Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros











Intervalo de año de publicación
1.
Plant Physiol Biochem ; 215: 108986, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39106769

RESUMEN

Arbuscular mycorrhizal fungi (AMF) and Chitooligosaccharide (COS) can increase the resistance of plants to disease. COS can also promote the symbiosis between AMF and plants. However, the effects of AMF & COS combined application on the rhizosphere soil microbial community of tobacco and the improvement of tobacco's resistance to black shank disease are poorly understood.·We treated tobacco with AMF, COS, and combined application of AMF & COS (AC), respectively. Then studied the incidence, physio-biochemical changes, root exudates, and soil microbial diversity of tobacco seedling that was inoculated with Phytophthora nicotianae. The antioxidant enzyme activity and root vigor of tobacco showed a regular of AC > AMF > COS > CK, while the severity of tobacco disease showed the opposite regular. AMF and COS enhance the resistance to black shank disease by enhancing root vigor, and antioxidant capacity, and inducing changes in the rhizosphere microecology of tobacco. We have identified key root exudates and critical soil microorganisms that can inhibit the growth of P. nicotianae. The presence of caprylic acid in root exudates and Bacillus (WdhR-2) in rhizosphere soil microorganisms is the key factor that inhibits P. nicotianae growth. AC can significantly increase the content of caprylic acid in tobacco root exudates compared to AMF and COS. Both AMF and COS can significantly increase the abundance of Bacillus in tobacco rhizosphere soil, but the abundance of Bacillus in AC is significantly higher than that in AMF and COS. This indicates that the combined application of AMF and COS is more effective than their individual use. These findings suggest that exogenous stimuli can induce changes in plant root exudates, regulate plant rhizosphere microbial community, and then inhibit the growth of pathogens, thereby improving plant resistance to diseases.


Asunto(s)
Quitosano , Micorrizas , Nicotiana , Oligosacáridos , Phytophthora , Enfermedades de las Plantas , Rizosfera , Plantones , Phytophthora/fisiología , Micorrizas/fisiología , Nicotiana/microbiología , Nicotiana/efectos de los fármacos , Oligosacáridos/metabolismo , Plantones/microbiología , Plantones/efectos de los fármacos , Plantones/metabolismo , Quitosano/farmacología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Quitina/análogos & derivados , Quitina/metabolismo , Microbiología del Suelo , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Resistencia a la Enfermedad/efectos de los fármacos
2.
Plant Dis ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783581

RESUMEN

Celosia spp. is a widely cultivated ornamental plant in gardens or parks in Taiwan. In September 2021, withering leaves and grayish-brown lesions were observed on the lower stem of plumed cockscombs (C. argentea var. plumosa) in Taichung City, with an incidence of about 22% in 136 plants after continuous precipitation, impacting the aesthetic value of the landscape. Symptomatic plants were collected, surface disinfected with 70% EtOH for ~20 sec., blotted dried, and excised diseased tissues (~ 3×3 mm2) were placed on 2% water agar. Four representative isolates were obtained after purification and the colonies were white with aerial and non-septated hyphae on V8 agar for 7 days. Sporangia were ovoid, ellipsoid or obpyriform, papillate, (26.3-55.9) 38.0 × 29.0 (20.1-40.6) µm (n = 200) (Ahonsi et al. 2007). Chlamydospores were spherical, terminal or intercalary, 26.0 (15.1-40.4) µm (n = 200). All isolates belong to A2 mating type with amphigynous antheridia and plerotic oospores, 21.0 (17.7-25.7) µm (n = 200), resembling the descriptions of Phytophthora (Erwin & Ribeiro 1996). For molecular identification, sequences of the ITS, ß-tubulin (ß-tub), and EF-1α regions of all isolates were amplified using ITS1/ITS4, TUBUF2/TUBUR1, and ELONGF1/ELONGR1 primers, respectively (White et al. 1990; Kroon et al. 2004). BLAST analyses of isolates cap1-2 (ITS: OQ581785; ß-tub: OQ590022; EF-1α: OQ590026), cap1-3 (ITS: OQ581786; ß-tub: OQ590023; EF-1α: OQ590027), cap2-1 (ITS: OQ581787; ß-tub: OQ590024; EF-1α: OQ590028), and cap2-2 (ITS: OQ581788; ß-tub: OQ590025; EF-1α: OQ590029) showed 100% of ITS identity, 99.5 to 99.9% of ß-tub identity, and 99.4 to 99.6% of EF-1α identity with Phytophthora nicotianae (ITS: MG865551; ß-tub: MH493987; EF-1α: MH359043). Phylogenetic trees were constructed using concatenated ITS, ß-tub, and EF-1α sequences based on maximum likelihood with a GTR+G model in MEGA X and Bayesian inference method in Geneious Prime 2022.2. All isolates were clustered in P. nicotianae with similar topology, thereby were identified as P. nicotianae. To confirm pathogenicity, 7 to 10-day-old seedlings and 6-week-old plumed cockscomb plants were inoculated in separate trials and each experiment was conducted twice. For each seedling, the lower stem was inoculated with 50 µl of zoospore suspension (104 zoospores/ml), 3 plants per isolate, and then incubated at 30±2℃ with 12 h light. For adult plants, each was inoculated with mycelial plugs from one V8 plate of 10-day-old P. nicotianae, 5 plants per isolate, and incubated at 25±2℃ in a greenhouse. Control plants were inoculated with sterile water and V8 agar plugs, respectively. Stem and root rot were observed on seedlings 4 days after inoculation while wilting and lower stem browning were observed on adult plants 2 months after inoculation. All control plants remained healthy at the end of repeated trials and identical pathogens were re-isolated only from symptomatic plants, thus fulfilling Koch's rules. P. nicotianae has been reported causing root rot and stem necrosis not only on cockscomb (C. plumosa Hort. ex Burvenich) in Argentina (Frezzi 1950), but also infecting several ornamental plants recently in Taiwan (Ann et al. 2018). To our knowledge, this is the first report of stem blight caused by P. nicotianae on plumed cockscombs in Taiwan. This finding suggests limited options for landscaping and the host preference of the isolates obtained in this study should warrant further studies.

3.
Pestic Biochem Physiol ; 201: 105876, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685244

RESUMEN

Black shank, a devastating disease in tobacco production worldwide, is caused by the oomycete plant pathogen Phytophthora nicotianae. Fluopicolide is a pyridinylmethyl-benzamides fungicide with a unique mechanism of action and has been widely used for controlling a variety of oomycetes such as Plasmopara viticola, Phytophthora infestans, Pseudoperonospora cubensis, P. nicotianae and Bremia lactucae. However, the fluopicolide-resistance risk and molecular basis in P. nicotianae have not been reported. In this study, the sensitivity profile of 141 P. nicotianae strains to fluopicolide was determined, with a mean median effective concentration (EC50) value of 0.12 ± 0.06µg/mL. Five stable fluopicolide-resistant mutants of P. nicotianae were obtained by fungicide adaptation, and the compound fitness index of these resistant mutants were lower than that of their parental isolates. Additionally, cross-resistance tests indicated that the sensitivity of fluopicolide did not correlate with other oomycete fungicides, apart from fluopimomide. DNA sequencing revealed two point mutations, G765E and N769Y, in the PpVHA-a protein in the fluopicolide-resistant mutants. Transformation and expression of PpVHA-a genes carrying G765E and N769Y in the sensitive wild-type isolate confirmed that it was responsible for fluopicolide resistance. These results suggest that P. nicotianae has a low to medium resistance risk to fluopicolide in laboratory and that point mutations, G765E and N769Y, in PpVHA-a are associated with the observed fluopicolide resistance.


Asunto(s)
Fungicidas Industriales , Mutación , Nicotiana , Phytophthora , Enfermedades de las Plantas , Phytophthora/efectos de los fármacos , Phytophthora/genética , Nicotiana/microbiología , Fungicidas Industriales/farmacología , Enfermedades de las Plantas/microbiología , Benzamidas/farmacología , Piridinas/farmacología , Farmacorresistencia Fúngica/genética
4.
Plant Signal Behav ; 19(1): 2332019, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38527068

RESUMEN

Tobacco black shank (TBS), caused by Phytophthora nicotianae, is a severe disease. Plant root exudates play a crucial role in mediating plant-pathogen interactions in the rhizosphere. However, the specific interaction between key secondary metabolites present in root exudates and the mechanisms of disease resistance remains poorly understood. This study conducted a comprehensive comparison via quasi-targeted metabolomic analysis on the root exudate metabolites from the tobacco cultivar Yunyan87 and K326, both before and after inoculation with P. nicotianae. The results showed that the root exudate metabolites changed after P. nicotianae inoculation, and the root exudate metabolites of different tobacco cultivar was significantly different. Furthermore, homovanillic acid, lauric acid, and isoliquiritigenin were identified as potential key compounds for TBS resistance based on their impact on the mycelium growth of the pathogens. The pot experiment showed that isoliquiritigenin reduced the incidence by 55.2%, while lauric acid reduced it by 45.8%. This suggests that isoliquiritigenin and lauric acid have potential applications in the management of TBS. In summary, this study revealed the possible resistance mechanisms of differential metabolites in resistance of commercial tobacco cultivar, and for the first time discovered the inhibitory effects of isoliquiritigenin and homovanillic acid on P. nictianae, and attempt to use plants secondary metabolites of for plant protection.


Asunto(s)
Chalconas , Ácidos Láuricos , Ácido Homovanílico , Ácidos Láuricos/farmacología , Nicotiana
5.
J Agric Food Chem ; 72(9): 5073-5087, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38377432

RESUMEN

Tobacco black shank (TBS), caused by Phytophthora nicotianae, poses a significant threat to tobacco plants. Selenium (Se), recognized as a beneficial trace element for plant growth, exhibited inhibitory effects on P. nicotianae proliferation, disrupting the cell membrane integrity. This action reduced the energy supply and hindered hyphal transport through membrane proteins, ultimately inducing hyphal apoptosis. Application of 8 mg/L Se through leaf spraying resulted in a notable decrease in TBS incidence. Moreover, Se treatment preserved chloroplast structure, elevated chitinase activities, ß-1,3-GA, polyphenol oxidase, phenylalanine ammonia-lyase, and increased hormonal content. Furthermore, Se enhanced flavonoid and sugar alcohol metabolite levels while diminishing amino acid and organic acid content. This shift promoted amino acid degradation and flavonoid synthesis. These findings underscore the potential efficacy of Se in safeguarding tobacco and potentially other plants against P. nicotianae.


Asunto(s)
Phytophthora , Selenio , Selenio/farmacología , Nicotiana , Membrana Celular , Metabolismo Energético , Aminoácidos/farmacología , Flavonoides/farmacología , Enfermedades de las Plantas
6.
Plant Dis ; 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38422436

RESUMEN

⨯Graptoveria 'Silver Star' (a cross between Graptopetalum filiferum and Echeveria agavoides) from the Crassulaceae family, are an evergreen succulent with lotus constellation-shaped flowers, making it consumer favorite ornamental plant in Korea. In 2019, Korea's ornamental production was estimated at KRW 517.4 billion (EUR 382 million), from 4,244 ha of farming area according to the Ministry of Agriculture, Food and Rural Affairs of Korea. In July 2023, ⨯Graptoveria 'Silver Star' plants with chlorotic leaves, root and collar rot were observed in a greenhouse in Yongin (37°14'27.9"N, 127°10'39.19"E), Korea. To isolate the causal agent, small pieces (1 mm2) of symptomatic tissues were surface-sterilized using 1% NaOCl for 1 min, then put onto a water agar (WA) plate and incubated in the dark at 25℃ for five days. Two isolates (FD00202, FD00203) were obtained from diseased leaves, stem and roots by isolating single sporangium. To investigate the morphological characteristics of the isolates, the mycelium from potato dextrose agar (PDA) were transferred to V8 agar (V8A) followed by incubation at 25°C in the dark for 7 days. The isolates produced dense cottony mycelium, with slightly petaloid and light rossette pattern, with coralloid edges measuring 70 to 83 mm diameter. Sporangium were spheroid (30.0-48.0 µm long, 25.0-35.0 µm wide) with globose chlamydospores (17.0-50.0 µm long, 18.0-38.0 µm wide). Oogonia were not observed. Morphological and cultural characteristics of these isolates were phenotypically similar to that of Phytophthora nicotianae (Faedda et al. 2013; Abad et al. 2023). For molecular identification, genomic DNA was extracted from 5 days old cultures using the Maxwell® RSC PureFood GMO and Authentication Kit (Promega). Two gene regions, the rDNA-ITS, COX I were amplified and sequenced using primers ITS1/ITS4 and FM83/FM84, respectively (White et al. 1990; Martin and Tooley 2003). The resulting sequences were deposited in GenBank with accession no. LC783858 to LC783861. A BLASTn search of the DNA sequences from ITS, COX I showed 99.81 and 98.94% identity to P. nicotianae isolate IMI 398853, respectively. Maximum likelihood phylogenetic analyses were performed for the combined data set with ITS, COX I using MEGA7 under the Tamura-Nei model (Kumar et al. 2016). The isolates formed a monophyletic group with P. nicotianae isolate IMI 398853, CPHST BL162, and CPHST BL 44. Based on morphological characteristics and molecular analysis, the isolates were identified as P. nicotianae. T confirm their pathogenicity, inoculum was prepared in accordance with Ann (2000). Artificially wounded healthy plant roots were dipped in zoospore suspension (3.0 × 106 zoospore/ml) for 24 hours, with mock-treated plants (control) dipped in sterile distilled water (Ann. 2000). Thereafter, the plants were transplanted into new medium and kept under high humidity. Symptoms were observed after 10 days of incubation. The plants inoculated with P. nicotianae showed similar symptoms of chlorotic leaves with root and collar rot, while control remained symptomless. The pathogen was re-isolated from all inoculated plants and confirmed as P. nicotianae by morphological and molecular analysis. but not from controls, fulfilling Koch's postulates. Phytophthora nicotianae was previously report on Echeveria derenbergii and Kalanchoe blossfeldiana causing brown spot on stems and roots in California and Korea, respectively (French 1989; Oh and Son 2008). To best of our knowledge, this is the first report of P. nicotianae causing root and collar rot on ⨯Graptoveria 'Silver Star' plants in the Korea.

7.
Front Plant Sci ; 14: 1281373, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38053762

RESUMEN

Tobacco black shank induced by Phytophthora nicotianae causes significant yield losses in tobacco plants. MicroRNAs (miRNAs) play a pivotal role in plant biotic stress responses and have great potential in tobacco breeding for disease resistance. However, the roles of miRNAs in tobacco plants in response to P. nicotianae infection has not been well characterized. In this study, we found that Nta-miR6155, a miRNA specific to Solanaceae crops, was significantly induced in P. nicotianae infected tobacco. Some of predicted target genes of Nta-miR6155 were also observed to be involved in disease resistance. To further investigate the function of miR6155 in tobacco during P. nicotianae infection, Nta-miR6155 overexpression plants (miR6155-OE) were generated in the Honghua Dajinyuan tobacco variety (HD, the main cultivated tobacco variety in China). We found that the Nta-miR6155 overexpression enhanced the resistance in tobacco towards P. nicotianae infections. The level of reactive oxygen species (ROS) was significantly lower and antioxidant enzyme activities were significantly higher in miR6155-OE plants than those in control HD plants during P. nicotianae infection. In addition, we found that the accumulation of salicylic acid and the expression of salicylic acid biosynthesis and signal transduction-related genes is significantly higher in miR6155-OE plants in comparison to the control HD plants. Furthermore, we found that Nta-miR6155 cleaved target genes NtCIPK18 to modulate resistance towards P. nicotianae in tobacco plants. Additionally, phenotypic analysis of miR6155-OE plants showed that Nta-miR6155 could inhibit the growth of tobacco by suppressing nitrogen uptake and photosynthesis. In conclusion, our findings indicated that miR6155 plays a crucial role in the regulation of growth and resistance against P. nicotianae infections in tobacco plants.

8.
Front Plant Sci ; 14: 1195932, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37434599

RESUMEN

Tobacco black shank (TBS), caused by Phytophthora nicotianae, is one of the most harmful diseases of tobacco. There are many studies have examined the mechanism underlying the induction of disease resistance by arbuscular mycorrhizal fungi (AMF) and ß-aminobutyric acid (BABA) alone, but the synergistic effects of AMF and BABA on disease resistance have not yet been studied. This study examined the synergistic effects of BABA application and AMF inoculation on the immune response to TBS in tobacco. The results showed that spraying BABA on leaves could increase the colonization rate of AMF, the disease index of tobacco infected by P.nicotianae treated with AMF and BABA was lower than that of P.nicotianae alone. The control effect of AMF and BABA on tobacco infected by P.nicotianae was higher than that of AMF or BABA and P.nicotianae alone. Joint application of AMF and BABA significantly increased the content of N, P, and K in the leaves and roots, in the joint AMF and BABA treatment than in the sole P. nicotianae treatment. The dry weight of plants treated with AMF and BABA was 22.3% higher than that treated with P.nicotianae alone. In comparison to P. nicotianae alone, the combination treatment with AMF and BABA had increased Pn, Gs, Tr, and root activity, while P. nicotianae alone had reduced Ci, H2O2 content, and MDA levels. SOD, POD, CAT, APX, and Ph activity and expression levels were increased under the combined treatment of AMF and BABA than in P.nicotianae alone. In comparison to the treatment of P.nicotianae alone, the combined use of AMF and BABA increased the accumulation of GSH, proline, total phenols, and flavonoids. Therefore, the joint application of AMF and BABA can enhance the TBS resistance of tobacco plants to a greater degree than the application of either AMF or BABA alone. In summary, the application of defense-related amino acids, combined with inoculation with AMF, significantly promoted immune responses in tobacco. Our findings provide new insights that will aid the development and use of green disease control agents.

9.
Phytopathology ; 113(8): 1506-1514, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36989124

RESUMEN

Samples from potato fields with lesions with late blight-like symptoms were collected from eastern North Carolina in 2017 and the causal agent was identified as Phytophthora nicotianae. We have identified P. nicotianae in potato and tomato samples from North Carolina, Virginia, Maryland, Pennsylvania, and New York. Ninety-two field samples were collected from 46 fields and characterized for mefenoxam sensitivity, mating type, and simple sequence repeat genotype using microsatellites. Thirty-two percent of the isolates were the A1 mating type, while 53% were the A2 mating type. In six cases, both A1 and A2 mating types were detected in the same field in the same year. All isolates tested were sensitive to mefenoxam. Two genetic groups were discerned based on STRUCTURE analysis: one included samples from North Carolina and Maryland, and one included samples from all five states. The data suggest two different sources of inoculum from the field sites sampled. Multiple haplotypes within a field and the detection of both mating types in close proximity suggests that P. nicotianae may be reproducing sexually in North Carolina. There was a decrease in the average number of days with weather suitable for late blight, from 2012 to 2016 and 2017 to 2021 in all of the North Carolina counties where P. nicotianae was reported. P. nicotianae is more thermotolerant than P. infestans and grows at higher temperatures (25 to 35°C) than P. infestans (18 to 22°C). Late blight outbreaks have decreased in recent years and first reports of disease are later, suggesting that the thermotolerant P. nicotianae may cause more disease as temperatures rise due to climate change.

10.
Nat Prod Res ; 37(4): 651-656, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35506313

RESUMEN

Extracts from plants used in Chinese medicine can be good sources of fungicides for agricultural applications. In this study, we separated and identified antifungal compounds from four traditional Chinese medicine extracts and evaluated their antifungal activities in vitro and in vivo. In vitro, honokiol extracted from Artemisia argyi showed broad-spectrum antimicrobial and mycelial inhibitory activity with EC50 in the range 3.56 - 33.85 µg/mL against eight plant pathogens. q-PCR indicated that honokiol might induce cell cancerisation and inhibit cellular respiration, which provided significant insights into honokiol function in tobacco resistance to molecular mechanisms of the phytopathogenic fungus Phytophthora nicotianae. In vivo, honokiol significantly decreased the rate of fungal infection in eggplants, potatoes, grapes, cherry tomatoes, and cucumbers, and enhanced disease resistance in tobacco. Overall, our results indicate that honokiol has the potential to control a variety of fungal and oomycete diseases, and A. argyi could be a source of honokiol.


Asunto(s)
Artemisia , Lignanos , Antifúngicos/farmacología , Lignanos/farmacología , Extractos Vegetales/farmacología
11.
Front Plant Sci ; 13: 1073856, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36561439

RESUMEN

Tobacco black shank caused by Phytophthora nicotianae is a devastating disease that causes huge losses to tobacco production across the world. Investigating the regulatory mechanism of tobacco resistance to P. nicotianae is of great importance for tobacco resistance breeding. The jasmonate (JA) signaling pathway plays a pivotal role in modulating plant pathogen resistance, but the mechanism underlying JA-mediated tobacco resistance to P. nicotianae remains largely unclear. This work explored the P. nicotianae responses of common tobacco cultivar TN90 using plants with RNAi-mediated silencing of NtCOI1 (encoding the perception protein of JA signal), and identified genes involved in this process by comparative transcriptome analyses. Interestingly, the majority of the differentially expressed bHLH transcription factor genes, whose homologs are correlated with JA-signaling, encode AtBPE-like regulators and were up-regulated in NtCOI1-RI plants, implying a negative role in regulating tobacco response to P. nicotianae. A subsequent study on NtbHLH49, a member of this group, showed that it's negatively regulated by JA treatment or P. nicotianae infection, and its protein was localized to the nucleus. Furthermore, overexpression of NtbHLH49 decreased tobacco resistance to P. nicotianae, while knockdown of its expression increased the resistance. Manipulation of NtbHLH49 expression also altered the expression of a set of pathogen resistance genes. This study identified a set of genes correlated with JA-mediated tobacco response to P. nicotianae, and revealed the function of AtBPE-like regulator NtbHLH49 in regulating tobacco resistance to this pathogen, providing insights into the JA-mediated tobacco responses to P. nicotianae.

12.
Mycobiology ; 50(5): 269-293, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36404903

RESUMEN

Oomycete pathogens that belong to the genus Phytophthora cause devastating diseases in solanaceous crops such as pepper, potato, and tobacco, resulting in crop production losses worldwide. Although the application of fungicides efficiently controls these diseases, it has been shown to trigger negative side effects such as environmental pollution, phytotoxicity, and fungicide resistance in plant pathogens. Therefore, biological control of Phytophthora-induced diseases was proposed as an environmentally sound alternative to conventional chemical control. In this review, progress on biological control of the soilborne oomycete plant pathogens, Phytophthora capsici, Phytophthora infestans, and Phytophthora nicotianae, infecting pepper, potato, and tobacco is described. Bacterial (e.g., Acinetobacter, Bacillus, Chryseobacterium, Paenibacillus, Pseudomonas, and Streptomyces) and fungal (e.g., Trichoderma and arbuscular mycorrhizal fungi) agents, and yeasts (e.g., Aureobasidium, Curvibasidium, and Metschnikowia) have been reported as successful biocontrol agents of Phytophthora pathogens. These microorganisms antagonize Phytophthora spp. via antimicrobial compounds with inhibitory activities against mycelial growth, sporulation, and zoospore germination. They also trigger plant immunity-inducing systemic resistance via several pathways, resulting in enhanced defense responses in their hosts. Along with plant protection, some of the microorganisms promote plant growth, thereby enhancing their beneficial relations with host plants. Although the beneficial effects of the biocontrol microorganisms are acceptable, single applications of antagonistic microorganisms tend to lack consistent efficacy compared with chemical analogues. Therefore, strategies to improve the biocontrol performance of these prominent antagonists are also discussed in this review.

13.
Mol Plant Pathol ; 23(12): 1737-1750, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36094814

RESUMEN

Tobacco black shank caused by Phytophthora nicotianae is a serious disease in tobacco cultivation. We found that naringenin is a key factor that causes different sensitivity to P. nicotianae between resistant and susceptible tobacco. The level of basal flavonoids in resistant tobacco was distinct from that in susceptible tobacco. Of all flavonoids with different content, naringenin showed the best antimicrobial activity against mycelial growth and sporangia production of P. nicotianae in vitro. However, naringenin showed very low or no antimicrobial activity to other plant pathogens. We found that naringenin induced not only the accumulation of reactive oxygen species, but also the expression of salicylic acid biosynthesis-related genes. Naringenin induced the expression of the basal pathogen resistance gene PR1 and the SAR8.2 gene that contributes to plant resistance to P. nicotianae. We then interfered with the expression of the chalcone synthase (NtCHS) gene, the key gene of the naringenin synthesis pathway, to inhibit naringenin biosynthesis. NtCHS-RNAi rendered tobacco highly sensitive to P. nicotianae, but there was no change in susceptibility to another plant pathogen, Ralstonia solanacearum. Finally, exogenous application of naringenin on susceptible tobacco enhanced resistance to P. nicotianae and naringenin was very stable in this environment. Our findings revealed that naringenin plays a core role in the defence against P. nicotianae and expanded the possibilities for the application of plant secondary metabolites in the control of P. nicotianae.


Asunto(s)
Phytophthora , Phytophthora/genética , Nicotiana/genética , Enfermedades de las Plantas/genética , Flavonoides
14.
Plant Dis ; 2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36149279

RESUMEN

Navel orange (Citrus sinensis Osbeck cv. Newhall) is widely planted in southern China. From September to November 2021, severe outbreaks of Phytophthora brown rot were observed on navel orange fruit in three local orchards in Ganzhou City (28.80N, 115.53E), Jiangxi Province, China, with a disease incidence of 25 to 35%. Symptomatic fruit was mostly observed 1-m from the ground. Initial symptoms on infected fruit were circular, pale-brown to brown, water-soaked, slightly sunken lesions, covered with sparse white mycelia-like growth. As the disease progressed, the lesions turned dark brown and enlarged on the fruit surface. Three to four infected fruits were randomly collected from each orchard, placed in transparent plastic bags and immediately brought back to the laboratory for isolations. Infected fruits were surface-disinfested with 70% ethanol for 60 sec, and rinsed three times with sterile water. Symptomatic tissues from the margin between necrotic and healthy tissues were cut into 5 mm × 5 mm pieces, placed onto potato dextrose agar and incubated at 28°C for 5 days. Nine isolates were obtained. Colonies of three isolates (JFRL 03-16, 03-18, 03-19) in 10-day-old 20% V8 juice agar consisted of abundant, white, cottony aerial mycelia. Hyphal swellings and coenocytic mycelium were observed. Sporangia were ovoid, ellipsoid to spherical, papillate, and ranged in size from 17.2 to 60.1 µm × 15.8 to 48.6 µm (x ̅=46.2 ± 5.5 × 32.4 ± 4.8 µm, n=50). Chlamydospores were spherical, suborbicular, and ranged from 17.8 to 45.9 µm diam (x ̅=30.5 ± 3.5 µm, n=50). Oospores were not observed in pure cultures. These morphological characteristics were consistent with those of P. nicotianae (LaMondia et al. 2014). Genomic DNA was extracted from a representative isolate, JFRL 03-18, using the NuClean Plant Genomic DNA kit (CWBIO, China). The internal transcribed spacer (ITS) region, ras-related protein ypt1 (YPT), ß-tubulin (TUB) gene were amplified by Polymerase Chain Reaction using primers ITS1/ITS4 (White et al. 1990), Yph1F/Yph2R (Schena et al. 2008), and TUBUF2/TUBUR1 (Kroon et al. 2004), respectively. All sequences were deposited in GenBank (Accession Nos. ON231777 for ITS, ON246910 for YPT, ON246908 for TUB). BLASTN homology search for these nucleotide sequences showed 100% identical to the ITS (MH341621), YPT (MK058408), TUB (MH760160) sequences of P. nicotianae. Sequences of twelve Phytophthora species and Pythium ostracodes were downloaded from GenBank. The phylogenetic tree of combined ITS, YPT, TUB sequences showed that the isolate JFRL 03-18 clustered with P. nicotianae. To complete Koch's postulates, zoospore suspensions were prepared from the cultures grown on 10-day-old V8 juice agar of isolates (JFRL 03-16, 03-18, 03-19). Pathogenicity tests were performed on healthy and surface-disinfested navel orange fruit. Nine fruits were gently wounded with a needle, inoculated with 10 µl zoospore suspension (104 zoospores/ml) of three isolates separately, and three fruit treated with sterilized water as controls. All fruit were incubated at 25℃ with 80% relative humidity and the test was repeated three times. After 7 days of incubation, the fruit inoculated with P. nicotianae showed similar brown rot symptoms and the control fruit remained symptomless. The pathogen was re-isolated from all inoculated fruits and confirmed as P. nicotianae by morphological and molecular analysis. Phytophthora nicotianae was previously reported on Hamlin sweet orange (Citrus sinensis (L.) Osbeck) fruit causing Phytophthora brown rot in Florida (Graham and Timmer 1995; Hao et al. 2018). To our knowledge, this is the first report of P. nicotianae causing Phytophthora brown rot of navel orange fruit in China. Based on the severity of this disease, local growers should develop and implement integrated disease management strategies for control.

15.
Front Microbiol ; 13: 978920, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36033900

RESUMEN

In this study, an oomycete strain FQ01 of Phytophthora nicotianae, which could cause destructive postharvest disease, was isolated. At present, chemical fungicides are the main reagents used for controlling Phytophthora diseases. It is necessary to find new control techniques that are environmentally friendly. The biocontrol activity of Hanseniaspora uvarum MP1861 against P. nicotianae FQ01 was therefore investigated. Our results revealed that the volatile organic compounds (VOCs) released by the yeast strain MP1861 could inhibit the development of P. nicotianae FQ01. The major component of the VOCs produced by the yeast strain MP1861 was identified to be ethyl acetate (70.8%). Biocontrol experiments showed that Phytophthora disease in tomato fruit could be reduced by 95.8% after the yeast VOCs treatment. Furthermore, ethyl acetate inhibited the mycelial growth of the oomycete strain FQ01, and damaged the pathogen cell membrane. This paper describes the pioneering utilization of the yeast strain MP1861 for biocontrol of postharvest fruit rot in tomato caused by P. nicotianae.

16.
BMC Microbiol ; 22(1): 112, 2022 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-35461247

RESUMEN

BACKGROUND: Black shank disease caused by Phytophthora nicotianae is a serious threat to flue-cured tobacco production. Whole-plant resistance is characterized by the expression of a number of pathogenesis-related proteins, genes, and the activity of different defense-related enzymes. In this study, we investigated the activity of defense-related enzymes and expression of differentially expressed proteins through the iTRAQ technique across two flue-cured tobacco cultivars, i.e., K326 and Hongda, in response to the black shank pathogen. RESULTS: Results showed that the highest disease incidence was recorded in flue-cured tobacco cultivar Hongda compared with K326, which shows that Hongda is more susceptible to P. nicotianae than K326. A total of 4274 differentially expressed proteins were detected at 0 h and after 24 h, 72 h of post-inoculation with P. nicotianae. We found that 17 proteins induced after inoculation with P. nicotianae, including pathogenesis (5), photosynthesis (3), oxidative phosphorylation (6), tricarboxylic acid cycle (1), heat shock (1), and 14-3-3 (1) and were involved in the resistance of flue-cured tobacco against black shank disease. The expression of 5 pathogenesis-related proteins and the activities of defense-related enzymes (PPO, POD, SOD, and MDA) were significantly higher in the leaves of K326 than Hongda after inoculation with P. nicotianae. CONCLUSION: These results provide new molecular insights into flue-cured tobacco responses to P. nicotianae. It is concluded that differences in protein expressions and defense-related enzymes play an important role in developing resistance in flue-cured tobacco cultivars against black shank disease.


Asunto(s)
Phytophthora , Enfermedades de las Plantas/genética , Hojas de la Planta , Nicotiana/genética
18.
Plant Dis ; 106(3): 906-917, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34735283

RESUMEN

Host resistance is an important tool in the management of black shank disease of tobacco. Race development leads to rapid loss of single-gene resistance, but the adaptation by Phytophthora nicotianae to sources of partial resistance from Beinhart 1000, Florida 301, and the Wz gene region introgressed from Nicotiana rustica is poorly characterized. In greenhouse environments, host genotypes with quantitative trait loci (QTLs) conferring resistance from multiple sources were initially inoculated with an aggressive isolate of race 0 or race 1 of P. nicotianae. The most aggressive isolate was selected after each of six host generations to inoculate the next generation of plants. The race 0 isolate demonstrated a continuous gradual increase in disease severity and percentage root rot on all sources of resistance except the genotype K 326 Wz/-, where a large increase in both was observed between generations 2 and 3. Adaptation by the race 0 isolate on Beinhart 1000 represents the first report of adaptation to this genotype by P. nicotianae. The race 1 isolate did not exhibit significant increases in aggressiveness over generations but exhibited a large increase in aggressiveness on K 326 Wz/- between generations 3 and 4. Molecular characterization of isolates recovered during selection was completed via double digest restriction-site associated DNA sequencing, but no polymorphisms were associated with the observed changes in aggressiveness. The rapid adaptation to Wz resistance and the gradual adaptation to other QTLs highlights the need to study the nature of Wz resistance and to conduct field studies on the efficacy of resistance gene rotation for disease management.


Asunto(s)
Phytophthora , Genotipo , Phytophthora/genética , Enfermedades de las Plantas/genética , Sitios de Carácter Cuantitativo/genética , Nicotiana/genética
19.
Plant Dis ; 106(2): 373-381, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34282925

RESUMEN

Pathogen adaptation can threaten the durability of partial resistance. Mixed plantings of susceptible and partially resistant varieties may prolong the effectiveness of partial resistance, but little is known about how continued exposure to a susceptible genotype can change the aggressiveness of pathogen isolates adapted to a source of partial resistance. The objective of this study was to examine the effects of continued exposure to a highly susceptible tobacco genotype on isolates of Phytophthora nicotianae that had been adapted to partial resistance. Isolates of P. nicotianae previously adapted to two sources of partial resistance were continually exposed to either the original host of adaptation or a susceptible host. After six generations of host exposure, isolates obtained from the partially resistant and the susceptible hosts were compared for their aggressiveness on the resistant host and for differences in expression of genes associated with pathogenicity and aggressiveness. Results suggested that exposure to the susceptible tobacco genotype reduced aggressiveness of isolates adapted to partial resistance in K 326 Wz/- but not of isolates adapted to partial resistance in Fla 301. Quantification of pathogenicity-associated gene expression using qRT-PCR suggested the rapid change in aggressiveness of isolates adapted to Wz-sourced partial resistance may have resulted from modification in gene expression in multiple genes.


Asunto(s)
Phytophthora , Genotipo , Phytophthora/genética , Nicotiana/genética , Virulencia
20.
Plants (Basel) ; 10(8)2021 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-34451665

RESUMEN

Phytophthora nicotianae is a widely distributed plant pathogen that can cause serious disease and cause significant economic losses to various crops, including tomatoes, tobacco, onions, and strawberries. To understand its pathogenic mechanisms and explore strategies for controlling diseases caused by this pathogen, we sequenced and analyzed the whole genome of Ph. nicotianae JM01. The Ph. nicotianae JM01 genome was assembled using a combination of approaches including shotgun sequencing, single-molecule sequencing, and the Hi-C technique. The assembled Ph. nicotianae JM01 genome is about 95.32 Mb, with contig and scaffold N50 54.23 kb and 113.15 kb, respectively. The average GC content of the whole-genome is about 49.02%, encoding 23,275 genes. In addition, we identified 19.15% of interspersed elements and 0.95% of tandem elements in the whole genome. A genome-wide phylogenetic tree indicated that Phytophthora diverged from Pythium approximately 156.32 Ma. Meanwhile, we found that 252 and 285 gene families showed expansion and contraction in Phytophthora when compared to gene families in Pythium. To determine the pathogenic mechanisms Ph. nicotianae JM01, we analyzed a suite of proteins involved in plant-pathogen interactions. The results revealed that gene duplication contributed to the expansion of Cell Wall Degrading Enzymes (CWDEs) such as glycoside hydrolases, and effectors such as Arg-Xaa-Leu-Arg (RXLR) effectors. In addition, transient expression was performed on Nicotiana benthamiana by infiltrating with Agrobacterium tumefaciens cells containing a cysteine-rich (SCR) protein. The results indicated that SCR can cause symptoms of hypersensitive response. Moreover, we also conducted comparative genome analysis among four Ph. nicotianae genomes. The completion of the Ph. nicotianae JM01 genome can not only help us understand its genomic characteristics, but also help us discover genes involved in infection and then help us understand its pathogenic mechanisms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA