Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
Chemosphere ; 340: 139789, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37598948

RESUMEN

To understand the physical phase structural variation and activation pathway of the active component during the catalytic reduction of pyrite (FeS2)-based catalysts, multiple methods, including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and high-temperature in situ XRD, were applied to characterize the catalyst and reaction process. The reaction mechanism was simulated and verified using density functional theory. The results indicated that pyrite-based catalysts promote the CO reduction of SO2 to S through the dynamic transformation of three phases (FeS2, Fe7S8, and FeS), in which S-vacancy formation is the most important step. As the critical temperature for the reaction of FeS2 and CO was initiated at approximately 525 °C, the active component's physical phase structure and activation pathway could be controlled by adjusting the temperature.


Asunto(s)
Hierro , Azufre , Temperatura , Catálisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA