Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Talanta ; 247: 123550, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35671579

RESUMEN

For the development of selective and sensitive chemical sensors, we have developed a new family of poly(ether-phosphoramide) polymers. These polymers were obtained with satisfactory yields by nucleophilic aromatic polycondensation using isosorbide as green resources, and bisphenol A with two novel difluoro phosphinothioic amide monomers. Unprecedented, the thiophosphorylated aminoheterocycles monomers, functionalized with two heterocyclic amine, N-methylpiperazine and morpholine were successfully obtained by nucleophilic substitution reaction of P(S)-Cl compound. The resulting polymers were characterized by different analytical techniques (NMR, MALDI-ToF MS, GPC, DSC, and ATG). The resulting partially green polymers, having tertiary phosphine sulfide with P-N side chain functionalities along the main chain of polymers are the sensitive film at the surface of a gold electrode for the impedimetric detection of Cd, Ni, Pb and Hg. The bio-based poly(ether-phosphoramide) functionalized with N-methylpiperazine modified sensor showed better analytical performance than petrochemical based polymers for the detection of Ni2+. A detection limit of 50 pM was obtained which is very low compared to the previously published electrochemical sensors for nickel detection.


Asunto(s)
Técnicas Biosensibles , Níquel , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Electrodos , Éter , Éteres , Límite de Detección , Níquel/química , Fosforamidas , Polímeros/química , Sulfuros
2.
Polymers (Basel) ; 9(8)2017 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-30971013

RESUMEN

Three phosphate esters 1⁻3 were successfully synthesized from the reaction of 2-, 3- and 4-hydroxybenzaldehyde with phosphoryl chloride. Reactions of 1⁻3 with benzidine in the presence of glacial acetic acid gave the corresponding novel phosphorus organic polymers 4⁻6 containing the azomethane linkage. The structures of the synthesized compounds were confirmed by Fourier transform infrared spectroscopy, nuclear magnetic resonance and elemental analysis. Interesting physiochemical properties for the polymeric materials 4⁻6 were observed using a combination of several techniques such as gel permeation chromatography, scanning electron microscopy, Brunauer⁻Emmett⁻Teller and nitrogen adsorption⁻desorption isotherm, Barrett⁻Joyner⁻Halenda and H-sorb 2600 analyzer. The mesoporous polymers 4⁻6 exhibit tunable porosity with Brunauer⁻Emmett⁻Teller surface area (SABET = 24.8⁻30 m²·g⁻1), pore volume (0.03⁻0.05 cm³·g⁻1) and narrow pore size distribution, in which the average pore size was 2.4⁻2.8 nm. Polymers 4⁻6 were found to have high gas storage capacity and physico-chemical stability, particularly at a high pressure. At 323 K and 50 bars, polymers 4⁻6 have remarkable carbon dioxide uptake (up to 82.1 cm³·g⁻1) and a low hydrogen uptake (up to 7.4 cm³·g⁻1). The adsorption capacity of gasses for polymer 5 was found to be higher than those for polymers 4 and 6.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA