Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.915
Filtrar
1.
Syst Biol ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39250721

RESUMEN

In vicariant species formation, divergence results primarily from periods of allopatry and restricted gene flow. Widespread species harboring differentiated, geographically distinct sublineages offer a window into what may be a common mode of species formation, whereby a species originates, spreads across the landscape, then fragments into multiple units. However, incipient lineages usually lack reproductive barriers that prevent their fusion upon secondary contact, blurring the boundaries between a single, large metapopulation-level lineage and multiple independent species. Here we explore this model of species formation in the Eastern Red-backed Salamander (Plethodon cinereus), a widespread terrestrial vertebrate with at least six divergent mitochondrial clades throughout its range. Using anchored hybrid enrichment data, we applied phylogenomic and population genomic approaches to investigate patterns of divergence, gene flow, and secondary contact. Genomic data broadly match most mitochondrial groups but reveal mitochondrial introgression and extensive admixture at several contact zones. While species delimitation analyses in BPP supported five lineages of P. cinereus, genealogical divergence indices (gdi) were highly sensitive to the inclusion of admixed samples and the geographic representation of candidate species, with increasing support for multiple species when removing admixed samples or limiting sampling to a single locality per group. An analysis of morphometric data revealed differences in body size and limb proportions among groups, with a reduction of forelimb length among warmer and drier localities consistent with increased fossoriality. We conclude that P. cinereus is a single species, but one with highly structured component lineages of various degrees of independence.

2.
Sci Rep ; 14(1): 21019, 2024 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-39251815

RESUMEN

The neighborhood effect has become an important framework with which to study the mechanisms that maintain the coexistence of tree species. Phylogenetic relatedness among neighboring plants directly affects species coexistence and the maintenance of tree diversity. And some studies have reported that seedling performance is negatively correlated with phylogenetic relatedness, which termed phylogenetic negative density dependence. Soil-borne fungal pathogens affected seedling performance of phylogenetically related host species, i.e., phylogenetic Janzen-Connell effect. Seedlings may be particularly vulnerable to habitat and neighbor characteristics. Although previous studies have demonstrated the influence of neighborhood effects, phylogenetic relatedness, and habitat filtering on seedling survival, growth, and mortality, the effect of variation in these factors on seedling abundance remains unclear. To address this question, we used a 4-ha (200 m × 200 m) and monitored four-year (2020-2023) seedling dataset from a mid-montane humid evergreen broad-leaved subtropical forest in the Gaoligong Mountains, Yunnan, Southwestern China, and which consisted of 916 seedlings belonging to 56 species. The results of generalized linear mixed models showed no significant effect of conspecific adult neighbors on seedling abundance at any of the intervals evaluated. In contrast, we found evidence of phylogenetic distance density dependence in the forests of the Gaoligong Mountains. Specifically, there was a significant positive effect of the relative average phylogenetic distance between heterospecific adult neighbors and focal seedlings on focal seedling abundance in 2020; however, the relative average phylogenetic distance between heterospecific seedling neighbors and focal seedlings had a significant negative effect on seedling abundance over the four-year period (2020-2023). Among the habitat factors, only light (canopy opening) had a negative effect on seedling abundance in all four years. Light resources may be a limiting factor for seedlings, and determine seedling dynamics in subtropical forests. Overall, our results demonstrated that phylogenetic density dependence and habitat filtering affected subtropical seedling abundance. Our findings provide new evidence of the impact of phylogenetic density dependence on seedling abundance in a subtropical mid-montane humid evergreen broad-leaved forest and highlight the need to incorporate the neighborhood effect, phylogenetic relatedness, and habitat factors in models assessing seedling abundance.


Asunto(s)
Ecosistema , Bosques , Filogenia , Plantones , Plantones/crecimiento & desarrollo , China , Árboles/crecimiento & desarrollo , Biodiversidad
3.
mBio ; : e0322023, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39283095

RESUMEN

Due to the incessant emergence of various SARS-CoV-2 variants with enhanced fitness in the human population, controlling the COVID-19 pandemic has been challenging. Understanding how the virus enhances its fitness during a pandemic could offer valuable insights for more effective control of viral epidemics. In this manuscript, we review the evolution of SARS-CoV-2 from early 2022 to the end of 2023-from Omicron BA.2 to XBB descendants. Focusing on viral evolution during this period, we provide concrete examples that SARS-CoV-2 has increased its fitness by enhancing several functions of the spike (S) protein, including its binding affinity to the ACE2 receptor and its ability to evade humoral immunity. Furthermore, we explore how specific mutations modify these functions of the S protein through structural alterations. This review provides evolutionary, molecular, and structural insights into how SARS-CoV-2 has increased its fitness and repeatedly caused epidemic surges during the pandemic.

4.
BMC Genomics ; 25(1): 862, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39278945

RESUMEN

BACKGROUND: The Bucephalidae is a large family of digenean trematodes but most previous analyses of its phylogenetic position have relied on a single mitochondrial gene or morphological features. Mitochondrial genomes (mitogenomes) remain unavailable for the entire family. To address this, we sequenced the complete mitogenome of Dollfustrema vaneyi and analyzed the phylogenetic relationships with other trematodes. RESULTS: The circular genome of Dollfustrema vaneyi spanned 14,959 bp and contained 12 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes, and a major non-coding region. We used concatenated amino acid and nucleotide sequences of all 36 genes for phylogenetic analyses, conducted using MrBayes, IQ-TREE and PhyloBayes. We identified pronounced topological instability across different analyses. The addition of recently sequenced two mitogenomes for the Aspidogastrea subclass along with the use of a site-heterogeneous model stabilized the topology, particularly the positions of Azygiidae and Bucephalidae. The stabilized results indicated that Azygiidae was the closest lineage to Bucephalidae in the available dataset, and together, they clustered at the base of the Plagiorchiida. CONCLUSIONS: Our study provides the first comprehensive description and annotation of the mitochondrial genome for the Bucephalidae family. The results indicate a close phylogenetic relationship between Azygiidae and Bucephalidae, and reveal their basal placement within the order Plagiorchiida. Furthermore, the inclusion of Aspidogastrea mitogenomes and the site-heterogeneous model significantly improved the topological stability. These data will provide key molecular resources for future taxonomic and phylogenetic studies of the family Bucephalidae.


Asunto(s)
Genoma Mitocondrial , Filogenia , Trematodos , Animales , Trematodos/genética , Trematodos/clasificación , ARN de Transferencia/genética
5.
Plant Divers ; 46(4): 425-434, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39280975

RESUMEN

Orchidaceae are one of the largest families of angiosperms in terms of species richness. In the last decade, numerous studies have delved into reconstructing the phylogenetic framework of Orchidaceae, leveraging data from plastid, mitochondrial and nuclear sources. These studies have provided new insights into the systematics, diversification and biogeography of Orchidaceae, establishing a robust foundation for future research. Nevertheless, pronounced controversies persist regarding the precise placement of certain lineages within these phylogenetic frameworks. To address these discrepancies and deepen our understanding of the phylogenetic structure of Orchidaceae, we provide a comprehensive overview and analysis of phylogenetic studies focusing on contentious groups within Orchidaceae since 2015, delving into discussions on the underlying reasons for observed topological conflicts. We also provide a novel phylogenetic framework at the subtribal level. Furthermore, we examine the tempo and mode underlying orchid species diversity from the perspective of historical biogeography, highlighting factors contributing to extensive speciation. Ultimately, we delineate avenues for future research aimed at enhancing our understanding of Orchidaceae phylogeny and diversity.

6.
J Natl Cancer Cent ; 4(2): 97-106, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39282584

RESUMEN

The evolutionary dynamics of cancer, characterized by its profound heterogeneity, demand sophisticated tools for a holistic understanding. This review delves into tumor phylogenetics, an essential approach bridging evolutionary biology with oncology, offering unparalleled insights into cancer's evolutionary trajectory. We provide an overview of the workflow, encompassing study design, data acquisition, and phylogeny reconstruction. Notably, the integration of diverse data sets emerges as a transformative step, enhancing the depth and breadth of evolutionary insights. With this integrated perspective, tumor phylogenetics stands poised to redefine our understanding of cancer evolution and influence therapeutic strategies.

7.
Mitochondrial DNA B Resour ; 9(9): 1213-1217, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39286474

RESUMEN

Elaeagnus bambusetorum Hand.-Mazz. is a rare plant from China in the Elaeagnaceae family. In this study, we sequenced its complete chloroplast genome. The whole chloroplast genome was 152,265 bp in length, containing a pair of inverted repeats of 25,897 bp, separated by large single copy and small single copy regions of 82,291 bp and 18,180 bp, respectively. The complete genome contained 113 genes, including 79 protein-coding genes, 30 tRNA genes, and 4 rRNA genes. The overall GC content was 37.1%. Phylogenetic analysis using the whole chloroplast genome revealed that E. bambusetorum is sister to E. loureirii and E. conferta. Our study provides valuable insights into the genetic information of E. bambusetorum, which may have important implications for species conservation.

8.
Front Plant Sci ; 15: 1446663, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39286838

RESUMEN

Phomopsis cane and leaf spot (PCLS) disease, affecting grapevines (Vitis vinifera and Vitis spp.), has been historically associated with Diaporthe ampelina. Typical disease symptoms, comprising bleaching and black pycnidia, have also been associated with other Diaporthe spp. In this study, we conducted a molecular identification of the Diaporthe isolates isolated from grapevine canes from different geographic areas of southern Europe showing PCLS symptoms. Then, we investigated their morphological characteristics (including mycelium growth and production of pycnidia and alpha and beta conidia) in response to temperature. Finally, we artificially inoculated grapevine shoots and leaves with a subset of these isolates. Based on our results, PCLS etiology should be reconsidered. Though D. ampelina was the most crucial causal agent of PCLS, D. eres and D. foeniculina were also pathogenic when inoculated on green shoots and leaves of grapevines. However, D. rudis was not pathogenic. Compared to D. ampelina, D. eres and D. foeniculina produced both pycnidia and alpha conidia at lower temperatures. Thus, the range of environmental conditions favorable for PCLS development needs to be widened. Our findings warrant further validation by future studies aimed at ascertaining whether the differences in temperature requirements among species are also valid for conidia-mediated infection since it could have substantial practical implications in PCLS management.

9.
Evolution ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39290094

RESUMEN

Although species evolve in response to many intrinsic and extrinsic factors, frequently one factor has a dominating influence on a given organ system. In this context, mouthpart shape and function are thought to correlate strongly with dietary niche and this was advocated for decades, e.g., for insects. Orthoptera (grasshoppers, crickets, and allies) are a prominent case in this respect because mandible shape has been even used to predict feeding preferences. Here, we analysed mandible shape, force transmission efficiency, and their potential correlation with dietary categories in a phylogenetic framework for 153 extant Orthoptera. The mechanical advantage profile was used as a descriptor of gnathal edge shape and bite force transmission efficiency in order to understand how mandible shape is linked to biting efficiency and diet, and how these traits are influenced by phylogeny and allometry. Results show that mandible shape in fact is a poor predictor of feeding ecology and phylogenetic history has a strong influence on gnathal edge shape. Being ancestrally phytophagous, Orthoptera evolved in an environment with food sources being always abundant so that selective pressures leading to more specialized mouthpart shapes and force transmission efficiencies were low.

10.
Ecol Evol ; 14(9): e70318, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39290669

RESUMEN

Cycle-cup oaks (Quercus section Cyclobalanopsis) are one of the principal components of forests in the tropical and subtropical climates of East and Southeast Asia. They have experienced relatively recent increases in the diversification rate, driven by changing climates and the Himalayan orogeny. However, the evolutionary history and adaptive mechanisms at the chloroplast genome level in cycle-cup oaks remain largely unknown. Therefore, we studied this problem by conducting chloroplast genomics on 50 of the ca. 90 species. Comparative genomics and other analyses showed that Quercus section Cyclobalanopsis had a highly conserved chloroplast genome structure. Highly divergent regions, such as the ndhF and ycf1 gene regions and the petN-psbM and rpoB-trnC-GCA intergenic spacer regions, provided potential molecular markers for subsequent analysis. The chloroplast phylogenomic tree indicated that Quercus section Cyclobalanopsis was not monophyletic, which mixed with the other two sections of subgenus Cerris. The reconstruction of ancestral aera inferred that Palaeotropics was the most likely ancestral range of Quercus section Cyclobalanopsis, and then dispersed to Sino-Japan and Sino-Himalaya. Positive selection analysis showed that the photosystem genes had the lowest ω values among the seven functional gene groups. And nine protein-coding genes containing sites for positive selection: ndhA, ndhD, ndhF, ndhH, rbcL, rpl32, accD, ycf1, and ycf2. This series of analyses together revealed the phylogeny, evolutionary history, and ecological adaptation mechanism of the chloroplast genome of Quercus section Cyclobalanopsis in the long river of earth history. These chloroplast genome data provide valuable information for deep insights into phylogenetic relationships and intraspecific diversity in Quercus.

11.
Plant Divers ; 46(5): 648-660, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39290888

RESUMEN

Relict subtropical coniferous forests in China face severe fragmentation, resulting in declining populations, and some are under significant threat from invasive alien species. Despite the crucial importance of understanding forest dynamics, knowledge gaps persist, particularly regarding the impact of invasive plants on vulnerable natives like Keteleeria evelyniana. In this study, we investigated the impact of invasive plants on the regeneration of forests dominated by K. evelyniana, a subtropical relict species in southwestern China. For this purpose, we characterized forest dynamics of 160 forest plots featuring K. evelyniana as the primary dominant species and determined whether the presence of invasive plants was correlated with regeneration of K. evelyniana. We identified four distinct forest types in which K. evelyniana was dominant. We found that radial growth of K. evelyniana trees is faster in younger age-classes today than it was for older trees at the same age. The population structure of K. evelyniana in each forest type exhibited a multimodal age-class distribution. However, three forest types lacked established saplings younger than 10 years old, a situation attributed to the dense coverage of the invasive alien Ageratina adenophora. This invasive species resulted in a reduction of understory species diversity. Additionally, our analysis uncovered a significant negative correlation in phylogenetic relatedness (net relatedness index) between native and invasive alien plant species in eastern Yunnan. This suggests closely related invasive species face heightened competition, hindering successful invasion. Taken together, our findings indicate that successful establishment and habitat restoration of K. evelyniana seedling/saplings require effective measures to control invasive plants.

12.
Mitochondrial DNA B Resour ; 9(9): 1227-1231, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39291129

RESUMEN

Rhopalosiphum maidis Fitch, 1856 is widespread in tropical and temperate regions. R. maidis can spread viral diseases in maize and harm various important crops. In the present study, we report the first complete mitochondrial genome of R. maidis. The circular genome is found to be 17,021 bp in length, includes a standard set of 22 transfer RNAs, two ribosomal RNAs, 13 protein-coding genes, and two non-coding control regions. The base composition is 84.32% AT and 15.79% GC. The phylogenetic tree of the 17 Aphidini families constructed based on the nucleotide sequences of complete mitochondrial genomes strongly supports the conclusion that R. maidis is closely related to R. rufiabdominalis.

13.
Mitochondrial DNA B Resour ; 9(9): 1232-1236, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39291130

RESUMEN

The ancient mitochondrial genome of a Siberian roe deer (Capreolus pygargus) coded as NJ26S from Jartai Pass Site was obtained by high throughput sequencing. The damage pattern demonstrated the authenticity and reliability of the ancient DNA data. The length of the mitogenome was 16,357 bp, which contained 13 protein-coding genes, two rRNA genes, 22 tRNA genes, and one control region. The total base composition of the mitochondrial genome is 28.17% A, 25.01% T, 11.89% G, 19.72% C, and 15.21% missing data with an AT composition of 53.18%. A maximum-likelihood phylogenetic tree was recovered including other roe deer sequences under the TIM2 + I + G4 model. This study presents molecular evidence indicating the presence of Capreolus pygargus in the Xinjiang Uygur Autonomous Region in China more than 3,000 years ago.

14.
Int J Mol Sci ; 25(17)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39273542

RESUMEN

Suillus is one of the most important genera of ectomycorrhizal fungi. As a model for studying host specificity, its molecular fragments and nuclear genome have been analyzed. However, its mitochondrial genome has not yet been reported. In this study, we assembled five mitogenomes of Suillus and analyzed and compared their basic characteristics. Owing to the large number of introns as well as intergenic regions, the mitogenomic lengths of species of Suillus were greater than those of other species of Boletales. We identified two main patterns of gene order arrangement in the members of the order Boletales. The Ka/Ks values of 15 protein-coding genes were <1 for the mitochondrial genes of 39 Boletales species, indicating their conserved evolution. Phylogenetic trees, reconstructed using the mitogenomes, indicated that the genus Suillus was monophyletic. Phylogenetic results based on the internal transcribed spacer region and mitogenome were used to confirm the distribution of Suillus placidus in China. The results showed that the mitogenome was superior in distinguishing species compared with a single molecular fragment. This is the first study to investigate the mitogenome of Suillus, enriching the mitogenome information and providing basic data for the phylogeny, resource conservation, and genetic diversity of this genus.


Asunto(s)
Orden Génico , Genoma Mitocondrial , Filogenia , Basidiomycota/genética , Basidiomycota/clasificación , Evolución Molecular
15.
Int J Mol Sci ; 25(17)2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39273633

RESUMEN

The maize Snf2 gene family plays a crucial role in chromatin remodeling and response to environmental stresses. In this study, we identified and analyzed 35 members of the maize Snf2 gene family (ZmCHR1 to ZmCHR35) using the Ensembl Plants database. Each protein contained conserved SNF2-N and Helicase-C domains. Phylogenetic analysis revealed six groups among the Snf2 proteins, with an uneven distribution across subfamilies. Physicochemical analysis indicated that the Snf2 proteins are hydrophilic, with varied amino acid lengths, isoelectric points, and molecular weights, and are predominantly localized in the nucleus. Chromosomal mapping showed that these genes are distributed across all ten maize chromosomes. Gene structure analysis revealed diverse exon-intron arrangements, while motif analysis identified 20 conserved motifs. Collinearity analysis highlighted gene duplication events, suggesting purifying selection. Cis-regulatory element analysis suggested involvement in abiotic and biotic stress responses. Expression analysis indicated tissue-specific expression patterns and differential expression under various stress conditions. Specifically, qRT-PCR validation under drought stress showed that certain Snf2 genes were upregulated at 12 h and downregulated at 24 h, revealing potential roles in drought tolerance. These findings provide a foundation for further exploration of the functional roles of the maize Snf2 gene family in development and stress responses.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Filogenia , Proteínas de Plantas , Estrés Fisiológico , Zea mays , Zea mays/genética , Zea mays/metabolismo , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sequías , Cromosomas de las Plantas/genética , Mapeo Cromosómico , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
16.
Plants (Basel) ; 13(17)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39273907

RESUMEN

Leaf functional traits (LFTs) have become a popular topic in ecological research in recent years. Here, we measured eight LFTs, namely leaf area (LA), specific leaf area (SLA), leaf thickness (LT), leaf dry matter content (LDMC), leaf carbon content (LCC), leaf nitrogen content (LNC), leaf phosphorus content (LPC), and leaf potassium content (LKC), in six typical vegetation communities (sclerophyllous evergreen broad-leaved forests, temperate evergreen coniferous forests, cold-temperate evergreen coniferous forests, alpine deciduous broad-leaved shrubs, alpine meadows, and alpine scree sparse vegetation) in the Chayu River Basin, southeastern Qinghai-Tibet Plateau. Our aim was to explore their relationships with evolutionary history and environmental factors by combining the RLQ and the fourth-corner method, and the method of testing phylogenetic signal. The results showed that (i) there were significant differences in the eight LFTs among the six vegetation communities; (ii) the K values of the eight LFTs were less than 1; and (iii) except for LCC, all other LFTs were more sensitive to environmental changes. Among these traits, LA was the most affected by the environmental factors, followed by LNC. It showed that the LFTs in the study were minimally influenced by phylogenetic development but significantly by environmental changes. This study further verified the ecological adaptability of plants to changes in environmental factors and provides a scientific basis for predicting the distribution and diffusion direction of plants under global change conditions.

17.
Plants (Basel) ; 13(17)2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39273998

RESUMEN

Kenaf (Hibiscus cannabinu) is a grass bast fiber crop that has the ability to tolerate and accumulate heavy metals, and it has been considered as a potential heavy metal accumulator and remediation plant. Nramp is a natural resistance-related macrophage, which plays an important role in the transport of divalent metal ions, plant growth and development, and abiotic stress. In this study, the Nramp gene family of kenaf was analyzed at the whole genome level. A total of 15 HcNramp genes were identified. They are distributed unevenly on chromosomes. Phylogenetic analysis classified 15 HcNramp proteins into 3 different subfamilies. All proteins share specific motif 4 and motif 6, and the genes belonging to the same subfamily are similar in structure and motif. The promoters are rich in hormone response, meristem expression, and environmental stress response elements. Under different treatments, the expression levels of HcNramp genes vary in different tissues, and most of them are expressed in roots first. These findings can provide a basis for understanding the potential role of the Nramp gene family in kenaf in response to cadmium (Cd) stress, and are of great significance for screening related Cd tolerance genes in kenaf.

18.
Curr Genet ; 70(1): 17, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39276214

RESUMEN

Two-component systems (TCSs) are diverse cell signaling pathways that play a significant role in coping with a wide range of environmental cues in both prokaryotic and eukaryotic organisms. These transduction circuitries are primarily governed by histidine kinases (HKs), which act as sensing proteins of a broad variety of stressors. To date, nineteen HK groups have been previously described in the fungal kingdom. However, the structure and distribution of these prominent sensing proteins were hitherto investigated in a limited number of fungal species. In this study, we took advantage of recent genomic resources in fungi to refine the fungal HK classification by deciphering the structural diversity and phylogenetic distribution of HKs across a large number of fungal clades. To this end, we browsed the genome of 91 species representative of different fungal clades, which yielded 726 predicted HK sequences. A domain organization analysis, coupled with a robust phylogenomic approach, led to an improved categorization of fungal HKs. While most of the compiled sequences were categorized into previously described fungal HK groups, some new groups were also defined. Overall, this study provides an improved overview of the structure, distribution, and evolution of HKs in the fungal kingdom.


Asunto(s)
Hongos , Histidina Quinasa , Filogenia , Histidina Quinasa/genética , Histidina Quinasa/metabolismo , Histidina Quinasa/química , Hongos/genética , Hongos/enzimología , Hongos/clasificación , Genoma Fúngico , Transducción de Señal , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Evolución Molecular , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Quinasas/química
19.
Poult Sci ; 103(11): 104228, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39276465

RESUMEN

Avian paramyxoviruses (APMV) belong to the subfamily Avulavirinae of the family Paramyxoviridae and include 22 distinct subtypes or serotypes (1-22). Avian paramyxovirus serotype 12 (APMV-12) is found sporadically in wild birds worldwide, and reports from only Italy and Taiwan have been published to date; information on its genetic variation and biological characteristics is still limited. In this study, 3 APMV-12 strains, designated WB19, LY9, and LY11, were isolated from 8643 wild bird faecal samples during the annual influenza virus surveillance of wild birds in Guangdong, China between 2018 and 2024, which is first reported in mainland China. The complete genomes of the 3 viruses with 6 gene segments, 3'-N-P-M-F-HN-L-5', were 15,231 nt in length. Phylogenetic analysis based on the whole genome showed that the 3 APMV-12 strains had the highest homology with an APMV-12 strain isolated from Taiwan in 2015, followed by the prototype APMV-12 strains isolated from mallard ducks in Italy in 2005. Genetic analysis of the whole gene of each of them indicated that they were derived from a Eurasian lineage. This study provides additional evidence that wild birds transmit viruses between countries, and this should be monitored to understand APMV transmission, evolution and epidemiology.

20.
Antonie Van Leeuwenhoek ; 118(1): 5, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39283540

RESUMEN

Identification of Fusarium species associated with diseases symptoms in plants is an important step toward understanding the ecology of plant-fungus associations. In this study, four Fusarium isolates were obtained from root rot of Oryza sativa L. in Izeh (southwest of Iran) and identified based on phylogenetic analyses combined with morphology. Phylogenetic analyses based on combined translation elongation factor 1-α, calmodulin, RNA polymerase II second largest subunit, and Beta-tubulin (tub2) sequence data delimited two new species, namely F. khuzestanicum and F. oryzicola spp. nov., from previously known species of Fusarium within F. incarnatum-equiseti species complex (FIESC). Morphologically, F. khuzestanicum produces the macroconidia with distinctly notched to foot-shaped basal cells, while basal cells in the macroconidia of F. oryzicola are more extended and distinctly elongated foot shape. Furthermore, these two new species are distinguished by the size of their sporodochial phialides and macroconidia. The results of the present show that the FIESC species complex represent more cryptic species.


Asunto(s)
Fusarium , Oryza , Filogenia , Enfermedades de las Plantas , Fusarium/genética , Fusarium/clasificación , Fusarium/aislamiento & purificación , Irán , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Tubulina (Proteína)/genética , Calmodulina/genética , ARN Polimerasa II/genética , Raíces de Plantas/microbiología , ADN de Hongos/genética , Factor 1 de Elongación Peptídica/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA