sequences were deposited in GenBank. The phytoplasmal 16S rRNA and secA gene fragments obtained in the study were all identical with the length of 1325 bp (GenBank accession: PP098738) and 741 bp (PP072217), respectively. The phytoplasma strain was described as CcWB-hnda. A BLAST search based on 16S rRNA genes indicated that CcWB-hnda strain was identical to phytoplasmas belonging to 16SrII group like peanut witches'-broom phytoplasma strain T48 (OR239773) and 'Ca. Phytoplasma aurantifolia' strain TB2022 (CP120449). Virtual RFLP profiles based on 16S rRNA gene fragments obtained by iPhyClassifier (Zhao et al., 2009) showed that CcWB-hnda strain was a member of 16SrII-A subgroup with 1.00 similarity coefficient to the reference phytoplasma strain (L33765). A BLAST search based on secA genes indicated that CcWB-hnda had 100% sequence identity with phytoplasmas belonging to 16SrII group such as 'Ca. Phytoplasma aurantifolia' isolate TB2022 (CP120449), Vigna unguiculata witches'-broom phytoplasma (OR661282) and Emilia sonchifolia witches'-broom phytoplasma (MW353710). Phylogenetic analysis based on 16S rRNA and secA genes by MEGA 7.0 employing Neighbor-Joining method with 1000 bootstrap value (Kumar et al., 2016; Felsenstein, 1985) demonstrated that CcWB-hnda was clustered into one clade with the phytoplasmas belonging to 16SrII group, with 98% and 100% bootstrap value respectively. To our knowledge, this is the first report of C. cinereum infected by phytoplasmas belonging to 16SrII-A subgroup in China. Identification of the vector insects of the pathogens is necessary in future, revealing the epidemiology of the related diseases. Phytoplasmas belonging to same 16Sr group or subgroup can infect different plants and spread through them in nature. The finding in this study will be beneficial to epidemic monitoring and early warning of C. cinereum witches'-broom disease and the related plant diseases caused by the phytoplasmas belonging to 16SrII group.

11.
Plant Dis ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39051994

RESUMEN

Peony (Paeonia suffruticosa Andr.), belonging to family Paeoniaceae, is an important medicinal and ornamental plant. During August of each year from 2016 to 2023, peony plants at Heze city were found to exhibit leaf yellows symptoms. The incidence rate of the symptomatic plant was recorded from 10% to 30% in four peony gardens with about 200 acres. Total DNA was extracted from 0.10 g fresh plant leaf tissues from 24 symptomatic and 8 asymptomatic samples using rapid plant genomic DNA isolation kit (Aidlab Biotechnology, Beijing, China). The extracted DNA was amplified by nested polymerase chain reaction using universal primers R16mF2/R16mR1 followed by R16F2/R16R2 (Lee et al., 1993; Gundersen and Lee, 1996) specific for the 16S rRNA gene and new designed tuf gene specific primers JWB-tuforfF1 (5'-ATGGCTGAAATATTTTCAAGAG-3') and JWB-tuforfR1 (5'-TTATTCTATGATTTTAATAACAG-3') followed by JWB-tuforfF2 (5'-ATGTAAACGTAGGAACTATTGG-3') and JWB-tuforfR2 (5'- TCCGATAGTTCTTCCACCTTCAC-3'). Amplicons of about 1.25 kb and 1.02 kb (16S rRNA gene and tuf gene, respectively) were obtained in 8 symptomatic samples from four peony gardens. However, no amplification was obtained in any of the asymptomatic samples. The representative amplicons of 16S rRNA and tuf genes of three positive samples (Heze-9, -18 and -27) were cloned into a zero background pLB-simple vector (Tiangen Biotechnology, Beijing, China) and sequenced by Taihe Biotechnology, Beijing, China. Sequences obtained in the study were deposited in NCBI GenBank with accession numbers PP504882, PP504883 and PP504884 for the 16S rRNA gene as well as PP530237, PP530238 and PP530239 for the tuf gene. The phytoplasma strain under the study was described as peony yellows (PeY) phytoplasma, PeY-Heze strain. Alignment analysis by DNAMAN software showed that three 16S rRNA gene sequences obtained in the study shared 99.36% to 99.60% sequence identity and three tuf gene sequences obtained in the study were identical. BLAST analysis of the 16S rRNA gene sequences of the PeY-Heze phytoplasma strains showed 99.60%-99.84% sequence identity with 'Candidatus Phytoplasma ziziphi' (GenBank accession: CP025121). And tuf sequences of the strains showed 100% similarity with 'Ca. P. ziziphi' (CP025121). Interestingly, the virtual RFLP patterns derived from three 16Sr RNA gene sequences obtained in the study by iPhyClassifier (Zhao et al., 2009) were different from the reference patterns of all previously established 16Sr groups/subgroups. The most similar are the reference pattern of the 16Sr group VII, subgroup E (AY741531), with a similarity coefficient of 0.72, which is less than 0.85. These phytoplasma strains may represent a new 16Sr group. Phylogenetic analysis based on 16S rRNA genes using MEGA 7.0 by neighbor-joining (NJ) method with 1000 bootstrap value indicated that PeY-Heze strains clustered into one clade with the phytoplasma strains of 'Ca. P. ziziphi' with 68% bootstrap value. Although there are several reports available on 'Ca. P. solani' infecting peony in Shandong Province, China (Gao et al., 2013). To our knowledge, this is the first report of 'Ca. P. ziziphi'-related strains infecting peony in China. The findings in this study will be beneficial to the detection, quarantine, and prevention of peony yellows phytoplasmas in China.

12.
Biology (Basel) ; 13(7)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39056715

RESUMEN

Cassava witches' broom disease (CWBD) is one of the most devastating diseases of cassava (Manihot esculenta Crantz), and it threatens global production of the crop. In 2017, a phytoplasma, Candidatus Phytoplasma luffae (Ca. P. luffae), was reported in the Philippines, and it has been considered as the causal agent, despite unknown etiology and transmission of CWBD. In this study, the nationwide occurrence of CWBD was assessed, and detection of CWBD's pathogen was attempted using polymerase chain reaction (PCR) and next-generation sequencing (NGS) techniques. The results showed that CWBD has spread and become severe, exhibiting symptoms such as small leaf proliferation, shortened internodes, and vascular necrosis. PCR analysis revealed a low phytoplasma detection rate, possibly due to low titer, uneven distribution, or absence in the CWBD-symptomatic cassava. In addition, NGS techniques confirm the PCR results, revealing the absence or extremely low phytoplasma read counts, but a surprisingly high abundance of fastidious and xylem-limited fungus, Ceratobasidium sp. in CWBD-symptomatic plants. These findings cast doubt over the involvement of phytoplasma in CWBD and instead highlight the potential association of Ceratobasidium sp., strongly supporting the recent findings in mainland Southeast Asia. Further investigations are needed to verify the etiology of CWBD and identify infection mechanisms of Ceratobasidium sp. to develop effective diagnostic and control methods for disease management.

13.
Plants (Basel) ; 13(13)2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38999649

RESUMEN

Coconut (Cocos nucifera L.) is an important palm species that serves as the mainstay of several industries and contributes to the livelihoods of millions of smallholder farmers. International exchange of coconut germplasm has been undertaken for several decades to facilitate the conservation of selected varieties within global genebanks and for the distribution to farmers and scientists. In vitro systems are a convenient and an efficient method for the exchange of coconut germplasm. However, it is possible that these tissue culture systems can transfer lethal pathogens causing a threat to the importing countries. In this review, the following topics are discussed: the major disease-causing agents of concern, the various tissues that could be used for coconut germplasm exchange, and the techniques available for the detection and elimination of disease-causing agents from various transmission systems. Additionally, the lack of clear, science-backed guidelines to facilitate the exchange of in vitro coconut materials is raised, along with recommendations for future studies to ensure the safe movement of coconut germplasm without biosecurity risks.

14.
Pathogens ; 13(6)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38921782

RESUMEN

Parasitic plants represent a peculiar group of semi- or fully heterotrophic plants, possessing the ability to extract water, minerals, and organic compounds from other plants. All parasitic plants, either root or stem, hemi- or holoparasitic, establish a vascular connection with their host plants through a highly specialized organ called haustoria. Apart from being the organ responsible for nutrient extraction, the haustorial connection is also a highway for various macromolecules, including DNA, proteins, and, apparently, phytopathogens. At least some parasitic plants are considered significant agricultural pests, contributing to enormous yield losses worldwide. Their negative effect is mainly direct, by the exhaustion of host plant fitness and decreasing growth and seed/fruit formation. However, they may pose an additional threat to agriculture by promoting the trans-species dispersion of various pathogens. The current review aims to summarize the available information and to raise awareness of this less-explored problem. We further explore the suitability of certain phytopathogens to serve as specific and efficient methods of control of parasitic plants, as well as methods for control of the phytopathogens.

15.
Plants (Basel) ; 13(11)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38891358

RESUMEN

Sugarcane white leaf (SCWL) disease, caused by Candidatus Phytoplasma sacchari, results in the most damage to sugarcane plantations. Some SCWL canes can grow unnoticed through the maturation phase, subsequently resulting in an overall low sugar yield, or they can be used accidentally as seed canes. In this work, 12-month-old SCWL and asymptomatic canes growing in the same field were investigated. An abundance of phytoplasma in SCWL canes affected growth and sugar content as well as alterations of transcriptomic profiles corresponding to several pathways that responded to the infection. Suppression of photosynthesis, porphyrin and chlorophyll metabolism, coupled with an increase in the expression of chlorophyllase, contributed to the reduction in chlorophyll levels and photosynthesis. Blockage of sucrose transport plausibly occurred due to the expression of sugar transporters in leaves but suppression in stalks, resulting in low sugar content in canes. Increased expression of genes associated with MAPK cascades, plant hormone signaling transduction, callose plug formation, the phenylpropanoid pathway, and calcium cascades positively promoted defense mechanisms against phytoplasma colonization by an accumulation of lignin and calcium in response to plant immunity. Significant downregulation of CPK plausibly results in a reduction in antioxidant enzymes and likely facilitates pathogen invasion, while expression of sesquiterpene biosynthesis possibly attracts the insect vectors for transmission, thereby enabling the spread of phytoplasma. Moreover, downregulation of flavonoid biosynthesis potentially intensifies the symptoms of SCWL upon challenge by phytoplasma. These SCWL sugarcane transcriptomic profiles describe the first comprehensive sugarcane-phytoplasma interaction during the harvesting stage. Understanding molecular mechanisms will allow for sustainable management and the prevention of SCWL disease-a crucial benefit to the sugar industry.

16.
BMC Plant Biol ; 24(1): 576, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890568

RESUMEN

BACKGROUND: Little leaf disease caused by phytoplasma infection is a significant threat to eggplant (also known as brinjal) cultivation in India. This study focused on the molecular characterisation of the phytoplasma strains and insect vectors responsible for its transmission and screening of brinjal germplasm for resistance to little leaf disease. RESULTS: Surveys conducted across districts in the Tamil Nadu state of India during 2021-2022 showed a higher incidence of phytoplasma during the Zaid (March to June), followed by Kharif (June to November) and Rabi (November to March) seasons with mean incidence ranging from 22 to 27%. As the name indicates, phytoplasma infection results in little leaf (reduction in leaf size), excessive growth of axillary shoots, virescence, phyllody, stunted growth, leaf chlorosis and witches' broom symptoms. PCR amplification with phytoplasma-specific primers confirmed the presence of this pathogen in all symptomatic brinjal plants and in Hishimonus phycitis (leafhopper), providing valuable insights into the role of leafhoppers in disease transmission. BLAST search and phylogenetic analysis revealed the phytoplasma strain as "Candidatus Phytoplasma trifolii". Insect population and disease dynamics are highly influenced by environmental factors such as temperature, relative humidity and rainfall. Further, the evaluation of 22 eggplant accessions revealed immune to highly susceptible responses where over 50% of the entries were highly susceptible. Finally, additive main effect and multiplicative interaction (AMMI) and won-where biplot analyses identified G18 as a best-performing accession for little leaf resistance due to its consistent responses across multiple environments. CONCLUSIONS: This research contributes essential information on little leaf incidence, symptoms, transmission and resistance profiles of different brinjal genotypes, which together ensure effective and sustainable management of this important disease of eggplants.


Asunto(s)
Resistencia a la Enfermedad , Phytoplasma , Enfermedades de las Plantas , Hojas de la Planta , Solanum melongena , Solanum melongena/microbiología , Solanum melongena/genética , Enfermedades de las Plantas/microbiología , Phytoplasma/fisiología , Resistencia a la Enfermedad/genética , Hojas de la Planta/microbiología , India , Filogenia , Animales , Hemípteros/microbiología , Incidencia , Insectos Vectores/microbiología
17.
Plant Dis ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38861468

RESUMEN

Momordica charantia, also known as bitter melon, bitter gourd, and bitter squash, is a member of the Cucurbitaceae family and is widely grown in tropical and subtropical regions for its edible fruit and medicinal properties (Alves et al. 2017). In April 2022, bitter melon plants exhibiting stem fasciation and excessive tendril symptoms were observed in a 50-acre vegetable farm in Yijia Village, Weishan Yizu Huizu Autonomous County, Dali, Yunnan Province, China (Fig. 1). The farm primarily grew tomatoes, but around 400 bitter melon plants were planted in spots where tomatoes failed to establish. One plot had a 40% incidence rate, with four out of ten bitter melon plants showing symptoms. Scattered cases were observed in other plots, leading to an overall disease incidence rate of around 2% for the entire farm. Phytoplasma infection was suspected due to symptomatic plants growing in the same province as previously reported cases of phytoplasma diseases, such as happy tree (Camptotheca accuminata) witches'-broom disease, and the presence of phytoplasma-transmitting leafhoppers (Qiao et al. 2023). DNA was extracted from four symptomatic samples and two healthy controls collected from the abovementioned plot with a 40% disease incidence using Bioteke's Plant Genomic DNA Extraction Kit and then tested for phytoplasma infection. A nested PCR assay was conducted using primer pair P1/16S-SR followed by P1A/16S-SR to amplify the near full-length phytoplasma 16S rDNA (about 1.5kb) as previously described (Lee et al. 2004). None of the healthy controls tested positive for phytoplasma infection, while three out of four symptomatic plants showed positive results. The amplicons from the nested PCR were cloned into the pCRII-TOPO vector as previously described (Lee et al. 2004). The resulting clones were sequenced, and the representative sequence was deposited into GenBank (accession number PP489216). The iPhyClassifier (Zhao et al. 2009) was employed to determine the phytoplasma species and group/subgroup associated with the bitter melon stem fasciation (BMSF) disease. The results indicated that the diseased bitter melon plants were infected with a strain related to 'Candidatus Phytoplasma malaysianum' (EU371934), with a 98.07% sequence identity. The similarity coefficient was 1.00 compared to the reference strain of 16SrXXXII-D (GenBank accession: MW138004). The phytoplasma strain associated with BMSF disease was designated as BMSF1. In addition, the same DNA samples underwent further characterization of the BMSF strains. A nested PCR was conducted using primer pair rpL2F3/rpIR1A, followed by rp(III)-FN/rpIR1A to amplify a phytoplasma-specific rp gene segment (about 1.2 kb) (Martini et al. 2007; Davis et al. 2013). Three out of four samples tested positive, consistent with the 16S rRNA gene amplification results. Similarly, a primer pair L15F1/MapR1 followed by secYF1(III)/secYR1(III) was used to amplify a phytoplasma-specific partial spc operon (about 1.7 kb) that includes the complete secY gene and partial rpl15 and map genes, as previously described (Lee et al. 2010). The obtained rp and partial spc amplicons were cloned and sequenced (GenBank accession numbers PP464295 and PP464296). The rp and secY gene sequences were searched against the non-redundant nucleotide collection in the NCBI database using BLASTN. The top hit for the rp gene was 'Ca. Phytoplasma luffae' (CP054393), with 83.24% identity (1068/1283 base-matching). The top hit for the secY gene was also 'Ca. Phytoplasma luffae' (CP054393), with 72.53% identity (1294/1784 base-matching). The percent identity of the BMSF sequences compared to the top hit is low since no other group 16SrXXXII rp and secY gene sequences are available for comparison. A subgroup 16SrXXXII-D phytoplasma strain has been previously reported associated with Camptotheca acuminata witches'-broom (Qiao et al. 2023) and Trema tomentosa witches'-broom (Yu et al. 2021) in China. To our knowledge, bitter melon represents a new host of 'Candidatus Phytoplasma malaysianum'-related strains, and this is the first report of BMSF disease in China. The findings suggest that 'Candidatus Phytoplasma malaysianum'-related strains infect not only ornamental plants but also crops.

18.
Environ Entomol ; 53(4): 677-686, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-38775360

RESUMEN

Pear psylla, Cacopsylla pyricola (Foerster) (Hemiptera: Psyllidae), occurs as 2 seasonal morphotypes. Summerforms occur on pear (Pyrus communis L.; Rosales: Rosaceae) where they are a significant pest. The larger and darker winterform morphotype develops in response to shortening daylengths and begins winter in reproductive diapause characterized by the absence of ovarian development. Diapausing winterforms often leave pear to overwinter on coniferous shelter plants and then return to pear in late winter and early spring to begin depositing the eggs that produce the first summerform generation. Cacopsylla pyricola adults are attracted to the color of foliage most of the year, but little is known about the role of plant volatiles in host finding and in seasonal dispersal between host and shelter plants by the psyllid. We used a Y-tube olfactometer and choice assays to investigate the response by C. pyricola adults to volatiles emitted by pear and an evergreen tree (cypress) often used as a shelter plant by wintering C. pyricola. Attraction to pear and cypress volatiles varied by season, tree phenology, and psyllid physiology. Cacopsylla pyricola were attracted to cypress volatiles and preferred to settle on cypress shoots during winter and early spring but then shifted to a marked preference for the pear developmental host in late spring and summer. Female C. pyricola exhibited stronger responses to pear volatiles than did males. Our study is the first to show that plant volatiles have a role in host finding by C. pyricola and provides a foundation for research on chemical ecology and management of C. pyricola.


Asunto(s)
Hemípteros , Pyrus , Estaciones del Año , Compuestos Orgánicos Volátiles , Animales , Hemípteros/fisiología , Compuestos Orgánicos Volátiles/metabolismo , Femenino , Masculino
19.
3 Biotech ; 14(5): 147, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38706929

RESUMEN

In surveys conducted from 2020 to 2022, five leaf samples each from symptomatic Agele marmelos trees and seedlings, along with five samples from asymptomatic trees and seedlings, were collected in Ayodhya, Uttar Pradesh, India. The DNA extraction from all the samples was subjected to nested PCR assays, using the universal phytoplasma-specific primers set (P1/P7 followed by R16F2n/R16R2). The resulting 1.2 kb amplified products were observed in all the symptomatic samples but not in the asymptomatic samples. Bael phytoplasma strain sequences from the trees and seedlings were found 100% identical within themselves and only two representative sequences (one each from tree and seedling) were deposited in GenBank (NCBI) as PP415872 (AmA-1) and PP415873 (AmA-2). BLASTn searches revealed the maximum (100%) sequence identity with a phytoplasma strain from murraya little leaf strain of Faizabad (GenBank Acc.no. OP984129) and lowest (99.84%) with arecanut crown choking of Shimoga (GenBank Acc. no. OM417502) from Karnataka. Phylogenetic analysis clustered the bael phytoplasma isolates with peanut witches' broom group phytoplasma strains. Virtual RFLP analysis confirmed their identity as 'Ca. P. australasiaticum', a 16SrII-D subgroup strain. This study presents the first identification of a phytoplasma strain in A. marmelos, emphasizing its potential threat to fruit crops and the need for vigilance in nursery practices to prevent further dissemination.

20.
BMC Biol ; 22(1): 113, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750524

RESUMEN

BACKGROUND: Protein posttranslational modifications (PTMs) are fast and early responses to environmental changes, including pathogen infection. Jujube witches' broom (JWB) is a phytoplasma disease causing great economic loss in jujube production. After phytoplasma infection, the transcriptional, translational, and metabolic levels in jujube were activated, enabling it to survive during phytoplasma invasion. However, no study has yet reported on PTMs in jujube. Lysine crotonylation (Kcr) and lysine succinylation (Ksu) have been popular studies in recent years and their function in plant phytoplasma-stress responses remains unclear. RESULTS: Here, 1656 crotonylated and 282 succinylated jujube proteins were first identified under phytoplasma-stress, of which 198 were simultaneously crotonylated and succinylated. Comparative analysis revealed that 656 proteins, 137 crotonylated and 43 succinylated proteins in jujube were regulated by phytoplasma infection, suggesting that Kcr was more universal than Ksu. Kcr differentially expressed proteins (DEPs) were related to ribosomes, photosynthetic and carbon metabolism, while Ksu DEPs were mainly involved in carbon metabolism, the TCA cycle and secondary metabolite biosynthesis. The crosstalk network among proteome, crotonylome and succinylome showed that DEPs related to ribosomal, peroxidases and glutathione redox were enriched. Among them, ZjPOD51 and ZjPHGPX2 significantly increased at the protein and Kcr level under phytoplasma-stress. Notably, 7 Kcr sites were identified in ZjPHGPX2, a unique antioxidant enzyme. After inhibitor nicotinamide (NAM) treatment, GPX enzyme activity in jujube seedlings was reduced. Further, site-directed mutagenesis of key Kcr modification sites K130 and/or K135 in ZjPHGPX2 significantly reduced its activity. CONCLUSIONS: This study firstly provided large-scale datasets of Kcr and Ksu in phytoplasma-infected jujube and revealed that Kcr modification in ZjPHGPX2 positively regulates its activity.


Asunto(s)
Phytoplasma , Enfermedades de las Plantas , Proteínas de Plantas , Ziziphus , Ziziphus/microbiología , Ziziphus/metabolismo , Phytoplasma/fisiología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Enfermedades de las Plantas/microbiología , Procesamiento Proteico-Postraduccional , Estrés Fisiológico , Lisina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA