Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 891
Filtrar
1.
PeerJ ; 12: e17828, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39221268

RESUMEN

Soil salinization significantly impacts agricultural lands and crop productivity in the study area. Moreover, freshwater scarcity poses a significant obstacle to soil reclamation and agricultural production. Therefore, eco-friendly strategies must be adopted for agro-ecosystem sustainability under these conditions. A study conducted in 2022 and 2023 examined the interaction effects of various soil mulching materials (unmulched, white plastic, rice straw, and sawdust) and chitosan foliar spray application (control, 250 mg L-1 of normal chitosan, 125 mg L-1 of nano chitosan, and 62.5 mg L-1 of nano chitosan) on the biochemical soil characteristics and productivity of common beans in clay-saline soil. Higher organic matter, available nutrient content, and total bacteria count in soils were found under organic mulching treatments (rice straw and sawdust). In contrast, the white plastic mulching treatment resulted in the lowest values of soil electrical conductivity (EC) and the highest soil water content. Conversely, chitosan foliar spray treatments had the least impact on the chemical properties of the soil. Plants sprayed with 62.5 mg L-1 of nano chitosan exhibited higher chlorophyll content, plant height, fresh weight of shoots and roots, seed yield, and nutrient content compared to other chitosan foliar spray applications. All treatments studied led to a significant reduction in fungal communities and Na% in plants. The combined effect of organic mulch materials and foliar spray application of 62.5 mg L-1 nano chitosan appeared to enhance biochemical saline soil properties and common bean productivity.


Asunto(s)
Quitosano , Phaseolus , Suelo , Suelo/química , Phaseolus/crecimiento & desarrollo , Phaseolus/metabolismo , Phaseolus/efectos de los fármacos , Quitosano/farmacología , Salinidad , Microbiología del Suelo , Agricultura/métodos
2.
Heliyon ; 10(15): e35144, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39170208

RESUMEN

Scope: Phaseolean®, a standardized water extract of Phaseolus vulgaris or white kidney bean, exhibits α-amylase inhibitory property, which decreases calorie absorption by preventing or delaying carbohydrate digestion, thus supporting weight management. This randomized, double-blind, placebo-controlled, single-center comparative study (Clinical trial registration number: CTRI/2023/02/049440, Registered on: February 03, 2023) evaluated the safety and efficacy of Phaseolean® in weight management in overweight or obese participants upon regular intake at two different doses compared with placebo. Method: Sixty-six participants were enrolled and randomly divided into three groups, considering the inclusion & exclusion criteria. Each group was assigned a specific daily dosage for three meals: Phaseolean® 1500 mg/day (500 mg per meal), Phaseolean® 3000 mg/day (1000 mg per meal), or placebo 1500 mg/day (500 mg per meal), administered thrice a day before meals for 45 consecutive days. Body weight; body mass index (BMI); skinfold fat thickness; waist, hip, and thigh circumferences; and blood biochemical parameters were monitored and analyzed to evaluate the effects of these interventions. Results and conclusions: Of the 66 enrolled participants, 62 completed the study. Treatment with Phaseolean® 1500 mg/day reduced the weight by an average of 2.10 kg (0.33 kg/week), while that with 3000 mg/day was 1.94 kg (0.30 kg/week); 0.13 kg weight loss (0.02 kg/week) was observed in the placebo group after 45 days, showing significant differences between the Phaseolean® and placebo groups (p < 0.01). BMI, body fat, skinfold fat thickness, and the waist, hip, and thigh circumference were significantly reduced (p < 0.01) in both Phaseolean® groups compared with those in the placebo group, which showed no significant changes.No adverse effects were observed during the clinical trial period. Phaseolean® 1500 mg/day dose was more effective in weight reduction than the 3000 mg/day higher dose. Therefore, Phaseolean® can be used to support healthy weight management.

3.
Neotrop Entomol ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39158772

RESUMEN

Common bean (Phaseolus vulgaris L.) is the most important legume used for direct human consumption in Latin America, with an increasing expansion of cultivated areas in recent years. Here, we report the first occurrence of Conotrachelus quadrilineatus Champion, 1904 (Coleoptera: Curculionidae: Molytinae) feeding on bean in South America. Larvae and adults of C. quadrilineatus were observed during the first half of 2022, severely affecting the plantations of 20 bean farmers in the municipality of Garcia-Rovira, Santander Colombia. It is necessary to describe and quantify the damage of C. quadrilineatus in bean crops, as well as to study its bioecology.

4.
Plant J ; 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39152711

RESUMEN

Seed colors and color patterns are critical for the survival of wild plants and the consumer appeal of crops. In common bean, a major global staple, these patterns are also essential in determining market classes, yet the genetic and environmental control of many pigmentation patterns remains unresolved. In this study, we genetically mapped variation for several important seed pattern loci, including T, Bip, phbw, and Z, which co-segregated with candidate genes PvTTG1, PvMYC1, PvTT8, and PvTT2, respectively. Proteins encoded by these genes are predicted to work together in MYB-bHLH-WD40 (MBW) complexes, propagating flavonoid biosynthesis across the seed coat as observed in Arabidopsis. Whole-genome sequencing of 37 accessions identified mutations, including seven unique parallel mutations in T (PvTTG1) and non-synonymous SNPs in highly conserved residues in bipana (PvMYC1) and z (PvTT2). A 612 bp intron deletion in phbw (PvTT8) eliminated motifs conserved since the Papilionoideae origin and corresponded to a 20-fold reduction in transcript abundance. In multi-location field trials of seven varieties with partial seed coat pigmentation patterning, the pigmented seed coat area correlated positively with ambient temperature, with up to 11-fold increases in the pigmented area from the coolest to the warmest environments. In controlled growth chamber conditions, an increase of 4°C was sufficient to cause pigmentation on an average additional 21% of the seed coat area. Our results shed light on key steps of flavonoid biosynthesis in common bean. They will inform breeding efforts for seed coat color/patterning to improve consumer appeal in this nutritious staple crop.

5.
Nutrients ; 16(15)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39125413

RESUMEN

It is widely recognized that foods, biodiversity, and human health are strongly interconnected, and many efforts have been made to understand the nutraceutical value of diet. In particular, diet can affect the progression of intestinal diseases, including inflammatory bowel disease (IBD) and intestinal cancer. In this context, we studied the anti-inflammatory and antioxidant activities of extracts obtained from a local endangered variety of Phaseolus vulgaris L. (Fagiola di Venanzio, FV). Using in vitro intestinal cell models, we evaluated the activity of three different extracts: soaking water, cooking water, and the bioaccessible fraction obtained after mimicking the traditional cooking procedure and gastrointestinal digestion. We demonstrated that FV extracts reduce inflammation and oxidative stress prompted by interleukin 1ß through the inhibition of cyclooxygenase 2 expression and prostaglandin E2 production and through the reduction in reactive oxygen species production and NOX1 levels. The reported data outline the importance of diet in the prevention of human inflammatory diseases. Moreover, they strongly support the necessity to safeguard local biodiversity as a source of bioactive compounds.


Asunto(s)
Antiinflamatorios , Antioxidantes , Inflamación , Phaseolus , Extractos Vegetales , Phaseolus/química , Humanos , Extractos Vegetales/farmacología , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Proliferación Celular/efectos de los fármacos , Dinoprostona/metabolismo , Ciclooxigenasa 2/metabolismo , Línea Celular Tumoral
6.
Food Chem ; 460(Pt 2): 140635, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39111140

RESUMEN

The objective of this study was to identify bioactive oligosaccharides and peptides in the cooking water of chickpeas and common beans, known as aquafaba. The oligosaccharides stachyose, raffinose and verbascose were quantified by high-performance anion-exchange chromatography; 78 and 67 additional oligosaccharides were identified in chickpea and common bean aquafaba, respectively, by LC-MS/MS. Chickpea aquafaba uniquely harbored ciceritol and other methyl-inositol-containing oligosaccharides. In prebiotic growth assays, chickpea aquafaba oligosaccharides were differentially utilized, promoting growth of Limosilactobacillus reuteri DSM 20016 and Bifidobacterium longum subsp. infantis ATCC 15697, but not Lacticaseibacillus rhamnosus GG. Dimethyl labeling, along with LC-MS/MS, effectively differentiated α- and γ-glutamyl peptides, revealing the presence of several γ-glutamyl peptides known to possess kokumi and anti-inflammatory activities, including γ-Glu-Phe and γ-Glu-Tyr in chickpeas aquafaba and γ-Glu-S-methyl-Cys and γ-Glu-Leu in beans aquafaba. This work uncovered unique bioactive peptides and oligosaccharides in aquafaba, helping promote its valorization, food system sustainability, and future health-promoting claims.


Asunto(s)
Cicer , Glicómica , Oligosacáridos , Péptidos , Cicer/química , Cicer/crecimiento & desarrollo , Péptidos/química , Péptidos/análisis , Oligosacáridos/química , Oligosacáridos/análisis , Espectrometría de Masas en Tándem , Prebióticos/análisis , Phaseolus/química , Phaseolus/crecimiento & desarrollo , Cromatografía Líquida de Alta Presión
7.
Plant Cell Environ ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39038880

RESUMEN

Although seed represents an important means of plant pathogen dispersion, the seed-pathogen dialogue remains largely unexplored. A multiomic approach was performed at different seed developmental stages of common bean (Phaseolus vulgaris L.) during asymptomatic colonization by Xanthomonas citri pv. fuscans (Xcf), At the early seed developmental stages, we observed high transcriptional changes both in seeds with bacterial recognition and defense signal transduction genes, and in bacteria with up-regulation of the bacterial type 3 secretion system. This high transcriptional activity of defense genes in Xcf-colonized seeds during maturation refutes the widely diffused assumption considering seeds as passive carriers of microbes. At later seed maturation stages, few transcriptome changes indicated a less intense molecular dialogue between the host and the pathogen, but marked by changes in DNA methylation of plant defense genes, in response to Xcf colonization. We showed examples of pathogen-specific DNA methylations in colonized seeds acting as plant defense silencing to repress plant immune response during the germination process. Finally, we propose a novel plant-pathogen interaction model, specific to the seed tissues, highlighting the existence of distinct phases during seed-pathogen interaction with seeds being actively interacting with colonizing pathogens, then both belligerents switching to more passive mode at later stages.

8.
BMC Plant Biol ; 24(1): 688, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39026161

RESUMEN

BACKGROUND: Laccase (LAC) gene family plays a pivotal role in plant lignin biosynthesis and adaptation to various stresses. Limited research has been conducted on laccase genes in common beans. RESULTS: 29 LAC gene family members were identified within the common bean genome, distributed unevenly in 9 chromosomes. These members were divided into 6 distinct subclades by phylogenetic analysis. Further phylogenetic analyses and synteny analyses indicated that considerable gene duplication and loss presented throughout the evolution of the laccase gene family. Purified selection was shown to be the major evolutionary force through Ka / Ks. Transcriptional changes of PvLAC genes under low temperature and salt stress were observed, emphasizing the regulatory function of these genes in such conditions. Regulation by abscisic acid and gibberellins appears to be the case for PvLAC3, PvLAC4, PvLAC7, PvLAC13, PvLAC14, PvLAC18, PvLAC23, and PvLAC26, as indicated by hormone induction experiments. Additionally, the regulation of PvLAC3, PvLAC4, PvLAC7, and PvLAC14 in response to nicosulfuron and low-temperature stress were identified by virus-induced gene silence, which demonstrated inhibition on growth and development in common beans. CONCLUSIONS: The research provides valuable genetic resources for improving the resistance of common beans to abiotic stresses and enhance the understanding of the functional roles of the LAC gene family.


Asunto(s)
Lacasa , Familia de Multigenes , Phaseolus , Filogenia , Estrés Fisiológico , Phaseolus/genética , Phaseolus/enzimología , Phaseolus/fisiología , Lacasa/genética , Lacasa/metabolismo , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Regulación de la Expresión Génica de las Plantas , Genes de Plantas
9.
Front Plant Sci ; 15: 1404889, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39015289

RESUMEN

Introduction: Effective weed management tools are crucial for maintaining the profitable production of snap bean (Phaseolus vulgaris L.). Preemergence herbicides help the crop to gain a size advantage over the weeds, but the few preemergence herbicides registered in snap bean have poor waterhemp (Amaranthus tuberculatus) control, a major pest in snap bean production. Waterhemp and other difficult-to-control weeds can be managed by flumioxazin, an herbicide that inhibits protoporphyrinogen oxidase (PPO). However, there is limited knowledge about crop tolerance to this herbicide. We aimed to quantify the degree of snap bean tolerance to flumioxazin and explore the underlying mechanisms. Methods: We investigated the genetic basis of herbicide tolerance using genome-wide association mapping approach utilizing field-collected data from a snap bean diversity panel, combined with gene expression data of cultivars with contrasting response. The response to a preemergence application of flumioxazin was measured by assessing plant population density and shoot biomass variables. Results: Snap bean tolerance to flumioxazin is associated with a single genomic location in chromosome 02. Tolerance is influenced by several factors, including those that are indirectly affected by seed size/weight and those that directly impact the herbicide's metabolism and protect the cell from reactive oxygen species-induced damage. Transcriptional profiling and co-expression network analysis identified biological pathways likely involved in flumioxazin tolerance, including oxidoreductase processes and programmed cell death. Transcriptional regulation of genes involved in those processes is possibly orchestrated by a transcription factor located in the region identified in the GWAS analysis. Several entries belonging to the Romano class, including Bush Romano 350, Roma II, and Romano Purpiat presented high levels of tolerance in this study. The alleles identified in the diversity panel that condition snap bean tolerance to flumioxazin shed light on a novel mechanism of herbicide tolerance and can be used in crop improvement.

10.
Plants (Basel) ; 13(14)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39065494

RESUMEN

High solar radiation, combined with high temperature, causes losses in plant production. The application of foliar protector in plants is associated with improvements in photosynthesis, reduction in leaf temperature and, consequently, improved productivity. Two experiments were conducted. The first aimed to assess the efficacy of foliar protector versus artificial shading in mitigating the negative impacts of excessive radiation and temperature on the physiology, growth, and yield of common bean plants. The second experiment focused on comparing the timing in cycle plants (phenological phases) of foliar protector application in two different bean cultivars (BRS Fc 104 and BRS MG Realce) under field conditions. Artificial shading provided better results for photosynthesis, transpiration, growth and production compared to the application of foliar protector. In the field conditions experiment, the application timing of the foliar protector at different phenological phases did not increase productivity in the cultivars. The application of foliar protector under the conditions studied was not effective in mitigating the negative impacts of high solar radiation and temperature on common bean cultivation. However, it is opportune to evaluate the application of foliar protector in bean plants grown under conditions with water deficit, high solar radiation and high temperature.

11.
Genes (Basel) ; 15(7)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39062714

RESUMEN

Common beans (Phaseolus vulgaris L.), besides being an important source of nutrients such as iron, magnesium, and protein, are crucial for food security, especially in developing countries. Common bean cultivation areas commonly face production challenges due to drought occurrences, mainly during the reproductive period. Dry spells last approximately 20 days, enough time to compromise production. Hence, it is crucial to understand the genetic and molecular mechanisms that confer drought tolerance to improve common bean cultivars' adaptation to drought. Sixty six RNASeq libraries, generated from tolerant and sensitive cultivars in drought time sourced from the R5 phenological stage at 0 to 20 days of water deficit were sequenced, generated over 1.5 billion reads, that aligned to 62,524 transcripts originating from a reference transcriptome, as well as 6673 transcripts obtained via de novo assembly. Differentially expressed transcripts were functionally annotated, revealing a variety of genes associated with molecular functions such as oxidoreductase and transferase activity, as well as biological processes related to stress response and signaling. The presence of regulatory genes involved in signaling cascades and transcriptional control was also highlighted, for example, LEA proteins and dehydrins associated with dehydration protection, and transcription factors such as WRKY, MYB, and NAC, which modulate plant response to water deficit. Additionally, genes related to membrane and protein protection, as well as water and ion uptake and transport, were identified, including aquaporins, RING-type E3 ubiquitin transferases, antioxidant enzymes such as GSTs and CYPs, and thioredoxins. This study highlights the complexity of plant response to water scarcity, focusing on the functional diversity of the genes involved and their participation in the biological processes essential for plant adaptation to water stress. The identification of regulatory and cell protection genes offers promising prospects for genetic improvement aiming at the production of common bean varieties more resistant to drought. These findings have the potential to drive sustainable agriculture, providing valuable insights to ensure food security in a context of climate change.


Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas , Phaseolus , Proteínas de Plantas , Phaseolus/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma/genética , Estrés Fisiológico/genética , Adaptación Fisiológica/genética , Deshidratación/genética , Perfilación de la Expresión Génica/métodos , Resistencia a la Sequía
12.
Int J Mol Sci ; 25(14)2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39063210

RESUMEN

The common bean (Phaseolus vulgaris L.) is an economically important food crop grown worldwide; however, its production is affected by various environmental stresses, including cold, heat, and drought stress. The plant U-box (PUB) protein family participates in various biological processes and stress responses, but the gene function and expression patterns of its members in the common bean remain unclear. Here, we systematically identified 63 U-box genes, including 8 tandem genes and 55 non-tandem genes, in the common bean. These PvPUB genes were unevenly distributed across 11 chromosomes, with chromosome 2 holding the most members of the PUB family, containing 10 PUB genes. The analysis of the phylogenetic tree classified the 63 PUB genes into three groups. Moreover, transcriptome analysis based on cold-tolerant and cold-sensitive varieties identified 4 differentially expressed PvPUB genes, suggesting their roles in cold tolerance. Taken together, this study serves as a valuable resource for exploring the functional aspects of the common bean U-box gene family and offers crucial theoretical support for the development of new cold-tolerant common bean varieties.


Asunto(s)
Respuesta al Choque por Frío , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Phaseolus , Filogenia , Proteínas de Plantas , Phaseolus/genética , Respuesta al Choque por Frío/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilación de la Expresión Génica/métodos , Genoma de Planta , Cromosomas de las Plantas/genética , Frío
13.
Plants (Basel) ; 13(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38999609

RESUMEN

According to four field experiments, after the inoculation of Phaseolus vulgaris L. cultivar Ufimskaya with the commercial strain Bacillus subtilis 26D and the promising strain B. subtilis 10-4, it was found that inoculation with B. subtilis 10-4 improved seed productivity (SP) by 31-41% per plant, but only in dry years. In contrast, all 4 years of inoculation with B. subtilis 26D were ineffective or neutral. It was intended to determine the growing and biochemical characteristics of inoculated 7-day-old plants, which correlate with the field SP of bacterial preparations. The SP of inoculated plants (average of 4 years) correlated with root length (0.83), MDA content (-0.98), and catalase (CAT) activity in roots (-0.96) of week-old seedlings. High correlation coefficients between the H2O2 content in the roots and SP (0.89 and 0.77), as well as between the H2O2 content in shoots and SP (0.98 and 0.56), were observed only in two dry years, when the influence of bacteria was detected. These physiological indicators were identified as potential markers for predicting the effectiveness of the endophytic symbiosis between bean plants and B. subtilis strains. The findings may be used to develop effective microbial-based, eco-friendly technologies for bean production.

14.
Metabolites ; 14(6)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38921454

RESUMEN

Drought limits the growth and development of Phaseolus vulgaris L. (known as common bean). Common bean plants contain various phenylpropanoids, but it is not known whether the levels of these metabolites are altered by drought. Here, BT6 and BT44, two white bean recombinant inbred lines (RILs), were cultivated under severe drought. Their respective growth and phenylpropanoid profiles were compared to those of well-irrigated plants. Both RILs accumulated much less biomass in their vegetative parts with severe drought, which was associated with more phaseollin and phaseollinisoflavan in their roots relative to well-irrigated plants. A sustained accumulation of coumestrol was evident in BT44 roots with drought. Transient alterations in the leaf profiles of various phenolic acids occurred in drought-stressed BT6 and BT44 plants, including the respective accumulation of two separate caftaric acid isomers and coutaric acid (isomer 1) relative to well-irrigated plants. A sustained rise in fertaric acid was observed in BT44 with drought stress, whereas the greater amount relative to well-watered plants was transient in BT6. Apart from kaempferol diglucoside (isomer 2), the concentrations of most leaf flavonol glycosides were not altered with drought. Overall, fine tuning of leaf and root phenylpropanoid profiles occurs in white bean plants subjected to severe drought.

15.
Int J Mol Sci ; 25(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38891825

RESUMEN

This study aimed to investigate the availability of flavonoids, anthocyanins, and phenolic acids in mutant bean seeds, focusing on M7 mutant lines, and their corresponding initial and local cultivars. HPLC-DAD-MS/MS and HPLC-MS/MS were used to analyze twenty-eight genotypes of common bean. The obtained results suggest that the mutations resulted in four newly synthesized anthocyanins in the mutant bean seeds, namely, delphinidin 3-O-glucoside, cyanidin 3-O-glucoside, pelargonidin 3-O-glucoside, and petunidin 3-O-glucoside, in 20 accessions with colored seed shapes out of the total of 28. Importantly, the initial cultivar with white seeds, as well as the mutant white seeds, did not contain anthocyanins. The mutant lines were classified into groups based on their colors as novel qualitative characteristics. Five phenolic acids were further quantified: ferulic, p-coumaric, caffeic, sinapic, and traces of chlorogenic acids. Flavonoids were represented by epicatechin, quercetin, and luteolin, and their concentrations in the mutant genotypes were several-fold superior compared to those of the initial cultivar. All mutant lines exhibited higher concentrations of phenolic acids and flavonoids. These findings contribute to the understanding of the genetics and biochemistry of phenolic accumulation and anthocyanin production in common bean seeds, which is relevant to health benefits and might have implications for common bean breeding programs and food security efforts.


Asunto(s)
Antocianinas , Mutación , Phaseolus , Polifenoles , Semillas , Semillas/genética , Semillas/metabolismo , Semillas/química , Phaseolus/genética , Phaseolus/metabolismo , Polifenoles/biosíntesis , Antocianinas/biosíntesis , Flavonoides/biosíntesis , Flavonoides/metabolismo , Genotipo , Hidroxibenzoatos/metabolismo , Cromatografía Líquida de Alta Presión , Espectrometría de Masas en Tándem
16.
Virol J ; 21(1): 147, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38943139

RESUMEN

Vertical transmission, the transfer of pathogens across generations, is a critical mechanism for the persistence of plant viruses. The transmission mechanisms are diverse, involving direct invasion through the suspensor and virus entry into developing gametes before achieving symplastic isolation. Despite the progress in understanding vertical virus transmission, the environmental factors influencing this process remain largely unexplored. We investigated the complex interplay between vertical transmission of plant viruses and pollination dynamics, focusing on common bean (Phaseolus vulgaris). The intricate relationship between plants and pollinators, especially bees, is essential for global ecosystems and crop productivity. We explored the impact of virus infection on seed transmission rates, with a particular emphasis on bean common mosaic virus (BCMV), bean common mosaic necrosis virus (BCMNV), and cucumber mosaic virus (CMV). Under controlled growth conditions, BCMNV exhibited the highest seed transmission rate, followed by BCMV and CMV. Notably, in the field, bee-pollinated BCMV-infected plants showed a reduced transmission rate compared to self-pollinated plants. This highlights the influence of pollinators on virus transmission dynamics. The findings demonstrate the virus-specific nature of seed transmission and underscore the importance of considering environmental factors, such as pollination, in understanding and managing plant virus spread.


Asunto(s)
Phaseolus , Enfermedades de las Plantas , Polinización , Animales , Enfermedades de las Plantas/virología , Abejas/virología , Phaseolus/virología , Semillas/virología , Transmisión Vertical de Enfermedad Infecciosa , Cucumovirus/fisiología , Potyvirus/fisiología
17.
BMC Plant Biol ; 24(1): 525, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858659

RESUMEN

Common bean provides diet rich in vitamins, fiber, minerals, and protein, which could contribute into food security of needy populations in many countries. Developing genotypes that associate favorable agronomic and grain quality traits in the common bean crop could increase the chances of adopting new cultivars black bean. In this context, the present study aimed at selection of superior black bean lines using multi-variate indexes, Smith-Hazel-index, and genotype by yield*trait biplot analysis. These trials were conducted in Campos dos Goytacazes - RJ, in 2020 and 2021. The experimental design used was randomized blocks, with 28 treatments and three replications. The experimental unit consisted of four rows 4.0 m long, spaced at 0.50 m apart, with a sowing density of 15 seeds per meter. The two central rows were used for the evaluations. The selection of superior genotypes was conducted using the multiple trait stability index (MTSI), multi-trait genotype-ideotype distance index (MGIDI), multi-trait index based on factor analysis and genotype-ideotype distance (FAI-BLUP), Smith-Hazel index, and Genotype by Yield*Trait Biplot (GYT). The multivariate indexes efficiently selected the best black bean genotypes, presenting desirable selection gains for most traits. The use of multivariate indexes and GYT enable the selection of early genotypes with higher grain yields. These lines G9, G13, G17, G23, and G27 were selected based on their performance for multiple traits closest to the ideotype and could be recommended as new varieties.


Asunto(s)
Genotipo , Phaseolus , Phaseolus/genética , Fitomejoramiento/métodos , Selección Genética , Productos Agrícolas/genética , Fenotipo
18.
Plant Physiol ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38865443

RESUMEN

Soil waterlogging and drought correspond to contrasting water extremes resulting in plant dehydration. Dehydration in response to waterlogging occurs due to impairments to root water transport, but no previous study has addressed whether limitations to water transport occur beyond this organ or whether dehydration alone can explain shoot impairments. Using common bean (Phaseolus vulgaris) as a model species, we report that waterlogging also impairs water transport in leaves and stems. During the very first hours of waterlogging, leaves transiently dehydrated to water potentials close to the turgor loss point, possibly driving rapid stomatal closure and partially explaining the decline in leaf hydraulic conductance. The initial decline in leaf hydraulic conductance (occurring within 24 h), however, surpassed the levels predicted to occur based solely on dehydration. Constraints to leaf water transport resulted in a hydraulic disconnection between leaves and stems, furthering leaf dehydration during waterlogging and after soil drainage. As leaves dehydrated later during waterlogging, leaf embolism initiated and extensive embolism levels amplified leaf damage. The hydraulic disconnection between leaves and stems prevented stem water potentials from declining below the threshold for critical embolism levels in response to waterlogging. This allowed plants to survive waterlogging and soil drainage. In summary, leaf and stem dehydration are central in defining plant impairments in response to waterlogging, thus creating similarities between waterlogging and drought. Yet, our findings point to the existence of additional players (likely chemicals) partially controlling the early declines in leaf hydraulic conductance and contributing to leaf damage during waterlogging.

19.
Front Plant Sci ; 15: 1386877, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38919821

RESUMEN

Anthracnose, white mold, powdery mildew, and root rot caused by Colletotrichum lindemuthianum, Scletorinia sclerotiorum, Erysiphe spp., and Pythium ultimum, respectively, are among the most frequent diseases that cause significant production losses worldwide in common bean (Phaseolus vulgaris L.). Reactions against these four fungal diseases were investigated under controlled conditions using a diversity panel of 311 bean lines for snap consumption (Snap bean Panel). The genomic regions involved in these resistance responses were identified based on a genome-wide association study conducted with 16,242 SNP markers. The highest number of resistant lines was observed against the three C. lindemuthianum isolates evaluated: 156 lines were resistant to CL124 isolate, 146 lines resistant to CL18, and 109 lines were resistant to C531 isolate. Two well-known anthracnose resistance clusters were identified, the Co-2 on chromosome Pv11 for isolates CL124 and CL18, and the Co-3 on chromosome Pv04 for isolates CL124 and C531. In addition, other lesser-known regions of anthracnose resistance were identified on chromosomes Pv02, Pv06, Pv08, and Pv10. For the white mold isolate tested, 24 resistant lines were identified and the resistance was localized to three different positions on chromosome Pv08. For the powdery mildew local isolate, only 12 resistant lines were identified, and along with the two previous resistance genes on chromosomes Pv04 and Pv11, a new region on chromosome Pv06 was also identified. For root rot caused by Pythium, 31 resistant lines were identified and two main regions were located on chromosomes Pv04 and Pv05. Relevant information for snap bean breeding programs was provided in this work. A total of 20 lines showed resistant or intermediate responses against four or five isolates, which can be suitable for sustainable farm production and could be used as resistance donors. Potential genes and genomic regions to be considered for targeted improvement were provided, including new or less characterized regions that should be validated in future works. Powdery mildew disease was identified as a potential risk for snap bean production and should be considered a main goal in breeding programs.

20.
J Agric Food Chem ; 72(26): 14844-14850, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38885440

RESUMEN

The 11S globulin legumin typically accounts for approximately 3% of the total protein in common beans (Phaseolus vulgaris). It was previously reported that a legumin peptide of approximately 20 kDa is resistant to pepsin digestion. Sequence prediction suggested that the pepsin-resistant peptide is located at the C-terminal end of the α-subunit, within a glutamic acid-rich domain, overlapping with a chymotrypsin-resistant peptide. Using purified legumin, the peptide of approximately 20 kDa was found to be resistant to pepsin digestion in a pH-dependent manner, and its location was determined by two-dimensional gel electrophoresis and LC-MS-MS. The location of the chymotrypsin-resistant peptide was confirmed by immunoblotting with peptide-specific polyclonal antibodies. The presence of a consensus site for proline hydroxylation and arabinosylation, the detection of hydroxyproline residues, purification by lectin affinity chromatography, and a difference in electrophoretic migration between the chymotrypsin- and pepsin-resistant peptides suggest the presence of a large O-glycan within these peptides.


Asunto(s)
Secuencia de Aminoácidos , Quimotripsina , Pepsina A , Péptidos , Phaseolus , Phaseolus/química , Pepsina A/química , Pepsina A/metabolismo , Quimotripsina/química , Quimotripsina/metabolismo , Péptidos/química , Péptidos/aislamiento & purificación , Leguminas/química , Espectrometría de Masas en Tándem , Proteínas de Plantas/química , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA